1
|
Romero-Trancón D, Valero-Lorenzo M, Ruano MJ, Fernández-Pacheco P, García-Villacieros E, Tena-Tomás C, López-Herranz A, Morales J, Martí B, Jiménez-Clavero MÁ, Cáceres-Garrido G, Agüero M, Villalba R. Emerging Bluetongue Virus Serotype 4 in the Balearic Islands, Spain (2021): Outbreak Investigations and Experimental Infection in Sheep. Microorganisms 2025; 13:411. [PMID: 40005776 DOI: 10.3390/microorganisms13020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Bluetongue is an infectious, non-contagious, arthropod-borne viral disease of ruminants caused by bluetongue virus (BTV), producing severe impacts on livestock. Historically, Southern Europe has suffered multiple incursions of different BTV serotypes with serious consequences. In 2021, BTV re-emerged in the Balearic Islands (Spain) after 16 years free of the disease, causing a large outbreak that mainly affected sheep, as well as cattle and goats. A novel emerging strain of BTV serotype 4 (BTV-4) was identified via preliminary molecular characterization as the etiological culprit of the epizootic. This study delineates the outbreak in the Balearic Islands in 2021, encompassing field-based clinical observations and laboratory findings. Additionally, an experimental infection was conducted in sheep using the novel BTV-4 strain to assess its virulence, pathogenicity, and laboratory diagnostic characteristics. The in vivo characterization was conducted concurrently with the virulent and widely disseminated BTV-4 RNM 2020 strain that has precipitated significant outbreaks in the Mediterranean region in recent years. Both strains exhibited analogous pathogenic potential in sheep and yielded equivalent outcomes in diagnostic parameters. Furthermore, the impact of the novel BTV-4 strain is discussed.
Collapse
Affiliation(s)
- David Romero-Trancón
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Marta Valero-Lorenzo
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Paloma Fernández-Pacheco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain
| | - Elena García-Villacieros
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministry of Agriculture, Fisheries and Food (MAPA), 28014 Madrid, Spain
| | | | - Ana López-Herranz
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Jorge Morales
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Bartolomé Martí
- Laboratorio de Sanidad Animal del Instituto de Investigación y Formación Agroalimentaria y Pesquera de las Islas Baleares (IRFAP), Conselleria d'Agricultura, Pesca i Medi Natural de les Illes Balears, 07009 Palma, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain
| | - Germán Cáceres-Garrido
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministry of Agriculture, Fisheries and Food (MAPA), 28014 Madrid, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), 28110 Algete, Spain
| |
Collapse
|
2
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
5
|
Gwynn A, Mbewana S, Lubisi BA, Tshabalala HM, Rybicki EP, Meyers AE. Chimaeric plant-produced bluetongue virus particles as potential vaccine candidates. Arch Virol 2023; 168:179. [PMID: 37310539 DOI: 10.1007/s00705-023-05790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/29/2023] [Indexed: 06/14/2023]
Abstract
Bluetongue virus (BTV) causes bluetongue disease in ruminants and sheep. The current live attenuated and inactivated vaccines available for prevention pose several risks, and there is thus a need for vaccines that are safer, economically viable, and effective against multiple circulating serotypes. This work describes the development of recombinant virus-like particle (VLP) vaccine candidates in plants, which are assembled by co-expression of the four BTV serotype 8 major structural proteins. We show that substitution of a neutralising tip domain of BTV8 VP2 with that of BTV1 VP2 resulted in the assembly of VLPs that stimulated serotype-specific antibodies as well as virus-specific neutralising antibodies.
Collapse
Affiliation(s)
- A Gwynn
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - S Mbewana
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
| | - B A Lubisi
- Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research Institute, Pretoria, 0110, South Africa
| | - H M Tshabalala
- Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research Institute, Pretoria, 0110, South Africa
| | - E P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, CapeTown, 7925, South Africa
| | - A E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7700, South Africa.
| |
Collapse
|
6
|
Attoui H, Mohd Jaafar F, Monsion B, Klonjkowski B, Reid E, Fay PC, Saunders K, Lomonossoff G, Haig D, Mertens PPC. Increased Clinical Signs and Mortality in IFNAR (-/-) Mice Immunised with the Bluetongue Virus Outer-Capsid Proteins VP2 or VP5, after Challenge with an Attenuated Heterologous Serotype. Pathogens 2023; 12:pathogens12040602. [PMID: 37111488 PMCID: PMC10141489 DOI: 10.3390/pathogens12040602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Bluetongue is an economically important disease of domesticated and wild ruminants caused by bluetongue virus (BTV). There are at least 36 different serotypes of BTV (the identity of which is determined by its outer-capsid protein VP2), most of which are transmitted by Culicoides biting midges. IFNAR(-/-) mice immunised with plant-expressed outer-capsid protein VP2 (rVP2) of BTV serotypes -1, -4 or -8, or the smaller outer-capsid protein rVP5 of BTV-10, or mock-immunised with PBS, were subsequently challenged with virulent strains of BTV-4 or BTV-8, or with an attenuated clone of BTV-1 (BTV-1RGC7). The mice that had received rVP2 generated a protective immune response against the homologous BTV serotype, reducing viraemia (as detected by qRT-PCR), the severity of clinical signs and mortality levels. No cross-serotype protection was observed after challenge with the heterologous BTV serotypes. However, the severity of clinical signs, viraemia and fatality levels after challenge with the attenuated strain of BTV-1 were all increased in mice immunised with rVP2 of BTV-4 and BTV-8, or with rVP5 of BTV10. The possibility is discussed that non-neutralising antibodies, reflecting serological relationships between the outer-capsid proteins of these different BTV serotypes, could lead to 'antibody-dependent enhancement of infection' (ADE). Such interactions could affect the epidemiology and emergence of different BTV strains in the field and would therefore be relevant to the design and implementation of vaccination campaigns.
Collapse
Affiliation(s)
- Houssam Attoui
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Fauziah Mohd Jaafar
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Baptiste Monsion
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Bernard Klonjkowski
- UMR1161 VIROLOGIE, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, F-94700 Maisons-Alfort, France
| | - Elizabeth Reid
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Petra C Fay
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - George Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich NR4 7UH, UK
| | - David Haig
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Peter P C Mertens
- One Virology, The Wolfson Centre for Global Virus Research, Sutton Bonington Campus, School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
7
|
Rudenko NV, Karatovskaya AP, Zamyatina AV, Malogolovkin AS, Oleinikov VA, Brovko FA, Kol’tsov AU, Lapteva OG, Kolbasov DV, Shepelyakovskaya AO. Bluetongue Virus Detection Using Microspheres Conjugated with Monoclonal Antibodies against Group-Specific Protein Vp7 by Flow Virometry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Martinelle L, Haegeman A, Lignereux L, Chaber AL, Dal Pozzo F, De Leeuw I, De Clercq K, Saegerman C. Orbivirus Screening from Imported Captive Oryx in the United Arab Emirates Stresses the Importance of Pre-Import and Transit Measures. Pathogens 2022; 11:pathogens11060697. [PMID: 35745551 PMCID: PMC9229846 DOI: 10.3390/pathogens11060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
From 1975 to 2021, the United Arab Emirates (UAE) imported more than 1300 live Arabian oryxes (AOs) and scimitar-horned oryxes (SHOs) for conservation programs. The objective of this study was to estimate the prevalence of orbiviruses Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in AOs and SHOs from captive herds in the UAE. Between October 2014 and April 2015, 16 AOs and 13 SHOs originating from Texas (USA) and 195 out of about 4000 SHOs from two locations in the UAE were blood sampled to be tested by indirect enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays. Eight imported AOs (50% CI [24.7–75.4%]) and eight imported SHOs (61.5% CI [31.6–86.1%]) were found BTV seropositive, in contrast with three out of 195 SHOs (1.5% CI [0.3–4.4%]) from the Emirates. BTV-2 genome was detected in 6/16 of the Arabian Oryx, and amongst those, one out of six was seronegative. None of the tested samples was found positive for EHDV. Our results illustrate the wide local variation regarding BTV seroprevalence in domestic and wild ruminants in the Arabian Peninsula. These results stress the need for pre-import risk assessment when considering translocation of wild ruminant species susceptible to orbiviruses not only in the country of destination but also where transit happens.
Collapse
Affiliation(s)
- Ludovic Martinelle
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
- Correspondence: ; Tel.: +32-4-366-40-39
| | - Andy Haegeman
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Louis Lignereux
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Fabiana Dal Pozzo
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
| | - Ilse De Leeuw
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Kris De Clercq
- Sciensano, Infectious Diseases in Animals, Exotic and Particular Diseases, 1050 Brussels, Belgium; (A.H.); (I.D.L.); (K.D.C.)
| | - Claude Saegerman
- CARE-FEPEX Experimental Station, Fundamental and Applied Research for Animals & Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium; (L.L.); (F.D.P.); (C.S.)
| |
Collapse
|
9
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Bréard E, Turpaud M, Beaud G, Postic L, Fablet A, Beer M, Sailleau C, Caignard G, Viarouge C, Hoffmann B, Vitour D, Zientara S. Development and Validation of an ELISA for the Detection of Bluetongue Virus Serotype 4-Specific Antibodies. Viruses 2021; 13:v13091741. [PMID: 34578322 PMCID: PMC8473233 DOI: 10.3390/v13091741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
In this article, we describe the development and evaluation of a double antigen sandwich enzyme-linked immunosorbent assay (ELISA) able to detect serotype 4-specific antibodies from BTV-4 infected or vaccinated animals using a recombinant BTV-4 VP2 protein. The coding sequence of VP2 was inserted into a pVote plasmid by recombination in the Gateway® cloning system. Vaccinia virus (VacV) was used as a vector for the expression of the recombinant VP2. After production in BSR cells, recombinant VP2 was purified by immunoprecipitation using a FLAG tag and then used both as the coated ELISA antigen and as the HRP-tagged conjugate. The performance of the ELISA was evaluated with 1186 samples collected from BTV negative, infected or vaccinated animals. The specificity and sensitivity of the BTV-4 ELISA were above the expected standards for the detection of anti-BTV-4 VP2 antibodies in animals reared in Europe or in the Mediterranean basin. Cross-reactions were observed with reference sera for serotypes 10 and 20, and to a lesser extent with serotypes 12, 17 and 24, due to their genetic proximity to serotype 4. Nevertheless, these serotypes have never been detected in Europe and the Mediterranean area. This ELISA, which requires only the production of a recombinant protein, can be used to detect BTV serotype 4-specific antibodies and is therefore an attractive alternative diagnostic method to serum neutralization.
Collapse
Affiliation(s)
- Emmanuel Bréard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
- Correspondence:
| | - Mathilde Turpaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Georges Beaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Lydie Postic
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Aurore Fablet
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Corinne Sailleau
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Grégory Caignard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Cyril Viarouge
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Damien Vitour
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Stéphan Zientara
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| |
Collapse
|
11
|
Bamouh Z, Es-Sadeqy Y, Safini N, Douieb L, Omari Tadlaoui K, Martínez RV, García MA, Fassi-Fihri O, Elharrak M. Safety and efficacy of a Bluetongue inactivated vaccine (serotypes 1 and 4) in sheep. Vet Microbiol 2021; 261:109212. [PMID: 34450450 DOI: 10.1016/j.vetmic.2021.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
A new inactivated vaccine against Bluetongue virus (BTV) serotypes 1 and 4, was developed from field isolates. Safety and efficacy of the vaccine were evaluated in sheep by serological monitoring and virus nucleic acid detection after experimental infection of vaccinated animals. Seroconversion was observed in vaccinated animals at day 14 post vaccination (pv) with neutralizing antibody titer of 1.9 and 1.8 for serotypes 1 and 4, respectively. The titer increase significantly after the booster reaching 2.7 and persist one year >1.5 for both serotypes. After challenge with virulent isolates, vireamia was recorded in control animals, as evident by q-PCR with threshold cycles (Ct) ranging from 24 to 31 and peaked at day 10 post challenge, while no vireamia was detected in vaccinated animals. Vaccinated sheep were fully protected against the disease and infection.
Collapse
Affiliation(s)
- Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Y Es-Sadeqy
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - N Safini
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - L Douieb
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - K Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | | | - M Agüero García
- Laboratorio Central de Veterinaria-Animal Health, Algete, Madrid, Spain.
| | - O Fassi-Fihri
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
12
|
Es-Sadeqy Y, Bamouh Z, Ennahli A, Safini N, El Mejdoub S, Omari Tadlaoui K, Gavrilov B, El Harrak M. Development of an inactivated combined vaccine for protection of cattle against lumpy skin disease and bluetongue viruses. Vet Microbiol 2021; 256:109046. [PMID: 33780805 DOI: 10.1016/j.vetmic.2021.109046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/19/2021] [Indexed: 01/14/2023]
Abstract
Lumpy Skin Disease (LSD) and Bluetongue (BT) are the main ruminants viral vector-borne diseases. LSD is endemic in Africa and has recently emerged in Europe and central Asia as a major threat to cattle industry. BT caused great economic damage in Europe during the last decade with a continuous spread to other countries. To control these diseases, vaccination is the only economically viable tool. For LSD, only live-attenuated vaccines (LAVs) are commercially available, whilst for BT both LAVs and inactivated vaccines are available with a limited number of serotypes. In this study, we developed an inactivated, oil adjuvanted bivalent vaccine against both diseases based on LSDV Neethling strain and BTV4. The vaccine was tested for safety and immunogenicity on cattle during a one-year period. Post-vaccination monitoring was carried out by VNT and ELISA. The vaccine was completely safe and elicited high neutralizing antibodies starting from the first week following the second injection up to one year. Furthermore, a significant correlation (R = 0.9040) was observed when comparing VNT and competitive ELISA in BTV4 serological response. Following BTV4 challenge, none of vaccinated and unvaccinated cattle were registered clinical signs, however vaccinated cattle showed full protection from viraemia. In summary, this study highlights the effectiveness of this combined vaccine as a promising solution for both LSD and BT control. It also puts an emphasis on the need for the development of other multivalent inactivated vaccines, which could be greatly beneficial for improving vaccination coverage in endemic countries and prophylaxis of vector-borne diseases.
Collapse
Affiliation(s)
- Youness Es-Sadeqy
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco.
| | - Zahra Bamouh
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Abderrahim Ennahli
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Najete Safini
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Soufiane El Mejdoub
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Khalid Omari Tadlaoui
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, 1113, Bulgaria
| | - Mehdi El Harrak
- Research and Development, MCI Santé Animale, ZI Sud-Ouest B.P: 278, Mohammedia, 28810, Morocco
| |
Collapse
|
13
|
Rutkowska DA, Mokoena NB, Tsekoa TL, Dibakwane VS, O’Kennedy MM. Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness. BMC Vet Res 2019; 15:432. [PMID: 31796116 PMCID: PMC6892175 DOI: 10.1186/s12917-019-2184-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.
Collapse
Affiliation(s)
| | - Nobalanda B. Mokoena
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | | - Vusi S. Dibakwane
- Onderstepoort Biological Products SOC Ltd, Private Bag X07, Onderstepoort, 0110 South Africa
| | | |
Collapse
|
14
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
15
|
Mokoena NB, Moetlhoa B, Rutkowska DA, Mamputha S, Dibakwane VS, Tsekoa TL, O'Kennedy MM. Plant-produced Bluetongue chimaeric VLP vaccine candidates elicit serotype-specific immunity in sheep. Vaccine 2019; 37:6068-6075. [PMID: 31471154 DOI: 10.1016/j.vaccine.2019.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023]
Abstract
Bluetongue (BT) is a hemorrhagic non-contagious, biting midge-transmitted disease of wild and domestic ruminants that is caused by bluetongue virus (BTV). Annual vaccination plays a pivotal role in BT disease control in endemic regions. Due to safety concerns of the current BTV multivalent live attenuated vaccine (LAV), a safe efficacious new generation subunit vaccine such as a plant-produced BT virus-like particle (VLP) vaccine is imperative. Previously, homogenous BTV serotype 8 (BTV-8) VLPs were successfully produced in Nicotiana benthamiana plants and provided protective immunity in sheep. In this study, combinations of BTV capsid proteins from more than one serotype were expressed and assembled to form chimaeric BTV-3 and BTV-4 VLPs in N. benthamiana plants. The assembled homogenous BTV-8, as well as chimaeric BTV-3 and chimaeric BTV-4 VLP serotypes, were confirmed by SDS-PAGE, Transmission Electron microscopy (TEM) and protein confirmation using liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing. As VP2 is the major determinant eliciting protective immunity, the percentage coverage and number of unique VP2 peptides detected in assembled chimaeric BT VLPs were used as a guide to assemble the most appropriate chimaeric combinations. Both plant-produced chimaeric BTV-3 and BTV-4 VLPs were able to induce long-lasting serotype-specific neutralizing antibodies equivalent to the monovalent LAV controls. Antibody levels remained high to the end of the trial. Combinations of homogenous and chimaeric BT VLPs have great potential as a safe, effective multivalent vaccine with the ability to distinguish between vaccinated and infected individuals (DIVA) due to the absence of non-structural proteins.
Collapse
Affiliation(s)
| | | | - Daria A Rutkowska
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Sipho Mamputha
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Vusi S Dibakwane
- Onderstepoort Biological Products SOC Ltd, Onderstepoort, South Africa
| | - Tsepo L Tsekoa
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa
| | - Martha M O'Kennedy
- Council for Scientific and Industrial Research (CSIR) Biosciences, Pretoria, South Africa.
| |
Collapse
|
16
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
17
|
Rojas JM, Rodríguez-Martín D, Avia M, Martín V, Sevilla N. Peste des Petits Ruminants Virus Fusion and Hemagglutinin Proteins Trigger Antibody-Dependent Cell-Mediated Cytotoxicity in Infected Cells. Front Immunol 2019; 9:3172. [PMID: 30693004 PMCID: PMC6339941 DOI: 10.3389/fimmu.2018.03172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022] Open
Abstract
The adaptive immune system utilizes multiple effector mechanisms to clear viral infections. Among those antibody-dependent cell-mediated cytotoxicity (ADCC) can help recognize and clear virus-infected cells. In the present work we evaluated ADCC contribution to immunity in two economically important viral diseases that affect ruminants: bluetongue and peste des petits ruminants. Immune sera obtained from sheep experimentally infected with bluetongue virus (BTV) serotype 8 or peste des petits ruminant virus (PPRV) IC'89 were used for this study. PPRV immune sera could bind to the surface of PPRV-infected ovine B cells while BTV immune sera was unable to bind to the surface of BTV-infected sheep cells but could recognize intracellular BTV antigens. BTV and PPRV immune serum ADCC potency was established using an ovine autologous cytotoxicity assay that employed an NK cell-enriched fraction as effector cells and a virus-infected B cell-enriched fraction as target cells. In this system, immune sera triggered ADCC against PPRV-infected cells, but not against BTV-infected cells. PPRV immune sera could recognize PPRV fusion and hemagglutinin proteins on the surface of transfected cells, and enhanced lysis of these cells in ADCC assays. This indicated that these viral antigens are natural ADCC targets during PPRV infection. The present work describes a novel effector immune mechanism against PPRV in the natural host that could contribute to virus clearance highlighting the importance of studying protective immune mechanisms to improve current vaccines by invoking all effector arms of immunity.
Collapse
Affiliation(s)
- José M Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| |
Collapse
|