1
|
Casanova M, Albert CM, Bautista F, Borinstein SC, Bradfield S, Bukowinski A, Campbell-Hewson Q, Hawkins DS, Kim A, Milano GM, Marshall LV, Pinto N, Pratilas CA, Rubio-San-Simón A, Windsor R, Majid O, Scott R, Jia Y, Paoletti C, Kontny U. Efficacy, safety, and pharmacokinetics of eribulin as monotherapy or in combination with irinotecan for patients with pediatric rhabdomyosarcoma, non-rhabdomyosarcoma soft tissue sarcoma, or Ewing sarcoma. ESMO Open 2025; 10:104129. [PMID: 39908698 PMCID: PMC11847257 DOI: 10.1016/j.esmoop.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND In this report, we present results from studies of eribulin as monotherapy (Study 223) and in combination with irinotecan (the phase II part of Study 213) for patients with relapsed/refractory pediatric rhabdomyosarcoma (RMS), non-rhabdomyosarcoma soft tissue sarcoma (NRSTS), or Ewing sarcoma (EWS). PATIENTS AND METHODS Studies 223 and 213 were phase II multicenter trials that enrolled pediatric patients with histologically confirmed disease. Treatment comprised 21-day cycles of eribulin mesylate 1.4 mg/m2 on days 1 and 8 (Study 223) or eribulin 1.4 mg/m2 on days 1 and 8 plus irinotecan 40 mg/m2 on days 1-5 (Study 213). For both studies, the primary endpoints were objective response rate (ORR) and duration of response (DOR); secondary endpoint included safety. RESULTS In Study 223, 21 patients (RMS, n = 8; NRSTS, n = 8; EWS, n = 5) were enrolled and treated. No responses were observed, resulting in early termination of enrollment. By the data cut-off date (22 February 2021), six patients (RMS, n = 3; NRSTS, n = 1; EWS, n = 2) had stable disease for ≥5 weeks. All patients had one or more treatment-emergent adverse event (TEAE), most commonly neutrophil count decreased (71.4%). In Study 213 (phase II part), 27 patients (RMS, n = 9; NRSTS, n = 9; EWS, n = 9) were enrolled/treated. By the data cut-off date (9 July 2021), three patients (one in each cohort) had had a response, resulting in an ORR of 11.1% and DORs of 2.9 (RMS), 1.4 (NRSTS), and 15.4 (EWS) months. All patients had one or more TEAE, most commonly diarrhea and neutrophil count decreased (51.9% each). CONCLUSIONS Eribulin, as monotherapy or combination therapy, exhibited a safety profile consistent with that observed previously in adult populations; however, efficacy in both studies was not considered adequate to advance investigation in these disease areas.
Collapse
Affiliation(s)
- M Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - C M Albert
- Division of Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children's Hospital, Seattle; Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
| | | | - S C Borinstein
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville
| | - S Bradfield
- Division of Pediatric Hematology/Oncology, Nemours Children's Health, Jacksonville
| | - A Bukowinski
- Department of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Q Campbell-Hewson
- The Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - D S Hawkins
- Division of Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children's Hospital, Seattle; Department of Pediatrics, University of Washington School of Medicine, Seattle, USA
| | - A Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, USA
| | - G M Milano
- Division of Pediatric Hematology and Oncology, Gene and Cellular Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - L V Marshall
- Children and Young People's Unit, The Royal Marsden Hospital, and Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - N Pinto
- Children's Hospital Colorado, Aurora
| | - C A Pratilas
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - A Rubio-San-Simón
- Department of Pediatric Oncology and Hematology, Hospital del Niño Jesús, Madrid, Spain
| | - R Windsor
- Children and Young People's Cancer Service, University College London Hospitals NHS Foundation Trust, London
| | | | | | | | | | - U Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Xu S, Lan H, Huang C, Ge X, Zhu J. Mechanisms and emerging strategies for irinotecan-induced diarrhea. Eur J Pharmacol 2024; 974:176614. [PMID: 38677535 DOI: 10.1016/j.ejphar.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Irinotecan (also known as CPT-11) is a topoisomerase I inhibitor first approved for clinical use as an anticancer agent in 1996. Over the past more than two decades, it has been widely used for combination regimens to treat various malignancies, especially in gastrointestinal and lung cancers. However, severe dose-limiting toxicities, especially gastrointestinal toxicity such as late-onset diarrhea, were frequently observed in irinotecan-based therapy, thus largely limiting the clinical application of this agent. Current knowledge regarding the pathogenesis of irinotecan-induced diarrhea is characterized by the complicated metabolism of irinotecan to its active metabolite SN-38 and inactive metabolite SN-38G. A series of enzymes and transporters were involved in these metabolic processes, including UGT1A1 and CYP3A4. Genetic polymorphisms of these metabolizing enzymes were significantly associated with the occurrence of irinotecan-induced diarrhea. Recent discoveries and progress made on the detailed mechanisms enable the identification of potential biomarkers for predicting diarrhea and as such guiding the proper patient selection with a better range of tolerant dosages. In this review, we introduce the metabolic process of irinotecan and describe the pathogenic mechanisms underlying irinotecan-induced diarrhea. Based on the mechanisms, we further outline the potential biomarkers for predicting the severity of diarrhea. Finally, based on the current experimental evidence in preclinical and clinical studies, we discuss and prospect the current and emerging strategies for the prevention of irinotecan-induced diarrhea.
Collapse
Affiliation(s)
- Shengkun Xu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Chengyi Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
3
|
Sasagawa S, Kumai J, Wakamatsu T, Yui Y. Improvement of histone deacetylase inhibitor efficacy by SN38 through TWIST1 suppression in synovial sarcoma. CANCER INNOVATION 2024; 3:e113. [PMID: 38946933 PMCID: PMC11212284 DOI: 10.1002/cai2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 07/02/2024]
Abstract
Background Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.
Collapse
Affiliation(s)
- Satoru Sasagawa
- Molecular Biology Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Jun Kumai
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| | - Toru Wakamatsu
- Department of Musculoskeletal Oncology ServiceOsaka International Cancer InstituteOsakaJapan
| | - Yoshihiro Yui
- Sarcoma Treatment Laboratory, Research InstituteNozaki Tokushukai HospitalDaitoOsakaJapan
| |
Collapse
|
4
|
Picher EA, Wahajuddin M, Barth S, Chisholm J, Shipley J, Pors K. The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1012. [PMID: 38473371 DOI: 10.3390/cancers16051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5-8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.
Collapse
Affiliation(s)
- Enric Arasanz Picher
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Julia Chisholm
- Children and Young People's Unit, Royal Marsden Hospital, Institute of Cancer Research, Sutton SM2 5PR, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Group, Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
5
|
He Y, Wu L, Qi X, Wang X, He B, Zhang W, Zhao W, Deng M, Xiong X, Wang Y, Liang S. Efficiency of Protective Interventions on Irinotecan-Induced Diarrhea: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241242110. [PMID: 38567795 PMCID: PMC10993684 DOI: 10.1177/15347354241242110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2023] [Revised: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Irinotecan is widely used in the treatment of various solid tumors, but the adverse effects from it, especially diarrhea, limit its use. Several clinical trials of prophylactic treatment of irinotecan-induced diarrhea (IID) have been ongoing, and some of the data are controversial. This encouraged us to conduct a meta-analysis of the effects of interventions on preventing IID. METHOD This systematic review was conducted based on the PRISMA statement. We performed literature searches from PubMed, Web of Science, Embase, and Cochrane Library. The number registered in PROSPERO is CRD42022368633. After searching 1034 articles in the database and references, 8 studies were included in this meta-analysis. RESULT The RR of high-grade diarrhea and all-grade diarrhea were 0.31 (I2 = 51%, 95% CI: 0.14-0.69; P = .004) and .76 (I2 = 65%, 95% CI: 0.62-0.93; P < .008) respectively, thus the use of intervention measures for preventing IID is effective, and the risk reduction of high-grade diarrhea was more significant. Subgroup analysis revealed that the monotherapy group (RR: 0.48, 95% CI: 0.21-1.13, I2 = 0%) and combination therapy group (RR: 0.14, 95% CI: 0.06-0.32, I2 = 0%) in the risk of high-grade diarrhea had no significant heterogeneity within the groups, and traditional herbal medicines (Kampo medicine Hangeshashin-to, PHY906 and hot ironing with Moxa Salt Packet on Tianshu and Shangjuxu) were effective preventive measures (RR:0.20, 95% CI: 0.07-0.60, I2 = 0%). The Jadad scores for traditional herbal medicines studies were 3, and the follow-up duration was only 2 to 6 weeks. CONCLUSION This systematic review and meta-analysis suggest that preventive treatments significantly reduced the risk of high-grade and all-grade diarrhea, confirming the efficacy in the incidence and severity of IID, among which traditional herbal medicines (baicalin-containing) provided a protective effect in reducing the severity of IID. However, the traditional herbal medicines studies were of low quality. Combined irinotecan therapy can obtain better preventive effects than monotherapy of IID. These would be helpful for the prevention of IID in clinical practice.
Collapse
Affiliation(s)
- Yanxi He
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lili Wu
- Zunyi Medical University, Zunyi, China
| | - Xiaoyi Qi
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xuan Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bing He
- Southwest Medical University, Luzhou, China
| | - Wei Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenjing Zhao
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
| | - Mingming Deng
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Xiong
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Wang
- Gulin County People’s Hospital, Luzhou, China
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
- Cardiovascular and Metabolic Diseases of Sichuan Key Laboratory, Luzhou, China
| |
Collapse
|
6
|
Schöffski P, Wang CC, Schöffski MP, Wozniak A. Current Role of Topoisomerase I Inhibitors for the Treatment of Mesenchymal Malignancies and Their Potential Future Use as Payload of Sarcoma-Specific Antibody-Drug Conjugates. Oncol Res Treat 2023; 47:18-41. [PMID: 38016427 PMCID: PMC10860894 DOI: 10.1159/000535491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Topoisomerase I is an enzyme that plays a crucial part in DNA replication and transcription by the relaxation of supercoiled double-stranded DNA. Topoisomerase I inhibitors bind to the topoisomerase I cleavage complex, thereby stabilizing it and preventing the religation of the DNA strands, leading to DNA damage, cell cycle arrest, and apoptosis. Various topoisomerase I inhibitors have been evaluated in solid tumors, and irinotecan and topotecan have been approved for the treatment of epithelial malignancies. None of them have been approved for sarcoma, a diverse group of rare solid tumors with an unmet need for effective treatments. SUMMARY Topoisomerase I inhibitors have been evaluated in preclinical studies as single agents or in combination in solid tumors, some of which have included sarcomas where activity was observed. Clinical trials evaluating topoisomerase I inhibitors for the treatment of sarcoma have shown limited efficacy as monotherapy. In combination with other cytotoxic agents, topoisomerase I inhibitors have become part of clinical routine in selected sarcoma subtypes. Regimens such as irinotecan/vincristine/temozolomide are used in relapsed rhabdomyosarcoma, irinotecan/temozolomide and vincristine/topotecan/cyclophosphamide are commonly given in refractory Ewing sarcoma, and topotecan/carboplatin showed some activity in advanced soft tissue sarcoma. This review provides an overview of key studies with topoisomerase I inhibitors for the treatment of sarcoma. Topoisomerase I inhibitors are currently also being assessed as "payloads" for antibody-drug conjugates (ADCs), allowing for the targeting of specific antigen-expressing tumor cells and the delivery of the inhibitor directly to the tumor cells with the potential of enhancing therapeutic efficacy while minimizing systemic toxicity. Here, we also provide a brief overview on topoisomerase I-ADCs. KEY MESSAGE Topoisomerase I inhibitors are an important component of some systemic therapies for selected sarcomas and have potent cytotoxic properties and pharmacological characteristics that make them relevant candidates as payloads for the development of sarcoma-specific ADCs. ADCs are antibody-based targeted agents allowing for efficient and specific delivery of a given drug to the tumor cell. Topoisomerase I-ADCs are a novel targeted delivery approach which may have the potential to improve the therapeutic index of topoisomerase I inhibitors in the treatment of sarcoma and warrants investigation in a broad variety of mesenchymal malignancies.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Chao-Chi Wang
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| | | | - Agnieszka Wozniak
- Department of Oncology, Laboratory of Experimental Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
8
|
Cardona AF, Chamorro Ortiz DF, Ruíz-Patiño A, Gomez D, Muñoz Á, Ardila DV, Garcia-Robledo JE, Ordóñez-Reyes C, Sussmann L, Mosquera A, Forero Y, Rojas L, Hakim F, Jimenez E, Ramón JF, Cifuentes H, Pineda D, Mejía JA, Rodríguez J, Archila P, Sotelo C, Moreno-Pérez DA, Arrieta O. DICER1-associated central nervous system sarcoma: A comprehensive clinical and genomic characterization of case series of young adult patients. Neurooncol Pract 2023; 10:381-390. [PMID: 37457227 PMCID: PMC10346402 DOI: 10.1093/nop/npad014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/18/2023] Open
Abstract
Background DICER1 alterations are associated with intracranial tumors in the pediatric population, including pineoblastoma, pituitary blastoma, and the recently described "primary DICER1-associated CNS sarcoma" (DCS). DCS is an extremely aggressive tumor with a distinct methylation signature and a high frequency of co-occurring mutations. However, little is known about its treatment approach and the genomic changes occurring after exposure to chemoradiotherapy. Methods We collected clinical, histological, and molecular data from eight young adults with DCS. Genomic analysis was performed by Next-generation Sequencing (NGS). Subsequently, an additional germline variants analysis was completed. In addition, an NGS analysis on post-progression tumor tissue or liquid biopsy was performed when available. Multiple clinicopathological characteristics, treatment variables, and survival outcomes were assessed. Results Median age was 20 years. Most lesions were supratentorial. Histology was classified as fusiform cell sarcomas (50%), undifferentiated (unclassified) sarcoma (37.5%), and chondrosarcoma (12.5%). Germline pathogenic DICER1 variants were present in two patients, 75% of cases had more than one somatic alteration in DICER1, and the most frequent commutation was TP53. Seven patients were treated with surgery, Ifosfamide, Cisplatin, and Etoposide (ICE) chemotherapy and radiotherapy. The objective response was 75%, and the median time to progression (TTP) was 14.5 months. At progression, the most common mutations were in KRAS and NF1. Overall survival was 30.8 months. Conclusions DCS is an aggressive tumor with limited therapeutic options that requires a comprehensive diagnostic approach, including molecular characterization. Most cases had mutations in TP53, NF1, and PTEN, and most alterations at progression were related to MAPK, RAS and PI3K signaling pathways.
Collapse
Affiliation(s)
- Andrés F Cardona
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Diego Fernando Chamorro Ortiz
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Alejandro Ruíz-Patiño
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Diego Gomez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Álvaro Muñoz
- Radiotherapy Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Dora V Ardila
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | | | - Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Liliana Sussmann
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Andrés Mosquera
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Yency Forero
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Fernando Hakim
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Enrique Jimenez
- Neurosurgery Department, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | | | - Diego Pineda
- Neuro-Radiology Section, Radiology Department, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center, CTIC, Bogotá, Colombia
| | | | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Darwin A Moreno-Pérez
- Foundation for Clinical and Applied Cancer Research, FICMAC, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| |
Collapse
|
9
|
Wang L, Wu Y, Weng T, Li X, Zhang X, Zhang Y, Yuan L, Zhang Y, Liu M. Binding of combined irinotecan and epicatechin to a pH-responsive DNA tetrahedron for controlled release and enhanced cytotoxicity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2023]
|
10
|
Meroni A, Grosser J, Agashe S, Ramakrishnan N, Jackson J, Verma P, Baranello L, Vindigni A. NEDDylated Cullin 3 mediates the adaptive response to topoisomerase 1 inhibitors. SCIENCE ADVANCES 2022; 8:eabq0648. [PMID: 36490343 PMCID: PMC9733930 DOI: 10.1126/sciadv.abq0648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Accepted: 10/26/2022] [Indexed: 05/30/2023]
Abstract
DNA topoisomerase 1 (TOP11) inhibitors are mainstays of anticancer therapy. These drugs trap TOP1 on DNA, stabilizing the TOP1-cleavage complex (TOP1-cc). The accumulation of TOP1-ccs perturbs DNA replication fork progression, leading to DNA breaks and cell death. By analyzing the genomic occupancy and activity of TOP1, we show that cells adapt to treatment with multiple doses of TOP1 inhibitor by promoting the degradation of TOP1-ccs, allowing cells to better tolerate subsequent doses of TOP1 inhibitor. The E3-RING Cullin 3 ligase in complex with the BTBD1 and BTBD2 adaptor proteins promotes TOP1-cc ubiquitination and subsequent proteasomal degradation. NEDDylation of Cullin 3 activates this pathway, and inhibition of protein NEDDylation or depletion of Cullin 3 sensitizes cancer cells to TOP1 inhibitors. Collectively, our data uncover a previously unidentified NEDD8-Cullin 3 pathway involved in the adaptive response to TOP1 inhibitors, which can be targeted to improve the efficacy of TOP1 drugs in cancer therapy.
Collapse
Affiliation(s)
- Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jan Grosser
- Karolinska Institutet, CMB, 171 65 Solna, Sweden
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Macha SJ, Koneru B, Burrow TA, Zhu C, Savitski D, Rahman RL, Ronaghan CA, Nance J, McCoy K, Eslinger C, Reynolds CP. Alternative Lengthening of Telomeres in Cancer Confers a Vulnerability to Reactivation of p53 Function. Cancer Res 2022; 82:3345-3358. [PMID: 35947641 PMCID: PMC9566554 DOI: 10.1158/0008-5472.can-22-0125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Revised: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
A subset of cancers across multiple histologies with predominantly poor outcomes use the alternative lengthening of telomeres (ALT) mechanism to maintain telomere length, which can be identified with robust biomarkers. ALT has been reported to be prevalent in high-risk neuroblastoma and certain sarcomas, and ALT cancers are a major clinical challenge that lack targeted therapeutic approaches. Here, we found ALT in a variety of pediatric and adult cancer histologies, including carcinomas. Patient-derived ALT cancer cell lines from neuroblastomas, sarcomas, and carcinomas were hypersensitive to the p53 reactivator eprenetapopt (APR-246) relative to telomerase-positive (TA+) models. Constitutive telomere damage signaling in ALT cells activated ataxia-telangiectasia mutated (ATM) kinase to phosphorylate p53, which resulted in selective ALT sensitivity to APR-246. Treatment with APR-246 combined with irinotecan achieved complete responses in mice xenografted with ALT neuroblastoma, rhabdomyosarcoma, and breast cancer and delayed tumor growth in ALT colon cancer xenografts, while the combination had limited efficacy in TA+ tumor models. A large number of adult and pediatric cancers present with the ALT phenotype, which confers a uniquely high sensitivity to reactivation of p53. These data support clinical evaluation of a combinatorial approach using APR-246 and irinotecan in ALT patients with cancer. SIGNIFICANCE This work demonstrates that constitutive activation of ATM in chemotherapy-refractory ALT cancer cells renders them hypersensitive to reactivation of p53 function by APR-246, indicating a potential strategy to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Shawn J. Macha
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Balakrishna Koneru
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Trevor A. Burrow
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Charles Zhu
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dzmitry Savitski
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rakhshanda L. Rahman
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Catherine A. Ronaghan
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonas Nance
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kristyn McCoy
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cody Eslinger
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Corresponding author. C. Patrick Reynolds, MD PhD, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center; 3601 4th Street, Mail Stop 9445, Lubbock, Texas, USA. 79430-6450,
| |
Collapse
|
12
|
Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z, Wan C. Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res 2022; 184:106406. [PMID: 35987480 DOI: 10.1016/j.phrs.2022.106406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
The gut microbiota plays a role in tumor therapy by participating in immune regulation. Here, we demonstrated through 8-day probiotic supplementation experiments and fecal microbiota transplantation experiments that Bifidobacterium animalis subsp. lactis SF enhanced the antitumor effect of irinotecan and prevented the occurrence of intestinal damage by modulating the gut microbiota and reducing the relative abundance of pro-inflammatory microbiota. Therefore, the intestinal inflammation was inhibited, the TGF-β leakage was reduced, and the PI3K/AKT pathway activation was inhibited. Thus, the tumor apoptotic autophagy was finally promoted. Simultaneously, the reduction of TGF-β relieved the immunosuppression caused by CPT-11, promoted the differentiation of CD4+ and CD8+ T cells in tumor tissue, and consequently inhibited tumor growth and invasion. This study disclosed the mechanism of B. lactis SF assisting CPT-11 in antitumor activity and suggested that B. lactis SF plays a new role in anticancer effects as a nutritional intervention.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Shufang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Wanyu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
13
|
Milano G, Innocenti F, Minami H. Liposomal irinotecan (Onivyde): Exemplifying the benefits of nanotherapeutic drugs. Cancer Sci 2022; 113:2224-2231. [PMID: 35445479 PMCID: PMC9277406 DOI: 10.1111/cas.15377] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
Abstract
Irinotecan is a topoisomerase inhibitor, widely used in treatment of malignancies including pancreatic ductal adenocarcinoma (PDAC) as part of the FOLFIRINOX regimen prescribed as a first-line treatment in several countries. However, irinotecan has not been successfully introduced as a second-line treatment for pancreatic cancer and few randomized clinical studies have evaluated its added value. Efficacy of liposomal irinotecan (nal-IRI) combined with 5-fluorouracil and leucovorin (5-FU/LV) was reported in the phase III NAPOLI-1 trial in metastatic PDAC following failure of gemcitabine-based therapy. Several features of nal-IRI pharmacokinetics (PK) could result in better outcomes versus nonliposomal irinotecan. Irinotecan is a prodrug that is converted to active SN-38 by carboxylesterase enzymes and inactivated by cytochrome P450 3A4/3A5. SN-38 is inactivated by UGT1A1 enzymes. Individual variations in their expression and activity could influence enhanced localized irinotecan activity and toxicity. Liposomal irinotecan exploits the enhanced permeability and retention effect in cancer, accumulating in tumor tissues. Liposomal irinotecan also has a longer half-life and higher area under the concentration-time curve (0-∞) than nonliposomal irinotecan, as the liposomal formulation protects cargo from premature metabolism in the plasma. This results in irinotecan activation in tumor tissue, leading to enhanced cytotoxicity. Importantly, despite the longer exposure, overall toxicity for nal-IRI is no worse than nonliposomal irinotecan. Liposomal irinotecan exemplifies how liposomal encapsulation of a chemotherapeutic agent can alter its PK properties, improving clinical outcomes for patients. Liposomal irinotecan is currently under investigation in other malignancies including biliary tract cancer (amongst other gastrointestinal cancers), brain tumors, and small-cell lung cancer.
Collapse
Affiliation(s)
- Gérard Milano
- UPR 7497Scientific Valorisation UnitCentre Antoine Lacassagne and Côte d’Azur UniversityNiceFrance
| | | | - Hironobu Minami
- Medical Oncology and HematologyKobe University Graduate School of Medicine and HospitalKobeJapan
| |
Collapse
|
14
|
Systemic Treatment of Ewing Sarcoma: Current Options and Future Perspectives. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Ewing sarcoma (ES) is an uncommon malignant neoplasm, mostly affecting young adults and adolescents. Surgical excision, irradiation, and combinations of multiple chemotherapeutic agents are currently used as a multimodal strategy for the treatment of local and oligometastatic disease. Although ES usually responds to the primary treatment, relapsed and primarily refractory disease remains a difficult therapeutic challenge. The growing understanding of cancer biology and the subsequent development of new therapeutic strategies have been put at the service of research in recurrent and refractory ES, generating a great number of ongoing studies with compounds that could find superior clinical outcomes in the years to come. This review gathers the current available information on the treatment and clinical investigation of ES and aims to be a point of support for future research.
Collapse
|
15
|
Meany HJ, Widemann BC, Hinds PS, Bagatell R, Shusterman S, Stern E, Jayaprakash N, Peer CJ, Figg WD, Hall OM, Sissung TM, Kim A, Fox E, London WB, Rodriguez-Galindo C, Minturn JE, Dome JS. Phase 1 study of sorafenib and irinotecan in pediatric patients with relapsed or refractory solid tumors. Pediatr Blood Cancer 2021; 68:e29282. [PMID: 34383370 DOI: 10.1002/pbc.29282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/16/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sorafenib,an orally bioavailable, multitarget tyrosine kinase inhibitor, and irinotecan, a topoisomerase I inhibitor, have demonstrated activity in pediatric and adult malignancies. We evaluated the toxicity, pharmacokinetic (PK), and pharmacogenomic (PGX) profile of sorafenib with irinotecan in children with relapsed or refractory solid tumors and assessed the feasibility of incorporating patient-reported outcome (PRO) measures as an adjunct to traditional endpoints. METHODS Sorafenib, continuous oral twice daily dosing, was administered with irinotecan, orally, once daily days 1-5, repeated every 21 days (NCT01518413). Based on tolerability, escalation of sorafenib followed by escalation of irinotecan was planned. Three patients were initially enrolled at each dose level. Sorafenib and irinotecan PK analyses were performed during cycle 1. PRO measurements were collected during cycles 1 and 2. RESULTS Fifteen patients were evaluable. Two of three patients at dose level 2 experienced dose-limiting toxicity (DLT), grade 3 diarrhea, and grade 3 hyponatremia. Therefore, dose level 1 was expanded to 12 patients and two patients had DLT, grade 4 thrombocytopenia, grade 3 elevated lipase. Nine of 15 (60%) patients had a best response of stable disease with four patients receiving ≥6 cycles. CONCLUSIONS The recommended dose for pediatric patients was sorafenib 150 mg/m2 /dose twice daily with irinotecan 70 mg/m2 /dose daily × 5 days every 21 days. This oral outpatient regimen was well tolerated and resulted in prolonged disease stabilization. There were no significant alterations in the PK profile of either agent when administered in combination. Patients were willing and able to report their subjective experiences with this regimen.
Collapse
Affiliation(s)
- Holly J Meany
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela S Hinds
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.,Division of Nursing, Children's National Hospital, Washington, District of Columbia
| | - Rochelle Bagatell
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts
| | - Emily Stern
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia
| | - Nalini Jayaprakash
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - O Morgan Hall
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Tristan M Sissung
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aerang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Elizabeth Fox
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, Massachusetts
| | - Carlos Rodriguez-Galindo
- Departments of Oncology and Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jane E Minturn
- Perelman School of Medicine, Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey S Dome
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia.,The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
16
|
Ren Z, Liu Z, Ma S, Yue J, Yang J, Wang R, Gao Y, Guo Y. Expression and clinical significance of UBE2V1 in cervical cancer. Biochem Biophys Rep 2021; 28:101108. [PMID: 34466666 PMCID: PMC8385167 DOI: 10.1016/j.bbrep.2021.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
The majority of cervical cancer (CC) patients are caused by the high-risk human papillomavirus (HPV) infection Although they are preventable and controllable, the mortality rate is still high. It is essential to identify the biomarkers for early screening and diagnosis of CC to improve the prognosis of patients with CC. The conjugating enzyme 2 (E2) family members are the key components of ubiquitin protease system. However, the role of E2 family in CC remains unclear. We aimed to investigate the role of UBE2V1, a ubiquitin binding E2 enzyme variant protein (ube2v) without conserved cysteine residues required for E2s catalytic activity in CC. In this study, we first studied the expression of UBE2V1 in CC by real time quantitative PCR (RT-qPCR), and then, the clinical information of 191 CC patients in TCGA database was retrieved to explore the relationship between the expression of UBE2V1 and the occurrence and development of CC by examining the translational profile and methylation, the high expression of UBE2V1 was well correlated to the poor prognosis of patients, indicating that UBE2V1 is an independent risk factor for the prognosis of CC patients. The expression of UBE2V1 was also correlated with clinical stages, tumor grades and TNM stages of CC. In addition, the expression of UBE2V1 was slightly negatively correlated with the methylation at the multiple methylation sites. our study revealed the relationship between UBE2V1 and the occurrence and development of CC from the level of transcriptional profile and DNA methylation. UBE2V1 is a novel candidate biomarker for the diagnosis, screening and prognosis of CC. The expression of UBE2V1 was abnormal in cervical cancer. UBE2V1 is associated with poor prognosis in patients with cervical cancer. UBE2V1 can be used as a new tumor marker for cervical cancer.
Collapse
Affiliation(s)
- Zhishuai Ren
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Shenqian Ma
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Junming Yue
- Department of Pathology, The University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN, 38163, USA
| | - Jinming Yang
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37240, USA
| | - Ruiya Wang
- People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China.,Henan International Joint Laboratory for Gynecological Oncology and Nanomedicine, Zhengzhou, 450003, Henan, China
| |
Collapse
|
17
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
18
|
Xu J, Xie L, Sun X, Liu K, Tang X, Yan T, Yang R, Guo W, Gu J. Anlotinib, Vincristine, and Irinotecan for Advanced Ewing Sarcoma After Failure of Standard Multimodal Therapy: A Two-Cohort, Phase Ib/II Trial. Oncologist 2021; 26:e1256-e1262. [PMID: 33611805 PMCID: PMC8265337 DOI: 10.1002/onco.13726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2020] [Accepted: 02/02/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Both protracted irinotecan and antiangiogenesis therapy have shown promising efficacy against Ewing sarcoma (EWS). METHODS Patients diagnosed with recurrent or refractory EWS were enrolled and further categorized into cohort A (≥16 years) or cohort B (<16 years). In the dose-defining phase Ib portion, anlotinib was given daily at a fixed dose, while a 3+3 design with dose de-escalation was used to determine the dose of irinotecan. The next dose-expanding phase II portion employed a conventional two-stage study design model. The primary endpoint was objective response rate at 12 weeks (ORR12w ). RESULTS A total of 41 patients finally received the treatment regimen, including 29 in cohort A and 12 in cohort B. For cohort A, the first five patients were treated at the initial level of 20 mg/m2 /d d × 5 × 2, and two of them subsequently a dose-limiting toxicity (DLT). An additional six patients were then treated at 15 mg/m2 without any DLT, and the RP2D was determined. Notably, 23 out of 24 patients in cohort A were available for response evaluation at 12 weeks. ORR12w was determined to be 62.5%. For cohort B, no DLT was observed in the first six patients at the initial dose level. At last, 12 patients were included in cohort B. The ORR12w was 83.3%. The most frequently observed grade 3/4 adverse events were leukopenia (28.5%), neutropenia (24.4%), anemia (8.7%), and diarrhea (3.7%). CONCLUSION The combination of vincristine, irinotecan, and anlotinib demonstrated an acceptable toxicity profile and promising clinical efficacy in patients with advanced EWS. IMPLICATIONS FOR PRACTICE This is the first trial to evaluate an irinotecan-based regimen in combination with antiangiogenesis tyrosine kinase inhibitors in Ewing sarcoma (EWS). A 3+3 design with dose de-escalation was used to determine the most appropriate dose of irinotecan in each cohort. The next dose-expanding phase II portion employed a conventional two-stage study design model. The objective response rate was 62.5% for adults and 83.3% for children. Median overall survival was not matured. This study shows that the combination of vincristine, irinotecan, and anlotinib demonstrates an acceptable toxicity profile and promising clinical efficacy in patients with advanced EWS.
Collapse
Affiliation(s)
- Jie Xu
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Lu Xie
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Rongli Yang
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's HospitalBeijingPeople's Republic of China
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang HospitalBeijingPeople's Republic of China
| |
Collapse
|
19
|
Bisogno G, Ferrari A, Tagarelli A, Sorbara S, Chiaravalli S, Poli E, Scarzello G, De Corti F, Casanova M, Affinita MC. Integrating irinotecan in standard chemotherapy: A novel dose-density combination for high-risk pediatric sarcomas. Pediatr Blood Cancer 2021; 68:e28951. [PMID: 33694265 DOI: 10.1002/pbc.28951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Irinotecan is a drug active against pediatric sarcomas with a toxicity profile that theoretically allows for its association with more myelotoxic drugs. We examined the feasibility of a dose-density strategy integrating irinotecan in standard chemotherapy regimens for patients with high-risk sarcomas. METHODS Between November 2013 and January 2020, 23 patients ≤25 years old were included in the study. Eleven patients newly diagnosed with metastatic disease received nine cycles of IrIVA (irinotecan-ifosfamide-vincristine-actinomycin D; ifosfamide 3 g/m2 on days 1 and 2, vincristine 1.5 mg/m2 on day 1, actinomycin D 1.5 mg/m2 on day 1, irinotecan 20 mg/m2 for 5 consecutive days starting on day 8) as first-line therapy. Two relapsed patients received IrIVA and 10 IrVAC (irinotecan-vincristine-actinomycin D-cyclophosphamide; cyclophosphamide 1.5 g/m2 on day 1 instead of ifosfamide). Feasibility was assessed in terms of toxicity and time to complete the treatment. RESULTS Seventeen rhabdomyosarcomas, four Ewing sarcomas, two desmoplastic small round cell tumors received a total of 181 cycles (range 2-10). Grade 4 neutropenia occurred in 62.4% of the cycles. Thirteen patients had febrile neutropenia. Diarrhea occurred in 14 cycles. The median time to complete the treatment was 195 days (range 170-231), 83.4% of cycles were administered on time or with a delay <1 week. With a median follow-up of 2.6 years (range 0.2-5.0), 12 patients are alive, nine complete remissions, three with the disease. CONCLUSIONS A dose-density strategy combining irinotecan with standard chemotherapy is feasible. This approach will be investigated in the next trial coordinated by the European pediatric Soft tissue sarcoma Study Group.
Collapse
Affiliation(s)
- Gianni Bisogno
- Maternal and Child Health Department, Padua University Hospital, Padua, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Arianna Tagarelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Silvia Sorbara
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Elena Poli
- Maternal and Child Health Department, Padua University Hospital, Padua, Italy
| | | | - Federica De Corti
- Pediatric Surgery Unit, Department of Women's and Children's Health, Padua University Hospital, Padua, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Carmen Affinita
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| |
Collapse
|
20
|
Kerstjens M, Garrido Castro P, Pinhanços SS, Schneider P, Wander P, Pieters R, Stam RW. Irinotecan Induces Disease Remission in Xenograft Mouse Models of Pediatric MLL-Rearranged Acute Lymphoblastic Leukemia. Biomedicines 2021; 9:biomedicines9070711. [PMID: 34201500 PMCID: PMC8301450 DOI: 10.3390/biomedicines9070711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) in infants (<1 year of age) remains one of the most aggressive types of childhood hematologic malignancy. The majority (~80%) of infant ALL cases are characterized by chromosomal translocations involving the MLL (or KMT2A) gene, which confer highly dismal prognoses on current combination chemotherapeutic regimens. Hence, more adequate therapeutic strategies are urgently needed. To expedite clinical transition of potentially effective therapeutics, we here applied a drug repurposing approach by performing in vitro drug screens of (mostly) clinically approved drugs on a variety of human ALL cell line models. Out of 3685 compounds tested, the alkaloid drug Camptothecin (CPT) and its derivatives 10-Hydroxycamtothecin (10-HCPT) and 7-Ethyl-10-hydroxycamtothecin (SN-38: the active metabolite of the drug Irinotecan) appeared most effective at very low nanomolar concentrations in all ALL cell lines, including models of MLL-rearranged ALL (n = 3). Although the observed in vitro anti-leukemic effects of Camptothecin and its derivatives certainly were not specific to MLL-rearranged ALL, we decided to further focus on this highly aggressive type of leukemia. Given that Irinotecan (the pro-drug of SN-38) has been increasingly used for the treatment of various pediatric solid tumors, we specifically chose this agent for further pre-clinical evaluation in pediatric MLL-rearranged ALL. Interestingly, shortly after engraftment, Irinotecan completely blocked leukemia expansion in mouse xenografts of a pediatric MLL-rearranged ALL cell line, as well as in two patient-derived xenograft (PDX) models of MLL-rearranged infant ALL. Also, from a more clinically relevant perspective, Irinotecan monotherapy was able to induce sustainable disease remissions in MLL-rearranged ALL xenotransplanted mice burdened with advanced leukemia. Taken together, our data demonstrate that Irinotecan exerts highly potent anti-leukemia effects against pediatric MLL-rearranged ALL, and likely against other, more favorable subtypes of childhood ALL as well.
Collapse
Affiliation(s)
- Mark Kerstjens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Sandra S. Pinhanços
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.K.); (P.G.C.); (S.S.P.); (P.S.); (P.W.); (R.P.)
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
21
|
Sinha K, Chaudhury SS, Ruidas B, Majumder R, Pal T, Sur TK, Sarkar PK, Mukhopadhyay CD. Role of Modern Biological Techniques in Evidence-Based Validation of Ayurvedic Herbometallic Preparations. EVIDENCE BASED VALIDATION OF TRADITIONAL MEDICINES 2021:313-336. [DOI: 10.1007/978-981-15-8127-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/19/2023]
|
22
|
Elzagallaai AA, Carleton BC, Rieder MJ. Pharmacogenomics in Pediatric Oncology: Mitigating Adverse Drug Reactions While Preserving Efficacy. Annu Rev Pharmacol Toxicol 2020; 61:679-699. [PMID: 32976737 DOI: 10.1146/annurev-pharmtox-031320-104151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Cancer is the leading cause of death in American children older than 1 year of age. Major developments in drugs such as thiopurines and optimization in clinical trial protocols for treating cancer in children have led to a remarkable improvement in survival, from approximately 30% in the 1960s to more than 80% today. Short-term and long-term adverse effects of chemotherapy still affect most survivors of childhood cancer. Pharmacogenetics plays a major role in predicting the safety of cancer chemotherapy and, in the future, its effectiveness. Treatment failure in childhood cancer-due to either serious adverse effects that limit therapy or the failure of conventional dosing to induce remission-warrants development of new strategies for treatment. Here, we summarize the current knowledge of the pharmacogenomics of cancer drug treatment in children and of statistically and clinically relevant drug-gene associations and the mechanistic understandings that underscore their therapeutic value in the treatment of childhood cancer.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3M7, Canada;
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Michael J Rieder
- Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3M7, Canada;
| |
Collapse
|
23
|
Ramezani P, Abnous K, Taghdisi SM, Zahiri M, Ramezani M, Alibolandi M. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surf B Biointerfaces 2020; 193:111135. [PMID: 32447200 DOI: 10.1016/j.colsurfb.2020.111135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
In the current study, polyethylene glycol (PEG) was linked to polylactide (PLA) through the synthetic peptide PVGLIG which can be selectively cleaved by the tumor-associated matrix metalloproteinase 2 (MMP-2) enzyme. The synthesized chimeric triblock polymer of PEG-b-PVGLIG-PLA was implemented to form nanoscale self-assemble chimeric polymersomes. The hydrophobic SN38 was loaded into polymersomes with 70.3% ± 3.0% encapsulation efficiency demonstrating monodispersed spherical morphologies with 172 ± 30 nm dimension. The prepared chimeric polymersomal formulation provided controlled release of SN38 at physiological condition while illustrating seven-folds higher release rate when exposed to MMP-2 enzyme. At the next stage, AS1411 aptamer was conjugated onto the surface of MMP-2 responsive polymersomal formulation in order to provide guided drug delivery against nucleolin positive cells. In vitro cellular toxicity assay against C26 cell line (nucleolin positive) demonstrated significantly higher toxicity of targeted formulation in comparison with non-targeted one in low SN38 concentrations (0.15-1.25 μg/mL). In vivo study in mice bearing subcutaneous C26 tumor showed higher therapeutic index for MMP-2 responsive chimeric polymersomal formulation of SN38 in comparison with non-responsive one. On the other hand, AS1411 aptamer-targeted MMP-2 responsive chimeric polymersomal formulation exhibited highest therapeutic index compared to other groups. It could be concluded that the targeted chimeric polymersomes bearing both cleavable peptide sequence between their blocks and targeting ligand on their surface, provide favorable characteristics as an ideal delivery system against cancer.
Collapse
Affiliation(s)
- Pouria Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Zahiri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Ghilu S, Li Q, Fontaine SD, Santi DV, Kurmasheva RT, Zheng S, Houghton PJ. Prospective use of the single-mouse experimental design for the evaluation of PLX038A. Cancer Chemother Pharmacol 2020; 85:251-263. [PMID: 31927611 PMCID: PMC7039322 DOI: 10.1007/s00280-019-04017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Defining robust criteria for drug activity in preclinical studies allows for fewer animals per treatment group, and potentially allows for inclusion of additional cancer models that more accurately represent genetic diversity and, potentially, allows for tumor sensitivity biomarker identification. METHODS Using a single-mouse design, 32 pediatric xenograft tumor models representing diverse pediatric cancer types [Ewing sarcoma (9), brain (4), rhabdomyosarcoma (10), Wilms tumor (4), and non-CNS rhabdoid tumors (5)] were evaluated for response to a single administration of pegylated-SN38 (PLX038A), a controlled-release PEGylated formulation of SN-38. Endpoints measured were percent tumor regression, and event-free survival (EFS). The correlation between response to PLX038A was compared to that for ten models treated with irinotecan (2.5 mg/kg × 5 days × 2 cycles), using a traditional design (10 mice/group). Correlations between tumor sensitivity, genetic mutations and gene expression were sought. Models showing no disease at week 20 were categorized as 'extreme responders' to PLX038A, whereas those with EFS less than 5 weeks were categorized as 'resistant'. RESULTS The activity of PLX038A was evaluable in 31/32 models. PLX038A induced > 50% volume regressions in 25 models (78%). Initial tumor volume regression correlated only modestly with EFS (r2 = 0.238), but sensitivity to PLX038A was better correlated with response to irinotecan when one tumor hypersensitive to PLX038A was omitted (r2 = 0.6844). Mutations in 53BP1 were observed in three of six sensitive tumor models compared to none in resistant models (n = 6). CONCLUSIONS This study demonstrates the feasibility of using a single-mouse design for assessing the antitumor activity of an agent, while encompassing greater genetic diversity representative of childhood cancers. PLX038A was highly active in most xenograft models, and tumor sensitivity to PLX038A was correlated with sensitivity to irinotecan, validating the single-mouse design in identifying agents with the same mechanism of action. Biomarkers that correlated with model sensitivity included wild-type TP53, or mutant TP53 but with a mutation in 53BP1, thus a defect in DNA damage response. These results support the value of the single-mouse experimental design.
Collapse
Affiliation(s)
- Samson Ghilu
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Qilin Li
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Shaun D Fontaine
- ProLynx LLC, 455 Mission Bay Blvd, South San Francisco, CA, 94158, USA
| | - Daniel V Santi
- ProLynx LLC, 455 Mission Bay Blvd, South San Francisco, CA, 94158, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Collapse
Affiliation(s)
- Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacolgy & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
26
|
Small molecule inhibition of lysine-specific demethylase 1 (LSD1) and histone deacetylase (HDAC) alone and in combination in Ewing sarcoma cell lines. PLoS One 2019; 14:e0222228. [PMID: 31550266 PMCID: PMC6759167 DOI: 10.1371/journal.pone.0222228] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ewing Sarcoma (ES) is characterized by recurrent translocations between EWSR1 and members of the ETS family of transcription factors. The transcriptional activity of the fusion oncoprotein is dependent on interaction with the nucleosome remodeling and deactylase (NuRD) co-repressor complex. While inhibitors of both histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1) subunits of the NuRD complex demonstrate single agent activity in preclinical models, combination strategies have not been investigated. We selected 7 clinically utilized chemotherapy agents, or active metabolites thereof, for experimentation: doxorubicin, cyclophosphamide, vincristine, etoposide and irinotecan as well as the HDAC inhibitor romidepsin and the reversible LSD1 inhibitor SP2509. All agents were tested at clinically achievable concentrations in 4 ES cell lines. All possible 2 drug combinations were then tested for potential synergy. Order of addition of second-line conventional combination therapy agents was tested with the addition of SP2509. In two drug experiments, synergy was observed with several combinations, including when SP2509 was paired with topoisomerase inhibitors or romidepsin. Addition of SP2509 after treatment with second-line combination therapy agents enhanced treatment effect. Our findings suggest promising combination treatment strategies that utilize epigenetic agents in ES.
Collapse
|
27
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|
28
|
Bailey K, Cost C, Davis I, Glade-Bender J, Grohar P, Houghton P, Isakoff M, Stewart E, Laack N, Yustein J, Reed D, Janeway K, Gorlick R, Lessnick S, DuBois S, Hingorani P. Emerging novel agents for patients with advanced Ewing sarcoma: a report from the Children's Oncology Group (COG) New Agents for Ewing Sarcoma Task Force. F1000Res 2019; 8:F1000 Faculty Rev-493. [PMID: 31031965 PMCID: PMC6468706 DOI: 10.12688/f1000research.18139.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Ewing sarcoma is a small round blue cell malignancy arising from bone or soft tissue and most commonly affects adolescents and young adults. Metastatic and relapsed Ewing sarcoma have poor outcomes and recurrences remain common. Owing to the poor outcomes associated with advanced disease and the need for a clear research strategy, the Children's Oncology Group Bone Tumor Committee formed the New Agents for Ewing Sarcoma Task Force to bring together experts in the field to evaluate and prioritize new agents for incorporation into clinical trials. This group's mission was to evaluate scientific and clinical challenges in moving new agents forward and to recommend agents and trial designs to the Bone Tumor Committee. The task force generated a framework for vetting prospective agents that included critical evaluation of each drug by using both clinical and non-clinical parameters. Representative appraisal of agents of highest priority, including eribulin, dinutuximab, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, anti-angiogenic tyrosine kinase inhibitors, and poly-ADP-ribose polymerase (PARP) inhibitors, is described. The task force continues to analyze new compounds by using the paradigm established.
Collapse
Affiliation(s)
- Kelly Bailey
- Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carrye Cost
- Center for Cancer and Blood Disorders, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian Davis
- Departments of Pediatrics and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Julia Glade-Bender
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Patrick Grohar
- Departement of Pediatrics, Van Andel Institute, Helen De Vos Children’s Hospital and Michigan State University, Grand Rapids, MI, USA
| | - Peter Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
| | - Elizabeth Stewart
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nadia Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jason Yustein
- The Faris D. Virani Ewing Sarcoma Center at the Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Damon Reed
- AYA Program, Moffitt Cancer Center, Tampa, FL, USA
- Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Katherine Janeway
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Lessnick
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Steven DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and Harvard Medical School, Boston, MA, USA
| | - Pooja Hingorani
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| |
Collapse
|
29
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
30
|
Wolff DW, Lee MH, Jothi M, Mal M, Li F, Mal AK. Camptothecin exhibits topoisomerase1-independent KMT1A suppression and myogenic differentiation in alveolar rhabdomyosarcoma cells. Oncotarget 2018; 9:25796-25807. [PMID: 29899822 PMCID: PMC5995248 DOI: 10.18632/oncotarget.25376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is an aggressive subtype of the most common soft tissue cancer in children. A hallmark of aRMS tumors is incomplete myogenic differentiation despite expression of master myogenic regulators such as MyoD. We previously reported that histone methyltransferase KMT1A suppresses MyoD function to maintain an undifferentiated state in aRMS cells, and that loss of KMT1A is sufficient to induce differentiation and suppress malignant phenotypes in these cells. Here, we develop a chemical compound screening approach using MyoD-responsive luciferase reporter myoblast cells to identify compounds that alleviate suppression of MyoD-mediated differentiation by KMT1A. A screen of pharmacological compounds yielded the topoisomerase I (TOP1) poison camptothecin (CPT) as the strongest hit in our assay system. Furthermore, treatment of aRMS cells with clinically relevant CPT derivative irinotecan restores MyoD function, and myogenic differentiation in vitro and in a xenograft model. This differentiated phenotype was associated with downregulation of the KMT1A protein. Remarkably, loss of KMT1A in CPT-treated cells occurs independently of its well-known anti-TOP1 mechanism. We further demonstrate that CPT can directly inhibit KMT1A activity in vitro. Collectively, these findings uncover a novel function of CPT that downregulates KMT1A independently of CPT-mediated TOP1 inhibition and permits differentiation of aRMS cells.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Min-Hyung Lee
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA 560029, India
| | - Munmun Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Asoke K. Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
31
|
Cassinelli G, Favini E, Dal Bo L, Tortoreto M, De Maglie M, Dagrada G, Pilotti S, Zunino F, Zaffaroni N, Lanzi C. Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget 2018; 7:47848-47863. [PMID: 27374103 PMCID: PMC5216983 DOI: 10.18632/oncotarget.10292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heparan sulfate (HS) mimic/heparanase inhibitor roneparstat (SST0001) shows antitumor activity in preclinical sarcoma models. We hypothesized that this 100% N-acetylated and glycol-split heparin could interfere with the functions of several receptor tyrosine kinases (RTK) coexpressed in sarcomas and activated by heparin-binding growth factors. Using a phospho-proteomic approach, we investigated the drug effects on RTK activation in human cell lines representative of different sarcoma subtypes. Inhibition of FGF, IGF, ERBB and PDGF receptors by the drug was biochemically and functionally validated. Roneparstat counteracted the autocrine loop induced by the COL1A1/PDGFB fusion oncogene, expressed in a human dermatofibrosarcoma protuberans primary culture and in NIH3T3COL1A1/PDGFB transfectants, inhibiting cell anchorage-independent growth and invasion. In addition, roneparstat inhibited the activation of cell surface PDGFR and PDGFR-associated FAK, likely contributing to the reversion of NIH3T3COL1A1/PDGFB cell transformed and pro-invasive phenotype. Biochemical and histological/immunohistochemical ex vivo analyses confirmed a reduced activation of ERBB4, EGFR, INSR, IGF1R, associated with apoptosis induction and angiogenesis inhibition in a drug-treated Ewing's sarcoma family tumor xenograft. The combination of roneparstat with irinotecan significantly improved the antitumor effect against A204 rhabdoid xenografts resulting in a high rate of complete responses and cures. These findings reveal that roneparstat exerts a multi-target inhibition of RTKs relevant in the pathobiology of different sarcoma subtypes. These effects, likely cooperating with heparanase inhibition, contribute to the antitumor efficacy of the drug. The study supports heparanase/HS axis targeting as a valuable approach in combination therapies of different sarcoma subtypes providing a preclinical rationale for clinical investigation.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica Favini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Dal Bo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Tortoreto
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marcella De Maglie
- Department of Veterinary Sciences and Public Health, Università Degli Studi di Milano, Milan, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy
| | - Gianpaolo Dagrada
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Pilotti
- Laboratory of Experimental Molecular Pathology, Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franco Zunino
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
32
|
Heske CM, Mendoza A, Edessa LD, Baumgart JT, Lee S, Trepel J, Proia DA, Neckers L, Helman LJ. STA-8666, a novel HSP90 inhibitor/SN-38 drug conjugate, causes complete tumor regression in preclinical mouse models of pediatric sarcoma. Oncotarget 2018; 7:65540-65552. [PMID: 27608846 PMCID: PMC5323173 DOI: 10.18632/oncotarget.11869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022] Open
Abstract
Long-term survival in patients with metastatic, relapsed, or recurrent Ewing sarcoma and rhabdomyosarcoma is dismal. Irinotecan, a topoisomerase 1 inhibitor, has activity in these sarcomas, but due to poor bioavailability of its active metabolite (SN-38) has had limited clinical efficacy. In this study we have evaluated the efficacy and toxicity of STA-8666, a novel drug conjugate which uses an HSP90 inhibitor to facilitate intracellular, tumor-targeted delivery of the topoisomerase 1 inhibitor SN-38, thus preferentially delivering and concentrating SN-38 within tumor tissue. We present in vivo evidence from mouse xenograft models that STA-8666 results in more persistent inhibition of topoisomerase 1 and prolonged DNA damage compared to irinotecan. This translates into superior antitumor efficacy and survival in multiple aggressive models of both diseases in mouse xenografts, as well as in an irinotecan-resistant model of pediatric osteosarcoma, demonstrated by dramatic tumor shrinkage, durable remission and prolonged complete regressions following short-term treatment, compared to conventional irinotecan. Gene expression analysis performed on xenograft tumors treated with either irinotecan or STA-8666 showed that STA-8666 affected expression of DNA damage and repair genes more robustly than irinotecan. These results suggest that STA-8666 may be a promising new agent for patients with pediatric-type sarcoma.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leah D Edessa
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua T Baumgart
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane Trepel
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Len Neckers
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lee J Helman
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Hol JA, van den Heuvel-Eibrink MM, Graf N, Pritchard-Jones K, Brok J, van Tinteren H, Howell L, Verschuur A, Bergeron C, Kager L, Catania S, Spreafico F, Mavinkurve-Groothuis AMC. Irinotecan for relapsed Wilms tumor in pediatric patients: SIOP experience and review of the literature-A report from the SIOP Renal Tumor Study Group. Pediatr Blood Cancer 2018; 65. [PMID: 29077255 DOI: 10.1002/pbc.26849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/27/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Abstract
While irinotecan has been studied in various pediatric solid tumors, its potential role in Wilms tumor (WT) is less clear. We evaluated response and outcome of irinotecan-containing regimens in relapsed WT and compared our results to the available literature. Among 14 evaluable patients, one complete response (CR) and two partial responses (PRs) were observed in patients with initial intermediate-risk (CR and PR) and blastemal-type histologies (PR). Two patients were alive at last follow-up showing no evidence of disease. Our results and the reviewed literature suggest some effectiveness of irinotecan in the setting of relapsed WT.
Collapse
Affiliation(s)
- Janna A Hol
- Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, Homburg, Germany
| | - Kathy Pritchard-Jones
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jesper Brok
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Pediatric Hematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Harm van Tinteren
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Howell
- Department of Pediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Arnauld Verschuur
- Pediatric Oncology, La Timone Children's Hospital, Marseille, France
| | - Christophe Bergeron
- Department of Pediatric Oncology, Institut d'Hematologie et d'Oncologie Pédiatrique, Centre Léon Bérard, Lyon, France
| | - Leo Kager
- St. Anna's Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Serena Catania
- Pediatric Oncology Unit, Department of Hematology and Pediatric Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Hematology and Pediatric Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | |
Collapse
|
34
|
Gendarme M, Baumann J, Ignashkova TI, Lindemann RK, Reiling JH. Image-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1. Mol Biol Cell 2017; 28:3756-3772. [PMID: 29074567 PMCID: PMC5739293 DOI: 10.1091/mbc.e17-03-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is increasingly recognized as a major hub for cellular signaling and is involved in numerous pathologies, including neurodegenerative diseases and cancer. The study of Golgi stress-induced signaling pathways relies on the selectivity of the available tool compounds of which currently only a few are known. To discover novel Golgi-fragmenting agents, transcriptomic profiles of cells treated with brefeldin A, golgicide A, or monensin were generated and compared with a database of gene expression profiles from cells treated with other bioactive small molecules. In parallel, a phenotypic screen was performed for compounds that alter normal Golgi structure. Histone deacetylase (HDAC) inhibitors and DNA-damaging agents were identified as novel Golgi disruptors. Further analysis identified HDAC1/HDAC9 as well as BRD8 and DNA-PK as important regulators of Golgi breakdown mediated by HDAC inhibition. We provide evidence that combinatorial HDACi/(+)-JQ1 treatment spurs synergistic Golgi dispersal in several cancer cell lines, pinpointing a possible link between drug-induced toxicity and Golgi morphology alterations.
Collapse
Affiliation(s)
| | - Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Reed DR, Hayashi M, Wagner L, Binitie O, Steppan DA, Brohl AS, Shinohara ET, Bridge JA, Loeb DM, Borinstein SC, Isakoff MS. Treatment pathway of bone sarcoma in children, adolescents, and young adults. Cancer 2017; 123:2206-2218. [PMID: 28323337 PMCID: PMC5485018 DOI: 10.1002/cncr.30589] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
When pediatric, adolescent, and young adult patients present with a bone sarcoma, treatment decisions, especially after relapse, are complex and require a multidisciplinary approach. This review presents scenarios commonly encountered in the therapy of bone sarcomas with the goal of objectively presenting a consensus, multidisciplinary management approach. Little variation was found in the authors' group with respect to local control or systemic therapy. Clinical trials were universally prioritized in all settings. Decisions regarding relapse therapies in the absence of a clinical trial had very minor variations initially, but a consensus was reached after a literature review and discussion. This review presents a concise document and figures as a starting point for evidence‐based care for patients with these rare diseases. This framework allows prospective decision making and prioritization of clinical trials. It is hoped that this framework will inspire and focus future clinical research and thus lead to new trials to improve efficacy and reduce toxicity. Cancer 2017;123:2206–2218. © 2017 American Cancer Society. This review presents a pathway for the management of common clinical scenarios that arise in the treatment of bone sarcomas in children, adolescents, and young adults. Clinical trials should be prioritized when they are available, and for those times when trials are unavailable, a consensus, multidisciplinary management approach to bone sarcomas is presented.
Collapse
Affiliation(s)
- Damon R Reed
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Masanori Hayashi
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Lars Wagner
- Division of Pediatric Hematology/Oncology, University of Kentucky, Lexington, Kentucky
| | - Odion Binitie
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Orthopedic Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Diana A Steppan
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric T Shinohara
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia A Bridge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska
| | - David M Loeb
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Scott C Borinstein
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael S Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
36
|
Gutova M, Goldstein L, Metz M, Hovsepyan A, Tsurkan LG, Tirughana R, Tsaturyan L, Annala AJ, Synold TW, Wan Z, Seeger R, Anderson C, Moats RA, Potter PM, Aboody KS. Optimization of a Neural Stem-Cell-Mediated Carboxylesterase/Irinotecan Gene Therapy for Metastatic Neuroblastoma. MOLECULAR THERAPY-ONCOLYTICS 2016; 4:67-76. [PMID: 28345025 PMCID: PMC5363723 DOI: 10.1016/j.omto.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
Despite improved survival for children with newly diagnosed neuroblastoma (NB), recurrent disease is a significant problem, with treatment options limited by anti-tumor efficacy, patient drug tolerance, and cumulative toxicity. We previously demonstrated that neural stem cells (NSCs) expressing a modified rabbit carboxylesterase (rCE) can distribute to metastatic NB tumor foci in multiple organs in mice and convert the prodrug irinotecan (CPT-11) to the 1,000-fold more toxic topoisomerase-1 inhibitor SN-38, resulting in significant therapeutic efficacy. We sought to extend these studies by using a clinically relevant NSC line expressing a modified human CE (hCE1m6-NSCs) to establish proof of concept and identify an intravenous dose and treatment schedule that gave maximal efficacy. Human-derived NB cell lines were significantly more sensitive to treatment with hCE1m6-NSCs and irinotecan as compared with drug alone. This was supported by pharmacokinetic studies in subcutaneous NB mouse models demonstrating tumor-specific conversion of irinotecan to SN-38. Furthermore, NB-bearing mice that received repeat treatment with intravenous hCE1m6-NSCs and irinotecan showed significantly lower tumor burden (1.4-fold, p = 0.0093) and increased long-term survival compared with mice treated with drug alone. These studies support the continued development of NSC-mediated gene therapy for improved clinical outcome in NB patients.
Collapse
Affiliation(s)
- Margarita Gutova
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Leanne Goldstein
- Information Sciences, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Marianne Metz
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Anahit Hovsepyan
- Departments of Radiology and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Lyudmila G Tsurkan
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38101, USA
| | - Revathiswari Tirughana
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lusine Tsaturyan
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Alexander J Annala
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Timothy W Synold
- Department of Cancer Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Zesheng Wan
- Children's Center for Cancer and Blood Diseases, CHLA/Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Seeger
- Children's Center for Cancer and Blood Diseases, CHLA/Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Clarke Anderson
- Department of Pediatric Oncology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Rex A Moats
- Departments of Radiology and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Philip M Potter
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38101, USA
| | - Karen S Aboody
- Departments of Developmental and Stem Cell Biology, City of Hope National Medical Center and Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
37
|
Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M. Pharmacogenomics in Pediatric Oncology: Review of Gene-Drug Associations for Clinical Use. Int J Mol Sci 2016; 17:ijms17091502. [PMID: 27618021 PMCID: PMC5037779 DOI: 10.3390/ijms17091502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
During the 3rd congress of the European Society of Pharmacogenomics and Personalised Therapy (ESPT) in Budapest in 2015, a preliminary meeting was held aimed at establishing a pediatric individualized treatment in oncology and hematology committees. The main purpose was to facilitate the transfer and harmonization of pharmacogenetic testing from research into clinics, to bring together basic and translational research and to educate health professionals throughout Europe. The objective of this review was to provide the attendees of the meeting as well as the larger scientific community an insight into the compiled evidence regarding current pharmacogenomics knowledge in pediatric oncology. This preliminary evaluation will help steer the committee’s work and should give the reader an idea at which stage researchers and clinicians are, in terms of personalizing medicine for children with cancer. From the evidence presented here, future recommendations to achieve this goal will also be suggested.
Collapse
Affiliation(s)
- Vid Mlakar
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | - Patricia Huezo-Diaz Curtis
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
| | | | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Centre hospitalier universitaire Sainte-Justine, 4515 Rue de Rouen, Montreal, QC H1V 1H1, Canada.
- Department of Pediatrics, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
- Department of Pharmacology, Faculty of Medicine, University of Montreal, 2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4, Canada.
| | - Marc Ansari
- Cansearch Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205 Geneva, Switzerland.
- Pediatric Department, Onco-Hematology Unit, Geneva University Hospital, Rue Willy-Donzé 6, 1205 Geneva, Switzerland.
| |
Collapse
|