1
|
AlNatheer Y, Alghamdi OG, Devanesan S, AlSalhi MS, Alshawakir YA, Khounganian RM, Alrahlah A, Seif SA. Enhanced Osseointegration of Titanium Alloy Bone Implants Coated With Carob-calcium Hydroxide Nanoparticles: A Comparative Study. J Craniofac Surg 2024:00001665-990000000-02315. [PMID: 39729227 DOI: 10.1097/scs.0000000000011037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the osseointegration properties of titanium bone implants coated with carob-mediated calcium hydroxide nanoparticles biomechanically, radiographically, and histologically on rabbit tibias. MATERIAL AND METHODS Forty coated and forty uncoated titanium alloy bone implants were inserted into 20 New Zealand rabbits; each tibia received 2 implants. The rabbits were sacrificed after 4 or 8 weeks, and samples were retrieved for biomechanical evaluation through removal torque test to assess the bond between implant and bone, radiographic evaluation through microcomputed tomography analysis to compare the bone-to-implant contact percentage and bone volume of the peri-implant area, scanning electron microscopic and histologic evaluation through hematoxylin and eosin stain. Statistical analyses between pairs of means were conducted using the independent t test. Multiple comparisons between the study groups across time intervals were performed using a 2-way analysis of variance. P-values ≤0.05 were considered statistically significant. RESULTS Higher removal torque values (P<0.01) were needed to remove the coated implants when biomechanically tested. In addition, the microcomputed tomography evaluation revealed a higher bone-to-implant contact percentage (P<0.05) in favor of coated implants. In addition, the 4-week healing interval of the coated implants showed no significant difference when compared with the 8-week healing interval of the uncoated implants biomechanically and radiographically, suggesting early osseointegration. CONCLUSIONS The findings of this study imply that coating titanium implants with carob-mediated calcium hydroxide nanoparticles improved and fastened osseointegration and bone ingrowth, resulting in early osteogenesis and shortening the treatment time.
Collapse
Affiliation(s)
- Yaser AlNatheer
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Majmaah University, Majmaah
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University
| | - Osama G Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University
| | - Yasser A Alshawakir
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University
| | - Rita M Khounganian
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University
| | - Ali Alrahlah
- Restorative Dental Sciences Department, Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sameh A Seif
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University
- Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Mariano E, Lee DY, Lee J, Choi Y, Park J, Han D, Kim JS, Park JW, Namkung S, Hur SJ. A review on the characterization of edible scaffolds for cultured meat: Physical, chemical, biocompatibility, and food safety evaluation methods. Food Chem 2024; 469:142493. [PMID: 39701871 DOI: 10.1016/j.foodchem.2024.142493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Scaffolds are three-dimensional biomaterials that act as structural blueprint for cultured meat precursor cells. The advancement of scaffold fabrication techniques and the development of novel scaffolds specifically designed for cultured meat are evident in numerous scaffold-based cultured meat reports, highlighting the advantages of the scaffolds using different characterization and evaluation techniques encompassing the physical, mechanical, chemical, and biological features of the scaffolds. Considering the potential of scaffolds to be included in cultured meat products, standardization of evaluation techniques could aid in preventing misrepresentation and possible food safety concerns in cultured meat production. Thus, appropriate food safety evaluation methods must be included to properly establish scaffolds as food safe or edible. The standardization of scaffold evaluation methods could aid in increasing the dependability and consumption of scaffold-based cultured meat.
Collapse
Affiliation(s)
- Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
3
|
Ramirez JA, Dunlap MD, Prosnitz R, Watson A, Montgomery MK, Gutman M, Coskran TM, Levinson SL, Yang K, Kanevsky I, Choudhary S. Characterization of Pulmonary Pathology in the Golden Syrian Hamster Model of COVID-19 Using Micro-Computed Tomography. Toxicol Pathol 2024:1926233241300451. [PMID: 39633286 DOI: 10.1177/01926233241300451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Golden Syrian hamster is a well-characterized rodent model for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2)-associated pneumonia. We sought to characterize the pulmonary disease course during SARS-CoV-2 infection (strain USA-WA1/2020) in the hamster model using micro-computed tomography (micro-CT) and compare radiologic observations with histopathologic findings. We observed a range of radiologic abnormalities, including ground glass opacities (GGOs), consolidations, air bronchograms, and pneumomediastinum. The appearance, distribution, and progression of these abnormalities in hamsters were similar to those observed in the lungs of coronavirus disease 2019 (COVID-19) patients by clinical CT and chest X-rays, and correlated with clinical signs and weight loss during the course of disease. Histopathological analysis of infected hamsters revealed lung pathology characteristic of COVID-19 pneumonia, and we observed a strong association between CT and histopathologic scorings. We also analyzed accumulation of air in the thoracic cavity by both manual and automated threshold-based segmentation and found that automated analysis significantly decreases the time needed for data analysis. Data presented here demonstrate that micro-CT imaging can be a major tool in preclinical investigative studies using animal models by providing early and detailed assessment of disease severity and outcomes.
Collapse
|
4
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
6
|
Goia S, Cooper G, Norman DG, Primeau C, Hall M, Hawley J, Williams MA. The use of micro-CT in the investigation of a case involving 3D printed firearms. Forensic Sci Int 2024; 363:112157. [PMID: 39106595 DOI: 10.1016/j.forsciint.2024.112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
This paper highlights how micro-CT was used to assist in the investigation of hybrid firearms constructed using a mixture of plastic and metal components, as a complementary technique to the physical examination performed by firearms experts. In recent years, there has been an increase in the complexity and sophistication of 3D printed and hybrid firearm designs. This was also the case in the investigation presented herein, with the firearms seized demonstrating a step change in the threat level they pose through their complexity. Thus, we describe how data produced from micro-CT scans was used to help firearms experts study the viability and mechanics of two hybrid weapons prior to dismantling and test-firing. This process aided experts in determining whether components were 3D printed or manufactured through other means, whilst ensuring that a digital record (digital twin) was retained in case evidence was damaged during testing. Finally, we show how the data was presented visually through animations and as evidence in court. This proved to be imperative when communicating to the judge, jury, and wider investigating teams, the complex multiple components and mechanisms within the firearms.
Collapse
Affiliation(s)
- Sofia Goia
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick, Coventry CV4 7AL, UK.
| | - Gareth Cooper
- West Midlands Police, Lloyd House, Birmingham B4 6NQ, UK
| | - Danielle G Norman
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick, Coventry CV4 7AL, UK
| | - Charlotte Primeau
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick, Coventry CV4 7AL, UK
| | - Michael Hall
- West Midlands Police, Lloyd House, Birmingham B4 6NQ, UK
| | - Julian Hawley
- West Midlands Police, Lloyd House, Birmingham B4 6NQ, UK
| | - Mark A Williams
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
7
|
Doolan O, Lewsey MG, Peirats-Llobet M, Bricklebank N, Aberdein N. Micro computed tomography analysis of barley during the first 24 hours of germination. PLANT METHODS 2024; 20:142. [PMID: 39285284 PMCID: PMC11406838 DOI: 10.1186/s13007-024-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Grains make up a large proportion of both human and animal diets. With threats to food production, such as climate change, growing sustainable and successful crops is essential to food security in the future. Germination is one of the most important stages in a plant's lifecycle and is key to the success of the resulting plant as the grain undergoes morphological changes and the development of specific organs. Micro-computed tomography is a non-destructive imaging technique based on the differing x-ray attenuations of materials which we have applied for the accurate analysis of grain morphology during the germination phase. RESULTS Micro Computed Tomography conditions and parameters were tested to establish an optimal protocol for the 3-dimensional analysis of barley grains. When comparing optimal scanning conditions, it was established that no filter, 0.4 degrees rotation step, 5 average frames, and 2016 × 1344 camera binning is optimal for imaging germinating grains. It was determined that the optimal protocol for scanning during the germination timeline was to scan individual grains at 0 h after imbibition (HAI) and then the same grain again at set time points (1, 3, 6, 24 HAI) to avoid any negative effects from X-ray radiation or disruption to growing conditions. CONCLUSION Here we sought to develop a method for the accurate analysis of grain morphology without the negative effects of possible radiation exposure. Several factors have been considered, such as the scanning conditions, reconstruction, and possible effects of X-ray radiation on the growth rate of the grains. The parameters chosen in this study give effective and reliable results for the 3-dimensional analysis of macro structures within barley grains while causing minimal disruption to grain development.
Collapse
Affiliation(s)
- Olivia Doolan
- Biomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK.
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
- Australian Research Council Centre of Excellence in Plants for Space, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture and Food, Department of Plant, Animal and Soil Sciences, La Trobe University, AgriBio Building, Bundoora, VIC, 3086, Australia
| | - Neil Bricklebank
- Biomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK
| | - Nicola Aberdein
- Biomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK
| |
Collapse
|
8
|
Ge P, Li S, Liang Y, Zhang S, Zhang L, Hu Y, Yao L, Wong PK. Enhancing trabecular CT scans based on deep learning with multi-strategy fusion. Comput Med Imaging Graph 2024; 116:102410. [PMID: 38905961 DOI: 10.1016/j.compmedimag.2024.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Trabecular bone analysis plays a crucial role in understanding bone health and disease, with applications like osteoporosis diagnosis. This paper presents a comprehensive study on 3D trabecular computed tomography (CT) image restoration, addressing significant challenges in this domain. The research introduces a backbone model, Cascade-SwinUNETR, for single-view 3D CT image restoration. This model leverages deep layer aggregation with supervision and capabilities of Swin-Transformer to excel in feature extraction. Additionally, this study also brings DVSR3D, a dual-view restoration model, achieving good performance through deep feature fusion with attention mechanisms and Autoencoders. Furthermore, an Unsupervised Domain Adaptation (UDA) method is introduced, allowing models to adapt to input data distributions without additional labels, holding significant potential for real-world medical applications, and eliminating the need for invasive data collection procedures. The study also includes the curation of a new dual-view dataset for CT image restoration, addressing the scarcity of real human bone data in Micro-CT. Finally, the dual-view approach is validated through downstream medical bone microstructure measurements. Our contributions open several paths for trabecular bone analysis, promising improved clinical outcomes in bone health assessment and diagnosis.
Collapse
Affiliation(s)
- Peixuan Ge
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China; Department of Electromechanical Engineering, University of Macau, Taipa, 999078, Macau, China
| | - Shibo Li
- School of Automotive and Transportation Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, Guangdong, China
| | - Yefeng Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Shuwei Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Lihai Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ying Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Liang Yao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China; Department of Electromechanical Engineering, University of Macau, Taipa, 999078, Macau, China
| | - Pak Kin Wong
- Department of Electromechanical Engineering, University of Macau, Taipa, 999078, Macau, China.
| |
Collapse
|
9
|
Bontempi M, Sancisi N, Marchiori G, Conconi M, Berni M, Cassiolas G, Giavaresi G, Parrilli A, Lopomo NF. Understanding the Structure-Function Relationship through 3D Imaging and Biomechanical Analysis: A Novel Methodological Approach Applied to Anterior Cruciate Ligaments. Biomimetics (Basel) 2024; 9:477. [PMID: 39194456 DOI: 10.3390/biomimetics9080477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Understanding the microstructure of fibrous tissues, like ligaments, is crucial due to their nonlinear stress-strain behavior from unique fiber arrangements. This study introduces a new method to analyze the relationship between the microstructure and function of anterior cruciate ligaments (ACL). We tested the procedure on two ACL samples, one from a healthy individual and one from an osteoarthritis patient, using a custom tensioning device within a micro-CT scanner. The samples were stretched and scanned at various strain levels (namely 0%, 1%, 2%, 3%, 4%, 6%, 8%) to observe the effects of mechanical stress on the microstructure. The micro-CT images were processed to identify and map fibers, assessing their orientations and volume fractions. A probabilistic mathematical model was then proposed to relate the geometric and structural characteristics of the ACL to its mechanical properties, considering fiber orientation and thickness. Our feasibility test indicated differences in mechanical behavior, fiber orientation, and volume distribution between ligaments of different origins. These indicative results align with existing literature, validating the proposed methodology. However, further research is needed to confirm these preliminary observations. Overall, our comprehensive methodology shows promise for improving ACL diagnosis and treatment and for guiding the creation of tissue-engineered grafts that mimic the natural properties and microstructure of healthy tissue, thereby enhancing integration and performance in biomedical applications.
Collapse
Affiliation(s)
- Marco Bontempi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Gregorio Marchiori
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Michele Conconi
- Department of Industrial Engineering, Alma Mater Studiorum-Università di Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Matteo Berni
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giorgio Cassiolas
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | |
Collapse
|
10
|
Scheller EL, McDonald M, Andersen TL, Sumner DR, Noda M, Erben RG, Boyce BF, Compston JE, Dempster DW, Takahashi HE, Malluche HH, Wronski TJ. Celebrating 50-years: the history and future of the International Society of Bone Morphometry. JBMR Plus 2024; 8:ziae070. [PMID: 38868596 PMCID: PMC11166892 DOI: 10.1093/jbmrpl/ziae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The International Society of Bone Morphometry (ISBM) is dedicated to advancing research, education, and clinical practice for osteoporosis and other bone disorders by developing and improving tools for the quantitative imaging and analysis of bone. Its initial core mission was to promote the proper use of morphometric techniques in bone research and to educate and train clinicians and basic scientists in bone morphometry. This article chronicles the evolution of the ISBM and the history and development of bone morphometric techniques for the past 50-years, starting with workshops on bone morphometry in 1973, to the formal incorporation of the ISBM in 1996, to today. We also provide a framework and vision for the coming decades. This effort was led by ISBM presidents Dr Erica L. Scheller (2022-2024) and Dr Thomas J. Wronski (2009-2012) in collaboration with all other living ISBM presidents. Though the underlying techniques and questions have changed over time, the need for standardization of established tools and discovery of novel approaches for bone morphometry remains a constant. The ISBM fulfills this need by providing a forum for the exchange of ideas, with a philosophy that encourages the open discussion of pitfalls and challenges among clinicians, scientists, and industry partners. This facilitates the rapid development and adaptation of tools to meet emerging demands within the field of bone health at a high level.
Collapse
Affiliation(s)
- Erica L Scheller
- Division of Bone and Mineral Diseases, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Michelle McDonald
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas L Andersen
- Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark
- Department of Forensic Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Masaki Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Juliet E Compston
- Department of Medicine, University of Cambridge, Cambridge CB2 1TN, England
| | - David W Dempster
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, United States
| | - Hideaki E Takahashi
- Niigata Rehabilitation Hospital, Niigata Bone Science Institute, Niigata 950-2181, Japan
| | - Hartmut H Malluche
- Division of Nephrology, Bone & Mineral Metabolism, Department of Medicine, University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
11
|
Ditton DM, Marchus CR, Bozeman AL, Martes AC, Brumley MR, Schiele NR. Visualization of rat tendon in three dimensions using micro-Computed Tomography. MethodsX 2024; 12:102565. [PMID: 38292310 PMCID: PMC10825692 DOI: 10.1016/j.mex.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micro-computed tomography (CT) is an X-ray-based imaging modality that produces three-dimensional (3D), high-resolution images of whole-mount tissues, but is typically limited to dense tissues, such as bone. The X-rays readily pass-through tendons, rendering them transparent. Contrast-enhancing chemical stains have been explored, but their use to improve contrast in different tendon types and across developmental stages for micro-CT imaging has not been systematically evaluated. Therefore, we investigated how phosphotungstic acid (PTA) staining and tissue hydration impacts tendon contrast for micro-CT imaging. We showed that PTA staining increased X-ray absorption of tendon to enhance tissue contrast and obtain 3D micro-CT images of immature (postnatal day 21) and sexually mature (postnatal day 50) rat tendons within the tail and hindlimb. Further, we demonstrated that tissue hydration state following PTA staining significantly impacts soft tissue contrast. Using this method, we also found that tail tendon fascicles appear to cross between fascicle bundles. Ultimately, contrast-enhanced 3D micro-CT imaging will lead to better understanding of tendon structure, and relationships between the bone and soft tissues.•Simple tissue fixation and staining technique enhances soft tissue contrast for tendon visualization using micro-CT.•3D tendon visualization in situ advances understanding of musculoskeletal tissue structure and organization.
Collapse
Affiliation(s)
- Destinee M. Ditton
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Colin R. Marchus
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
12
|
Zhou S, Li J, Ying T, Wang Y, Wang Q, Li X, Zhao F. StemRegenin 1 attenuates the RANKL-induced osteoclastogenesis via inhibiting AhR- c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway. iScience 2024; 27:109682. [PMID: 38660403 PMCID: PMC11039397 DOI: 10.1016/j.isci.2024.109682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) pathway may play an important role in the regulation of osteoclasts, but there are still conflicting studies on this aspect, and the specific mechanism of action has not been fully elucidated. Therefore, we conducted this study to find a drug to treat osteoporosis that targets AhR. We found that StemRegenin 1 inhibited RANKL-induced osteoclastogenesis in a concentration-dependent and time-dependent manner. Through further experiments, we found that SR1 can inhibit nuclear transcription of AhR and inhibit c-src phosphorylation, and ultimately regulates the activation of the NF-κB and p-ERK/mitogen-activated protein kinase pathways. Therefore, for the first time, we discovered the way in which the AhR-c-src-NF-κB/p-ERK MAPK-NFATc1 signaling pathway regulates the expression of osteoclast differentiation-associated proteins. Finally, SR1 was shown to successfully reverse bone loss in OVX mice. These studies provide us with ideas for finding new way to treat osteoporosis.
Collapse
Affiliation(s)
- Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Tiantian Ying
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Quan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P.R. China
| |
Collapse
|
13
|
Bonlawar J, Setia A, Challa RR, Vallamkonda B, Mehata AK, Vaishali, Viswanadh MK, Muthu MS. Targeted Nanotheransotics: Integration of Preclinical MRI and CT in the Molecular Imaging and Therapy of Advanced Diseases. Nanotheranostics 2024; 8:401-426. [PMID: 38751937 PMCID: PMC11093717 DOI: 10.7150/ntno.95791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024] Open
Abstract
The integration of preclinical magnetic resonance imaging (MRI) and computed tomography (CT) methods has significantly enhanced the area of therapy and imaging of targeted nanomedicine. Nanotheranostics, which make use of nanoparticles, are a significant advancement in MRI and CT imaging. In addition to giving high-resolution anatomical features and functional information simultaneously, these multifunctional agents improve contrast when used. In addition to enabling early disease detection, precise localization, and personalised therapy monitoring, they also enable early disease detection. Fusion of MRI and CT enables precise in vivo tracking of drug-loaded nanoparticles. MRI, which provides real-time monitoring of nanoparticle distribution, accumulation, and release at the cellular and tissue levels, can be used to assess the efficacy of drug delivery systems. The precise localization of nanoparticles within the body is achievable through the use of CT imaging. This technique enhances the capabilities of MRI by providing high-resolution anatomical information. CT also allows for quantitative measurements of nanoparticle concentration, which is essential for evaluating the pharmacokinetics and biodistribution of nanomedicine. In this article, we emphasize the integration of preclinical MRI and CT into molecular imaging and therapy for advanced diseases.
Collapse
Affiliation(s)
- Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Ranadheer Reddy Challa
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Vaishali
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram 522302, AP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi-221005, India
| |
Collapse
|
14
|
Nitschke BM, Beltran FO, Hahn MS, Grunlan MA. Trends in bioactivity: inducing and detecting mineralization of regenerative polymeric scaffolds. J Mater Chem B 2024; 12:2720-2736. [PMID: 38410921 PMCID: PMC10935659 DOI: 10.1039/d3tb02674d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Due to limitations of biological and alloplastic grafts, regenerative engineering has emerged as a promising alternative to treat bone defects. Bioactive polymeric scaffolds are an integral part of such an approach. Bioactivity importantly induces hydroxyapatite mineralization that promotes osteoinductivity and osseointegration with surrounding bone tissue. Strategies to confer bioactivity to polymeric scaffolds utilize bioceramic fillers, coatings and surface treatments, and additives. These approaches can also favorably impact mechanical and degradation properties. A variety of fabrication methods are utilized to prepare scaffolds with requisite morphological features. The bioactivity of scaffolds may be evaluated with a broad set of techniques, including in vitro (acellular and cellular) and in vivo methods. Herein, we highlight contemporary and emerging approaches to prepare and assess scaffold bioactivity, as well as existing challenges.
Collapse
Affiliation(s)
- Brandon M Nitschke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Felipe O Beltran
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
15
|
Daniels J, Sainz G, Katija K. New Method for Rapid 3D Reconstruction of Semi-Transparent Underwater Animals and Structures. Integr Org Biol 2023; 5:obad023. [PMID: 37521145 PMCID: PMC10372866 DOI: 10.1093/iob/obad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Indexed: 08/01/2023] Open
Abstract
Morphological features are the primary identifying properties of most animals and key to many comparative physiological studies, yet current techniques for preservation and documentation of soft-bodied marine animals are limited in terms of quality and accessibility. Digital records can complement physical specimens, with a wide array of applications ranging from species description to kinematics modeling, but options are lacking for creating models of soft-bodied semi-transparent underwater animals. We developed a lab-based technique that can live-scan semi-transparent, submerged animals, and objects within seconds. To demonstrate the method, we generated full three-dimensional reconstructions (3DRs) of an object of known dimensions for verification, as well as two live marine animals-a siphonophore and an amphipod-allowing detailed measurements on each. Techniques like these pave the way for faster data capture, integrative and comparative quantitative approaches, and more accessible collections of fragile and rare biological samples.
Collapse
Affiliation(s)
- Joost Daniels
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Giovanna Sainz
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| | - Kakani Katija
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, USA
| |
Collapse
|
16
|
Harandi N, Vandenberghe B, Vankerschaver J, Depuydt S, Van Messem A. How to make sense of 3D representations for plant phenotyping: a compendium of processing and analysis techniques. PLANT METHODS 2023; 19:60. [PMID: 37353846 DOI: 10.1186/s13007-023-01031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
Computer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant phenotyping applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the field.
Collapse
Affiliation(s)
- Negin Harandi
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | | | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Applied University of Sciences and Arts, Campus Kaai, Nijverheidskaai 170, Anderlecht, Belgium
| | - Arnout Van Messem
- Department of Mathematics, Université de Liège, Allée de la Découverte 12, Liège, Belgium.
| |
Collapse
|
17
|
Zhang S, Liang Y, Li X, Li S, Xiong X, Zhang L. AESR3D: 3D overcomplete autoencoder for trabecular computed tomography super resolution. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2023. [DOI: 10.1049/cit2.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Affiliation(s)
- Shuwei Zhang
- Department of Orthopaedics Chinese PLA General Hospital Beijing China
| | - Yefeng Liang
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences CAS Beijing China
| | - Xingyu Li
- College of Design and Engineering National University of Singapore Singapore Singapore
| | - Shibo Li
- Shenzhen Key Laboratory of Minimally Invasive Surgical Robotics and System Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Xiaofeng Xiong
- Department of Orthopaedics Chinese PLA General Hospital Beijing China
| | - Lihai Zhang
- SDU Biorobotics The Mærsk Mc‐Kinney Møller Institute The University of Southern Denmark (SDU) Odense M Denmark
| |
Collapse
|
18
|
Nurrachman AS, Azhari A, Epsilawati L, Pramanik F. Temporal Pattern of micro-CT Angiography Vascular Parameters and VEGF mRNA Expression in Fracture Healing: a Radiograph and Molecular Comparison. Eur J Dent 2023. [PMID: 36716788 DOI: 10.1055/s-0042-1757466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis plays an important role in fracture healing with vascular endothelial growth factor (VEGF) as the main protein involved. Micro-computed tomography (CT) angiography may be used to analyze this revascularization with several parameters such as number of branches, total volume, and diameter. This systematic review is aimed to assess available studies on the temporal pattern of vascular imaging on micro-CT angiographs, especially in terms of the number of branches, total volume, and diameter as well as the temporal pattern of VEGF mRNA expression as the molecular comparison during bone fracture healing. This review was conducted according to the PRISMA guidelines. Electronic database searches were performed using PubMed, ProQuest, ScienceDirect, EBSCOhost, Taylor & Francis Online, and hand searching. The search strategy and keywords were adjusted to each database using the Boolean operators and other available limit functions to identify most relevant articles based on our inclusion and exclusion criteria. Screening and filtration were done in several stages by removing the duplicates and analyzing each title, abstract, and full-text in all included entries. Data extraction was done for syntheses to summarize the temporal pattern of each parameter. A total of 28 articles were eligible and met all criteria, 11 articles were synthesized in its angiograph's analysis, 16 articles were synthesized in its VEGF mRNA expression analysis, and 1 article had both parameters analyzed. The overall temporal pattern of both three micro-CT angiographic parameters and VEGF mRNA expression was in line qualitatively. The number of branches, total volume, and diameter of the blood vessels in micro-CT angiography showed an exponential rise at week 2 and decline at week 3 of fracture healing, with the VEGF mRNA expression concurrently showing a consistent pattern in the phase.
Collapse
Affiliation(s)
- Aga Satria Nurrachman
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Azhari Azhari
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Lusi Epsilawati
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Farina Pramanik
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|
19
|
Li J, Li X, Zhou S, Wang Y, Lu Y, Wang Q, Zhao F. Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting the degradation of TRAIL. Mol Med 2022; 28:141. [DOI: 10.1186/s10020-022-00568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Tetrandrine, a bisbenzylisoquinoline (BBI) alkaloid extracted from Stephania tetrandra (S. Moore), and is widely used in several diseases such as tuberculosis, hyperglycemia, malaria, and tumors. Tetrandrine was recently shown to prevent bone loss in ovariectomized mice. However, the specific mechanism underlying osteoclastogenesis inhibition remains unclear.
Methods
Tetrandrine’s cytotoxicity to cells was determined using the Cell Counting Kit-8 assay. Tartrate-resistant acid phosphatase staining, immunofluorescence and bone resorption assay were performed to evaluate osteoclasts’ differentiation and absorption capacity. The bone-forming capacity was assessed using alkaline phosphatase and Alizarin red S staining. qPCR and Western blotting were applied to assess the related genes and protein expression. Tetrandrine’s impact on TRAIL was demonstrated through a co-immunoprecipitation assay. Animal experiments were performed for the detection of the therapeutic effect of Tetrandrine on osteoporosis.
Results
Tetrandrine attenuated RANKL-induced osteoclastogenesis and decreased the related gene expression. The co-immunoprecipitation assay revealed that Tetrandrine administration accelerated the ubiquitination of TNF-related apoptosis-inducing ligand (TRAIL), which was subsequently degraded. Moreover, TRAIL overexpression was found to partially reverse the Tetrandrine-induced inhibition of osteoclastogenesis. Meanwhile, Tetrandrine significantly inhibited the phosphorylation of p38, p65, JNK, IKBα and IKKα/β, while the TRAIL overexpression weakened this effect. In addition, Tetrandrine promoted osteogenesis and inhibited the TRAIL expression in osteoblasts. Tetrandrine consistently improved bone destruction by stimulating bone formation and inhibiting bone resorption in an OVX-induced mouse model.
Conclusion
Tetrandrine inhibits RANKL-induced osteoclastogenesis by promoting TRAIL degradation and promotes osteoblast differentiation, suggesting its potential in antiosteopenia pharmacotherapy.
Collapse
|
20
|
Farto-Vaamonde X, Diaz-Gomez L, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C. Perimeter and carvacrol-loading regulate angiogenesis and biofilm growth in 3D printed PLA scaffolds. J Control Release 2022; 352:776-792. [PMID: 36336096 DOI: 10.1016/j.jconrel.2022.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Carvacrol is a natural low-cost compound derived from oregano which presents anti-bacterial properties against both Gram-positive and Gram-negative bacteria. In this work, carvacrol-loaded PLA scaffolds were fabricated by 3D printing as platforms to support bone tissue regeneration while preventing biofilm development. Scaffolds were printed with or without a perimeter (lateral wall) mimicking the cortical structure of bone tissue to further evaluate if the lateral interconnectivity could affect the biological or antimicrobial properties of the scaffolds. Carvacrol incorporation was performed by loading either the PLA filament prior to 3D printing or the already printed PLA scaffold. The loading method determined carvacrol localization in the scaffolds and its release profile. Biphasic profiles were recorded in all cases, but scaffolds loaded post-printed released carvacrol much faster, with 50-80% released in the first day, compared to those containing carvacrol in PLA filament before printing which sustained the release for several weeks. The presence or absence of the perimeter did not affect the release rate, but total amount released. Tissue integration and vascularization of carvacrol-loaded scaffolds were evaluated in a chorioallantoic membrane model (CAM) using a novel quantitative micro-computed tomography (micro-CT) analysis approach. The obtained results confirmed the CAM tissue ingrowth and new vessel formation within the porous structure of the scaffolds after 7 days of incubation, without leading to hemorrhagic or cytotoxic effects. The absence of lateral wall facilitated lateral integration of the scaffolds in the host tissue, although increased the anisotropy of the mechanical properties. Scaffolds loaded with carvacrol post-printing showed antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa as observed in a decrease in CFU counting after biofilm detachment, changes in metabolic heat measured by calorimetry, and increased contact killing efficiency. In summary, this work demonstrated the feasibility of tuning carvacrol release rate and the amount released from PLA scaffolds to achieve antibiofilm protection without altering angiogenesis, which was mostly dependent on the perimeter density of the scaffolds.
Collapse
Affiliation(s)
- Xián Farto-Vaamonde
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbiología y Parasitología, Facultad de Biología, Edificio CiBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Otero
- Departamento de Microbiología y Parasitología, Facultad de Biología, Edificio CiBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Bazin D, Lucas IT, Rouzière S, Elkaim E, Mocuta C, Réguer S, Reid DG, Mathurin J, Dazzi A, Deniset-Besseau A, Petay M, Frochot V, Haymann JP, Letavernier E, Verpont MC, Foy E, Bouderlique E, Colboc H, Daudon M. Profile of an “at cutting edge” pathology laboratory for pathological human deposits: from nanometer to in vivo scale analysis on large scale facilities. CR CHIM 2022. [DOI: 10.5802/crchim.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Martinez-Garcia FD, Fischer T, Hayn A, Mierke CT, Burgess JK, Harmsen MC. A Beginner’s Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels 2022; 8:gels8090535. [PMID: 36135247 PMCID: PMC9498492 DOI: 10.3390/gels8090535] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a three-dimensional, acellular scaffold of living tissues. Incorporating the ECM into cell culture models is a goal of cell biology studies and requires biocompatible materials that can mimic the ECM. Among such materials are hydrogels: polymeric networks that derive most of their mass from water. With the tuning of their properties, these polymer networks can resemble living tissues. The microarchitectural properties of hydrogels, such as porosity, pore size, fiber length, and surface topology can determine cell plasticity. The adequate characterization of these parameters requires reliable and reproducible methods. However, most methods were historically standardized using other biological specimens, such as 2D cell cultures, biopsies, or even animal models. Therefore, their translation comes with technical limitations when applied to hydrogel-based cell culture systems. In our current work, we have reviewed the most common techniques employed in the characterization of hydrogel microarchitectures. Our review provides a concise description of the underlying principles of each method and summarizes the collective data obtained from cell-free and cell-loaded hydrogels. The advantages and limitations of each technique are discussed, and comparisons are made. The information presented in our current work will be of interest to researchers who employ hydrogels as platforms for cell culture, 3D bioprinting, and other fields within hydrogel-based research.
Collapse
Affiliation(s)
- Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tony Fischer
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Alexander Hayn
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, Pneumology, Infectiology Department of Hepatology, University Hospital Leipzig, Liebigstr. 19, 04103 Leipzig, Germany
| | - Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (C.T.M.); (M.C.H.)
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- W.J. Kolff Research Institute, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
- Correspondence: (C.T.M.); (M.C.H.)
| |
Collapse
|
23
|
Young SAE, Rummler M, Taïeb HM, Garske DS, Ellinghaus A, Duda GN, Willie BM, Cipitria A. In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events. Bone 2022; 161:116432. [PMID: 35569733 DOI: 10.1016/j.bone.2022.116432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.
Collapse
Affiliation(s)
- Sarah A E Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Hubert M Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Biodonostia Health Research Institute, Group of Bioengineering in Regeneration and Cancer, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
Franchetti G, Viel G, Fais P, Fichera G, Cecchin D, Cecchetto G, Giraudo C. Forensic applications of micro-computed tomography: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
The aim of this systematic review was to provide a comprehensive overview of micro-CT current applications in forensic pathology, anthropology, odontology, and neonatology.
Methods
A bibliographic research on the electronic databases Pubmed and Scopus was conducted in the time frame 01/01/2001–31/12/2021 without any language restrictions and applying the following free-text search strategy: “(micro-computed tomography OR micro-CT) AND (forensic OR legal)”. The following inclusion criteria were used: (A) English language; (B) Application of micro-CT to biological and/or non-biological materials to address at least one forensic issue (e.g., age estimation, identification of post-mortem interval). The papers selected by three independent investigators have been then classified according to the investigated materials.
Results
The bibliographic search provided 651 records, duplicates excluded. After screening for title and/or abstracts, according to criteria A and B, 157 full-text papers were evaluated for eligibility. Ninety-three papers, mostly (64) published between 2017 and 2021, were included; considering that two papers investigated several materials, an overall amount of 99 classifiable items was counted when referring to the materials investigated. It emerged that bones and cartilages (54.55%), followed by teeth (13.13%), were the most frequently analyzed materials. Moreover, micro-CT allowed the collection of structural, qualitative and/or quantitative information also for soft tissues, fetuses, insects, and foreign materials.
Conclusion
Forensic applications of micro-CT progressively increased in the last 5 years with very promising results. According to this evidence, we might expect in the near future a shift of its use from research purposes to clinical forensic cases.
Collapse
|
25
|
De Paula JC, Doello K, Mesas C, Kapravelou G, Cornet-Gómez A, Orantes FJ, Martínez R, Linares F, Prados JC, Porres JM, Osuna A, de Pablos LM. Exploring Honeybee Abdominal Anatomy through Micro-CT and Novel Multi-Staining Approaches. INSECTS 2022; 13:insects13060556. [PMID: 35735893 PMCID: PMC9224579 DOI: 10.3390/insects13060556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Apis mellifera or western honeybees are insects belonging to the Order Hymenoptera and the most important pollinators worldwide with great implications in natural biodiversity and agriculture due to their importance in pollination and honey production. The characterization of honeybee anatomy with precise tools will allow a better comprehension of the physiology of these insects under different biological conditions. Here, we employed Micro-computed tomography and novel staining methods to define the morphoanatomical characteristics of the worker honeybee abdomen. We defined the 3D and 2Ds structures of the midgut and hindgut and discovered a new cell type called ventricular telocyte, with possible roles in honeybee epithelium maintenance. Overall, we propose that this method will be useful for further investigation of the structure of the honeybee abdomen under a wide variety of environmental conditions. Abstract Continuous improvements in morphological and histochemical analyses of Apis mellifera could improve our understanding of the anatomy and physiology of these insects at both the cellular and tissue level. In this work, two different approaches have been performed to add new data on the abdomen of worker bees: (i) Micro-computed tomography (Micro-CT), which allows the identification of small-scale structures (micrometers) with adequate/optimal resolution and avoids sample damage and, (ii) histochemical multi-staining with Periodic Acid-Schiff-Alcian blue, Lactophenol-Saphranin O and pentachrome staining to precisely characterize the histological structures of the midgut and hindgut. Micro-CT allowed high-resolution imaging of anatomical structures of the honeybee abdomen with particular emphasis on the proventriculus and pyloric valves, as well as the connection of the sting apparatus with the terminal abdominal ganglia. Furthermore, the histochemical analyses have allowed for the first-time description of ventricular telocytes in honeybees, a cell type located underneath the midgut epithelium characterized by thin and long cytoplasmic projections called telopodes. Overall, the analysis of these images could help the detailed anatomical description of the cryptic structures of honeybees and also the characterization of changes due to abiotic or biotic stress conditions.
Collapse
Affiliation(s)
- Jessica Carreira De Paula
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Garyfalia Kapravelou
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Alberto Cornet-Gómez
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Francisco José Orantes
- Apinevada S.L Parque Metropolitano Industrial de Granada, Calle Rubiales 17, 18130 Granada, Spain;
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Fátima Linares
- Unidad de Microscopía de Fuerza Atómica, Centro de Instrumentación Científica, Universidad de Granada, 18003 Granada, Spain;
| | - Jose Carlos Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (J.C.P.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Jesus María Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Biomedical Research Center (CIBM), Universidad de Granada, Avda del Conocimiento s/n, 18100 Granada, Spain; (G.K.); (R.M.); (J.M.P.)
| | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Miguel de Pablos
- Grupo de Bioquímica y Parasitología Molecular CTS-183, Departamento de Parasitología, Universidad de Granada, 18071 Granada, Spain; (J.C.D.P.); (A.C.-G.); (A.O.)
- Institute of Biotechnology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +0034-958244163
| |
Collapse
|
26
|
Clear E, Grant RA, Carroll M, Brassey CA. A Review and Case Study of 3D Imaging Modalities for Female Amniote Reproductive Anatomy. Integr Comp Biol 2022; 62:icac027. [PMID: 35536568 PMCID: PMC10570564 DOI: 10.1093/icb/icac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in non-invasive imaging methods have revitalised the field of comparative anatomy, and reproductive anatomy has been no exception. The reproductive systems of female amniotes present specific challenges, namely their often internal "hidden" anatomy. Quantifying female reproductive systems is crucial to recognising reproductive pathologies, monitoring menstrual cycles, and understanding copulatory mechanics. Here we conduct a review of the application of non-invasive imaging techniques to female amniote reproductive anatomy. We introduce the commonly used imaging modalities of computed tomography (CT) and magnetic resonance imaging (MRI), highlighting their advantages and limitations when applied to female reproductive tissues, and make suggestions for future advances. We also include a case study of micro CT and MRI, along with their associated staining protocols, applied to cadavers of female adult stoats (Mustela erminea). In doing so, we will progress the discussion surrounding the imaging of female reproductive anatomy, whilst also impacting the fields of sexual selection research and comparative anatomy more broadly.
Collapse
Affiliation(s)
- Emma Clear
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
- Williamson Park Zoo, Quernmore Road, Lancaster, Lancashire LA1 1UX, UK
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Michael Carroll
- Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
27
|
Scharf J, Chouchane M, Finegan DP, Lu B, Redquest C, Kim MC, Yao W, Franco AA, Gostovic D, Liu Z, Riccio M, Zelenka F, Doux JM, Meng YS. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence. NATURE NANOTECHNOLOGY 2022; 17:446-459. [PMID: 35414116 DOI: 10.1038/s41565-022-01081-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
X-ray computed tomography (CT) is a non-destructive imaging technique in which contrast originates from the materials' absorption coefficient. The recent development of laboratory nanoscale CT (nano-CT) systems has pushed the spatial resolution for battery material imaging to voxel sizes of 50 nm, a limit previously achievable only with synchrotron facilities. Given the non-destructive nature of CT, in situ and operando studies have emerged as powerful methods to quantify morphological parameters, such as tortuosity factor, porosity, surface area and volume expansion, during battery operation or cycling. Combined with artificial intelligence and machine learning analysis techniques, nano-CT has enabled the development of predictive models to analyse the impact of the electrode microstructure on cell performances or the influence of material heterogeneities on electrochemical responses. In this Review, we discuss the role of X-ray CT and nano-CT experimentation in the battery field, discuss the incorporation of artificial intelligence and machine learning analyses and provide a perspective on how the combination of multiscale CT imaging techniques can expand the development of predictive multiscale battery behavioural models.
Collapse
Affiliation(s)
- Jonathan Scharf
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Mehdi Chouchane
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314, Hub de l'Energie, Amiens, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, Amiens, France
| | | | - Bingyu Lu
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA, USA
| | - Christopher Redquest
- Department of Chemical Engineering, University of California San Diego, La Jolla, CA, USA
| | - Min-Cheol Kim
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA, USA
| | - Weiliang Yao
- Department of Materials Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Alejandro A Franco
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, UMR CNRS 7314, Hub de l'Energie, Amiens, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, Amiens, France
- Alistore-ERI European Research Institute, FR CNRS 3104, Hub de l'Energie, Amiens, France
- Institut Universitaire de France, Paris, France
| | | | - Zhao Liu
- Thermo Fisher Scientific, Waltham, MA, USA
| | | | | | - Jean-Marie Doux
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Ying Shirley Meng
- Department of Nano-Engineering, University of California San Diego, La Jolla, CA, USA.
- Sustainable Power and Energy Center (SPEC), University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Cui X, Alcala-Orozco CR, Baer K, Li J, Murphy C, Durham M, Lindberg G, Hooper GJ, Lim K, Woodfield TBF. 3D bioassembly of cell-instructive chondrogenic and osteogenic hydrogel microspheres containing allogeneic stem cells for hybrid biofabrication of osteochondral constructs. Biofabrication 2022; 14. [PMID: 35344942 DOI: 10.1088/1758-5090/ac61a3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Recently developed modular bioassembly techniques hold tremendous potential in tissue engineering and regenerative medicine, due to their ability to recreate the complex microarchitecture of native tissue. Here, we developed a novel approach to fabricate hybrid tissue-engineered constructs adopting high-throughput microfluidic and 3D bioassembly strategies. Osteochondral tissue fabrication was adopted as an example in this study, because of the challenges in fabricating load bearing osteochondral tissue constructs with phenotypically distinct zonal architecture. By developing cell-instructive chondrogenic and osteogenic bioink microsphere modules in high-throughput, together with precise manipulation of the 3D bioassembly process, we successfully fabricated hybrid engineered osteochondral tissue in vitro with integrated but distinct cartilage and bone layers. Furthermore, by encapsulating allogeneic umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs), and demonstrating chondrogenic and osteogenic differentiation, the hybrid biofabrication of hydrogel microspheres in this 3D bioassembly model offers potential for an off-the-shelf, single-surgery strategy for osteochondral tissue repair.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Cesar R Alcala-Orozco
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Kenzie Baer
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Jun Li
- Dept. of Orthopaedic Surgery , University of Otago, 2 Riccarton Avenue, Christchurch, Christchurch, Canterbury, 8011, NEW ZEALAND
| | - Caroline Murphy
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Mitch Durham
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Gabriella Lindberg
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| | - Gary J Hooper
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8041, NEW ZEALAND
| | - Khoon Lim
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Avenue, Christchurch, 8140, NEW ZEALAND
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, 2 Riccarton Ave, Christchurch, 8140, NEW ZEALAND
| |
Collapse
|
29
|
Abstract
Radiographic imaging and tomography (RadIT) come in many types such as x-ray imaging and tomography (IT), proton IT, neutron IT, muon IT, and more. We identify five RadIT themes: physics, sources, detectors, methods, and data science, which are integral parts of image interpretation and 3D tomographic reconstruction. Traditionally, RadIT has been driven by medicine, non-destructive testing, material sciences, and security applications. The latest thrusts of growth come from automation, machine vision, additive manufacturing, and virtual reality (the "metaverse"). The five RadIT themes parallel their counterparts in optical IT. Synergies among different forms of RadIT and with optical IT motivate further advances towards multi-modal IT and quantum IT.
Collapse
|
30
|
Muller FM, Vanhove C, Vandeghinste B, Vandenberghe S. Performance evaluation of a micro-CT system for laboratory animal imaging with iterative reconstruction capabilities. Med Phys 2022; 49:3121-3133. [PMID: 35170057 DOI: 10.1002/mp.15538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND In recent years, there has been a rapid proliferation in micro-computed tomography (micro-CT) systems becoming more available for routine preclinical research, with applications in many areas including bone, lung, cancer and cardiac imaging. Micro-CT provides the means to non-invasively acquire detailed anatomical information, but high-resolution imaging comes at the cost of longer scan times and higher doses, which is not desirable given the potential risks related to x-ray radiation. To achieve dose reduction and higher throughputs without compromising image quality (noise management), fewer projections can be acquired. This is where iterative reconstruction methods can have the potential to reduce noise since these algorithms can better handle sparse projection data, compared to filtered backprojection PURPOSE: We evaluate the performance characteristics of a compact benchtop micro-CT scanner that provides iterative reconstruction capabilities with GPU-based acceleration. More specifically, we thereby investigate the potential benefit of iterative reconstruction methods for dose reduction. METHODS Based on a series of phantom experiments, the benchtop micro-CT system was characterized in terms of image uniformity, noise, low contrast detectability, linearity and spatial resolution. Whole-body images of a plasticized ex vivo mouse phantom were also acquired. Different acquisition protocols (general-purpose versus high-resolution, including low dose scans) and different reconstruction strategies (analytic versus iterative algorithms: FDK, ISRA, ISRA-TV) were compared. RESULTS Signal uniformity was maintained across the radial and axial field-of-view (no cupping effect) with an average difference in Hounsfield units (HU) between peripheral and central regions below 50. For low contrast detectability, regions with at least ∆HU of 40 to surrounding material could be discriminated (for rods of 2.5 mm diameter). A high linear correlation (R2 = 0.997) was found between measured CT values and iodine concentrations (0-40 mg/ml). Modulation transfer function (MTF) calculations on a wire phantom evaluated a resolution of 10.2 lp/mm at 10% MTF that was consistent with the 8.3% MTF measured on the 50 μm bars (10 lp/mm) of a bar-pattern phantom. Noteworthy changes in signal-to-noise and contrast-to-noise values were found for different acquisition and reconstruction protocols. Our results further showed the potential of iterative reconstruction methods to deliver images with less noise and artefacts. CONCLUSIONS In summary, the micro-CT system for laboratory animal imaging that was evaluated in the present work was shown to provide a good combination of performance characteristics between image uniformity, low contrast detectability and resolution in short scan times. With the iterative reconstruction capabilities of this micro-CT system in mind (ISRA and ISRA-TV), the adoption of such algorithms by GPU-based acceleration enables the integration of noise reduction methods which here demonstrated potential for high quality imaging at reduced doses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florence M Muller
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | - Christian Vanhove
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | | | - Stefaan Vandenberghe
- MEDISIP-INFINITY, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
31
|
Ghavami-Lahiji M, Davalloo RT, Tajziehchi G, Shams P. Micro-computed tomography in preventive and restorative dental research: A review. Imaging Sci Dent 2022; 51:341-350. [PMID: 34987994 PMCID: PMC8695474 DOI: 10.5624/isd.20210087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.
Collapse
Affiliation(s)
- Mehrsima Ghavami-Lahiji
- Dental Sciences Research Center, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.,Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Tayefeh Davalloo
- Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Gelareh Tajziehchi
- Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Paria Shams
- Department of Restorative Dentistry, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
32
|
|
33
|
Güleryüz A, Korkmaz C, Şener A, Taş MO. The effect of thermo-mechanical fatigue on the retentive force and dimensional changes in polyetheretherketone clasps with different thickness and undercut. J Adv Prosthodont 2021; 13:304-315. [PMID: 34777720 PMCID: PMC8558577 DOI: 10.4047/jap.2021.13.5.304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Esthetic expectations have increased the use of polyetheretherketone (PEEK) clasps as alternatives to Cr-Co in removable partial dentures (RPDs). The objective of this study was to evaluate the retentive force and dimensional change of clasps with different thickness and undercut made from PEEK by the thermo-mechanical fatigue. MATERIALS AND METHODS PEEK clasps (N = 48) with thicknesses of 1 or 1.50 mm and 48 premolar monolithic zirconia crowns with undercuts of 0.25 mm or 0.50 mm were fabricated. Samples are divided into four groups (C1-C4) and were subjected to 7200 thermal aging cycles (at 5 - 55℃). The changes in the retentive force and dimensions of the clasps were measured by micro-stress testing and micro-CT devices from five measurement points (M1 - M5). One-way ANOVA, paired t-test, two-way repeated ANOVA, and post-hoc tests were used to analyze the data (P < .05). RESULTS The retentive forces of C1, C2, C3, and C4 groups in initial and final test were found to be 4.389-3.388 N, 4.67 - 3.396 N, 5.161 - 4.096 N, 5.459 - 4.141 N, respectively. The effects of retentive force of all PEEK clasps groups were significant decreased. Thermo-mechanical cycles caused significant dimensional changes at points with M2, M4, and M5, and abraded the clasp corners and increased the distance between the ends of the clasp, resulting in reduced retentive forces (P* = .016, P* = .042, P < .001, respectively). CONCLUSION Thermo-mechanical aging decreases the retentive forces in PEEK clasps. Increasing the thickness and undercut amount of clasps decreases the amount of dimensional change. The values measured after aging are within the clinically acceptable limits.
Collapse
Affiliation(s)
- Ayşegül Güleryüz
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Cumhur Korkmaz
- Department of Prosthodontics, Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Şener
- Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Mehmet Ozan Taş
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
34
|
Automatic Quantification of Atherosclerosis in Contrast-Enhanced MicroCT Scans of Mouse Aortas Ex Vivo. Int J Biomed Imaging 2021; 2021:4998786. [PMID: 34594369 PMCID: PMC8478544 DOI: 10.1155/2021/4998786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Objective While microCT evaluation of atherosclerotic lesions in mice has been formally validated, existing image processing methods remain undisclosed. We aimed to develop and validate a reproducible image processing workflow based on phosphotungstic acid-enhanced microCT scans for the volumetric quantification of atherosclerotic lesions in entire mouse aortas. Approach and Results. 42 WT and 42 apolipoprotein E knockout mouse aortas were scanned. The walls, lumen, and plaque objects were segmented using dual-threshold algorithms. Aortic and plaque volumes were computed by voxel counting and lesion surface by triangulation. The results were validated against manual and histological evaluations. Knockout mice had a significant increase in plaque volume compared to wild types with a plaque to aorta volume ratio of 0.3%, 2.8%, and 9.8% at weeks 13, 18, and 26, respectively. Automatic segmentation correlated with manual (r 2 ≥ 0.89; p < .001) and histological evaluations (r 2 > 0.96; p < .001). Conclusions The semiautomatic workflow enabled rapid quantification of atherosclerotic plaques in mice with minimal manual work.
Collapse
|
35
|
Schendzielorz P, Ilgen L, Müller-Graff FT, Noyalet L, Völker J, Taeger J, Hagen R, Neun T, Zabler S, Althoff D, Rak K. Precise evaluation of the postoperative cochlear duct length by flat-panel volume computed tomography - Application of secondary reconstructions. Cochlear Implants Int 2021; 23:32-42. [PMID: 34519256 DOI: 10.1080/14670100.2021.1973208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.
Collapse
Affiliation(s)
- Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Laurent Noyalet
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Tilmann Neun
- Department of Diagnostic and Interventional Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Simon Zabler
- Department of X-ray Microscopy, University of Würzburg, Würzburg, Germany
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Agarwal G, Agrawal AK, Fatima A, Srivastava A. X-ray tomography analysis reveals the influence of graphene on porous morphology of collagen cryogels. Micron 2021; 150:103127. [PMID: 34419716 DOI: 10.1016/j.micron.2021.103127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
X-ray micro-tomography based analysis of porous hydrogel has gained a wide attention recently. It provides an advantage in three-dimensional analysis of pore morphometric and interconnection within the hydrogel network. We have fabricated highly elastic graphene crosslinked collagen hydrogel using cryogelation technique. The influence of graphene as a nano-crosslinker on the overall porosity and inter-connections between the pores in collagen cryogels was determined using X-ray micro-tomography. We have evaluated the effect of different concentration of amino-functionalized graphene nano-crosslinker on collagen cryogels porosity, pore volume, interconnectivity density, fractal dimensions and pore wall thickness. This study, reveals that the use of graphene as a nano-crosslinker have improved micro-architecture as compare to collagen cryogels in the absence of graphene for tissue engineering applications.
Collapse
Affiliation(s)
- Gopal Agarwal
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat, India
| | | | - Anis Fatima
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat, India.
| |
Collapse
|
37
|
Micro-Computed Tomography Analysis on Administration of Mesenchymal Stem Cells - Bovine Teeth Scaffold Composites for Alveolar Bone Tissue Engineering. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2021. [DOI: 10.4028/www.scientific.net/jbbbe.52.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.
Collapse
|
38
|
Wen ZH, Huang JS, Lin YY, Yao ZK, Lai YC, Chen WF, Liu HT, Lin SC, Tsai YC, Tsai TC, Jean YH. Chondroprotective Effects of a Histone Deacetylase Inhibitor, Panobinostat, on Pain Behavior and Cartilage Degradation in Anterior Cruciate Ligament Transection-Induced Experimental Osteoarthritic Rats. Int J Mol Sci 2021; 22:ijms22147290. [PMID: 34298911 PMCID: PMC8306086 DOI: 10.3390/ijms22147290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is the most common articular degenerative disease characterized by chronic pain, joint inflammation, and movement limitations, which are significantly influenced by aberrant epigenetic modifications of numerous OA-susceptible genes. Recent studies revealed that both the abnormal activation and differential expression of histone deacetylases (HDACs) might contribute to OA pathogenesis. In this study, we investigated the chondroprotective effects of a marine-derived HDAC inhibitor, panobinostat, on anterior cruciate ligament transection (ACLT)-induced experimental OA rats. The intra-articular administration of 2 or 10 µg of panobinostat (each group, n = 7) per week from the 6th to 17th week attenuates ACLT-induced nociceptive behaviors, including secondary mechanical allodynia and weight-bearing distribution. Histopathological and microcomputed tomography analysis showed that panobinostat significantly prevents cartilage degeneration after ACLT. Moreover, intra-articular panobinostat exerts hypertrophic effects in the chondrocytes of articular cartilage by regulating the protein expressions of HDAC4, HDAC6, HDAC7, runt-domain transcription factor-2, and matrix metalloproteinase-13. The study indicated that HDACs might have different modulations on the chondrocyte phenotype in the early stages of OA development. These results provide new evidence that panobinostat may be a potential therapeutic drug for OA.
Collapse
Affiliation(s)
- Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
| | - Jhy-Shrian Huang
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
| | - Yen-You Lin
- Department of Sports Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Zhi-Kang Yao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung 81341, Taiwan
| | - Yu-Cheng Lai
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Orthopedics, Asia University Hospital, Taichung 41354, Taiwan
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (Z.-H.W.); (Z.-K.Y.); (Y.-C.L.); (W.-F.C.)
- Department of Neurosurgery, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan;
| | - Sung-Chun Lin
- Department of Orthopedic Surgery, Pingtung Christian Hospital, No. 60 Dalian Road, Pingtung 90059, Taiwan;
| | - Yu-Chi Tsai
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
| | - Tsung-Chang Tsai
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
| | - Yen-Hsuan Jean
- Section of Orthopedics, Department of Surgery, Antai Medical Care Corporation Anti Tian-Sheng Memorial Hospital, PingTong 92842, Taiwan;
- Correspondence: ; Tel.: +886-8-8329966
| |
Collapse
|
39
|
Pavek A, Nartker C, Saleh M, Kirkham M, Khajeh Pour S, Aghazadeh-Habashi A, Barrott JJ. Tissue Engineering Through 3D Bioprinting to Recreate and Study Bone Disease. Biomedicines 2021; 9:551. [PMID: 34068971 PMCID: PMC8156159 DOI: 10.3390/biomedicines9050551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
The applications of 3D bioprinting are becoming more commonplace. Since the advent of tissue engineering, bone has received much attention for the ability to engineer normal bone for tissue engraftment or replacement. While there are still debates on what materials comprise the most durable and natural replacement of normal tissue, little attention is given to recreating diseased states within the bone. With a better understanding of the cellular pathophysiology associated with the more common bone diseases, these diseases can be scaled down to a more throughput way to test therapies that can reverse the cellular pathophysiology. In this review, we will discuss the potential of 3D bioprinting of bone tissue in the following disease states: osteoporosis, Paget's disease, heterotopic ossification, osteosarcoma, osteogenesis imperfecta, and rickets disease. The development of these 3D bioprinted models will allow for the advancement of novel therapy testing resulting in possible relief to these chronic diseases.
Collapse
Affiliation(s)
- Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | | | - Matthew Kirkham
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Sana Khajeh Pour
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Ali Aghazadeh-Habashi
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, ID 83209, USA; (A.P.); (C.N.); (M.K.); (S.K.P.)
| |
Collapse
|
40
|
Chisena RS, Sengenberger J, Shih AJ, Gurm H. Novel preclinical method for evaluating the efficacy of a percutaneous treatment in human ex vivo calcified plaque. Med Biol Eng Comput 2021; 59:799-811. [PMID: 33710527 DOI: 10.1007/s11517-021-02334-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/03/2021] [Indexed: 11/28/2022]
Abstract
The lack of suitable atherosclerotic calcification models and testing strategies inhibits preclinical efficacy testing of existing and novel percutaneous devices. The goal of this study is to develop a preclinical testing method for quantitatively and qualitatively evaluating the efficacy of noncompliant balloon angioplasty (NC BA) treatment in human ex vivo calcified plaque (CP). NC BA using a 3- and 4-mm diameter balloon was performed on an ex vivo tibial calcified vessel obtained from an amputation. Three-dimensional microcomputed tomography (μ-CT) imaging was performed pre- and post-BA to compare crack density in the CP. Comparing the pre- and posttreatment three-dimensional μ-CT images showed a glass-like cracking that occurred in the CP due to the BA procedure. Expansion of the 3-mm balloon showed little tissue deformation and no CP cracking. Although expansion of the 4-mm balloon occurred nonuniformly along balloon length and across the perpendicular projections, the balloon generated cracking throughout the CP, which allowed the surrounding elastic tissue to be dilated. This combined X-ray microscopy and μ-CT technique is a useful preclinical tool for quantifying the efficacy of percutaneous treatments for CP. Because of its nondestructive nature, the CP structure can be visualized pre- and posttreatment to determine the treatment effect.
Collapse
Affiliation(s)
- Robert S Chisena
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, 2350 Hayward St, Ann Arbor, MI, 48109, USA.
| | - Jordan Sengenberger
- Department of Biomedical Engineering, University of Michigan at Ann Arbor, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| | - Albert J Shih
- Department of Mechanical Engineering, University of Michigan at Ann Arbor, 2350 Hayward St, Ann Arbor, MI, 48109, USA
| | - Hitinder Gurm
- Department of Internal Medicine, University of Michigan Health System at Ann Arbor, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, USA
| |
Collapse
|
41
|
Chavez MB, Chu EY, Kram V, de Castro LF, Somerman MJ, Foster BL. Guidelines for Micro-Computed Tomography Analysis of Rodent Dentoalveolar Tissues. JBMR Plus 2021; 5:e10474. [PMID: 33778330 PMCID: PMC7990153 DOI: 10.1002/jbm4.10474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/16/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Micro–computed tomography (μCT) has become essential for analysis of mineralized as well as nonmineralized tissues and is therefore widely applicable in the life sciences. However, lack of standardized approaches and protocols for scanning, analyzing, and reporting data often makes it difficult to understand exactly how analyses were performed, how to interpret results, and if findings can be broadly compared with other models and studies. This problem is compounded in analysis of the dentoalveolar complex by the presence of four distinct mineralized tissues: enamel, dentin, cementum, and alveolar bone. Furthermore, these hard tissues interface with adjacent soft tissues, the dental pulp and periodontal ligament (PDL), making for a complex organ. Drawing on others' and our own experience analyzing rodent dentoalveolar tissues by μCT, we introduce techniques to successfully analyze dentoalveolar tissues with similar or disparate compositions, densities, and morphological characteristics. Our goal is to provide practical guidelines for μCT analysis of rodent dentoalveolar tissues, including approaches to optimize scan parameters (filters, voltage, voxel size, and integration time), reproducibly orient samples, define regions and volumes of interest, segment and subdivide tissues, interpret findings, and report methods and results. We include illustrative examples of analyses performed on genetically engineered mouse models with phenotypes in enamel, dentin, cementum, and alveolar bone. The recommendations are designed to increase transparency and reproducibility, promote best practices, and provide a basic framework to apply μCT analysis to the dentoalveolar complex that can also be extrapolated to a variety of other tissues of the body. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael B Chavez
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| | - Emily Y Chu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Vardit Kram
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Luis F de Castro
- National Institute of Dental and Craniofacial Research (NIDCR)National Institutes of Health (NIH) Bethesda MD USA
| | - Martha J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) National Institutes of Health (NIH) Bethesda MD USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry The Ohio State University Columbus OH USA
| |
Collapse
|
42
|
Requist MR, Sripanich Y, Peterson AC, Rolvien T, Barg A, Lenz AL. Semi-automatic micro-CT segmentation of the midfoot using calibrated thresholds. Int J Comput Assist Radiol Surg 2021; 16:387-396. [PMID: 33606178 DOI: 10.1007/s11548-021-02318-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In the field of skeletal research, accurate and reliable segmentation methods are necessary for quantitative micro-CT analysis to assess bone quality. We propose a method of semi-automatic image segmentation of the midfoot, using the cuneiform bones as a model, based on thresholds set by phantom calibration that allows reproducible results in low cortical thickness bones. METHODS Manual and semi-automatic segmentation methods were compared in micro-CT scans of the medial and intermediate cuneiforms of 24 cadaveric specimens. The manual method used intensity thresholds, hole filling, and manual cleanup. The semi-automatic method utilized calibrated bone and soft tissue thresholds Boolean subtraction to cleanly identify edges before hole filling. Intra- and inter-rater reliability was tested for the semi-automatic method in all specimens. Mask volume and average bone mineral density (BMD) were measured for all masks, and the three-dimensional models were compared to the initial semi-automatic segmentation using an unsigned distance part comparison analysis. Segmentation methods were compared with paired t-tests with significance level 0.05, and reliability was analyzed by calculating intra-class correlation coefficients. RESULTS There were statistically significant differences in mask volume and BMD between the manual and semi-automatic segmentation methods in both bones. The intra- and inter-reliability was excellent for mask volume and bone density in both bones. Part comparisons showed a higher maximum distance between surfaces for the manual segmentation than the repeat semi-automatic segmentations. CONCLUSION We developed a semi-automatic micro-CT segmentation method based on calibrated thresholds. This method was designed specifically for use in bones with high rates of curvature and low cortical bone density, such as the cuneiforms, where traditional threshold-based segmentation is more challenging. Our method shows improvement over manual segmentation and was highly reliable, making it appropriate for use in quantitative micro-CT analysis.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.,Department of Biomedical Engineering, University of Arizona, 1127 E James E Rogers Way, Tucson, AZ, 85721, USA
| | - Yantarat Sripanich
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.,Department of Orthopaedics, Phramongkutklao Hospital and College of Medicine, 315 Rajavithi Road, Tung Phayathai, Ratchathewi, Bangkok, 10400, Thailand
| | - Andrew C Peterson
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexej Barg
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA. .,Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
43
|
Li X, Wang Y, Li L, Zhou S, Zhao F. Sclareol inhibits RANKL-induced osteoclastogenesis and promotes osteoblastogenesis through promoting CCN1 expression via repressing the MAPK pathway. Cell Biol Toxicol 2021; 37:849-871. [PMID: 33423118 DOI: 10.1007/s10565-020-09578-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/25/2020] [Indexed: 11/28/2022]
Abstract
Osteoclasts are crucial cellular components of bone and are the cause of various bone problems like osteoporosis. Various biological activities such as anti-tumorous, anti-inflammatory, antibacterial, and immunomodulatory function are influenced by Sclareol, as a natural diterpene compound. However, studies on the effect and mechanism of Sclareol on osteoporosis are rare. In the current research, the influence of Sclareol on osteoclastogenesis and osteoblastogenesis was targeted to be discovered in ovariectomy (OVX)-induced animal models and in vitro. The expression levels of osteoclast-related genes such as c-Fos, NFATc1, and CTSK were detected by RT-qPCR and western blotting to understand the inhibition of Sclareol on the creation of osteoclast. The influence of Sclareol on osteoblastogenesis and the expression of osteoblastogenic markers were also examined. Sclareol inhibited the osteoclastogenesis caused by receptor activator of nuclear factor-κB ligand (RANKL) which promoted osteoblastogenesis through upregulating the expression of cysteine-rich protein 61 (CYR61/CCN1), which is a matricellular protein of the CCN family. The p-ERK and p-P38 protein expression levels were considerably downregulated by Sclareol. Furthermore, CCN1 overexpression partially mimicked the inhibitory effect of Sclareol, while the opposite results were obtained after CCN1 silencing. Additionally, Sclareol protected against loss of bones in an osteoporosis mouse model generated by OVX. The acquired results indicated that Sclareol represses RANKL-induced osteoclastogenesis and promotes osteoblastogenesis via promoting the expression of CCN1 by constraining the mitogen-activated protein kinase (MAPK) pathway. Our findings proposed that for the avoidance and treatment of osteoclast-linked disorders, Sclareol is a potentially effective drug. A proposed model for mediated regulation of osteoclastogenesis and osteoblastogenesis by Sclareol. The basic model of the process by which Sclareol prevents osteoclastogenesis and promotes osteoblastogenesis. Sclareol may increase the expression of CCN1 through inhibiting the MAPK pathway, thereby inhibiting osteoclast differentiation and attenuating bone resorption. Sclareol represses the expression of c-Fos, which stimulates the formation of osteoclast. In contrast, Sclareol promotes osteoblast differentiation by upregulating Runx2 expression, thereby improving the formation of bones. Consequently, Sclareol protects against loss of bones by regulating the stability of bone makeover via inhibition of bone formation and stimulation of bone resorption. Graphical Headlights 1. Sclareol represses RANKL-induced osteoclastogenesis. 2. Sclareol promotes osteoblast differentiation. 3. Sclareol inhibits the MAPK pathway through induction of CCN1. 4. Sclareol protects against bone loss by regulating the balance of bone remodeling via inhibition of bone formation and stimulation of bone resorption.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
44
|
Nakai R, Azuma T, Nakaso Y, Sawa S, Demura T. Development of a dynamic imaging method for gravitropism in pea sprouts using clinical magnetic resonance imaging system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:437-442. [PMID: 33850431 PMCID: PMC8034701 DOI: 10.5511/plantbiotechnology.20.1020a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/20/2020] [Indexed: 05/17/2023]
Abstract
Although magnetic resonance imaging (MRI) is a useful technique, only a few studies have investigated the dynamic behavior of small subjects using MRI owing to constraints such as experimental space and signal amount. In this study, to acquire high-resolution continuous three-dimensional gravitropism data of pea (Pisum sativum) sprouts, we developed a small-bore MRI signal receiver coil that can be used in a clinical MRI and adjusted the imaging sequence. It was expected that such an arrangement would improve signal sensitivity and improve the signal-to-noise ratio (SNR) of the acquired image. All MRI experiments were performed using a 3.0-T clinical MRI scanner. An SNR comparison using an agarose gel phantom to confirm the improved performance of the small-bore receiver coil and an imaging experiment of pea sprouts exhibiting gravitropism were performed. The SNRs of the images acquired with a standard 32-channel head coil and the new small-bore receiver coil were 5.23±0.90 and 57.75±12.53, respectively. The SNR of the images recorded using the new coil was approximately 11-fold higher than that of the standard coil. In addition, when the accuracy of MR imaging that captures the movement of pea sprout was verified, the difference in position information from the optical image was found to be small and could be used for measurements. These results of this study enable the application of a clinical MRI system for dynamic plant MRI. We believe that this study is a significant first step in the development of plant MRI technique.
Collapse
Affiliation(s)
- Ryusuke Nakai
- Kokoro Research Center, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Azuma
- Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8397, Japan
| | - Yosuke Nakaso
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-0862, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
45
|
Fidalgo G, Paiva K, Mendes G, Barcellos R, Colaço G, Sena G, Pickler A, Mota CL, Tromba G, Nogueira LP, Braz D, Silva HR, Colaço MV, Barroso RC. Synchrotron microtomography applied to the volumetric analysis of internal structures of Thoropa miliaris tadpoles. Sci Rep 2020; 10:18934. [PMID: 33144603 PMCID: PMC7641268 DOI: 10.1038/s41598-020-75993-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Amphibians are models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change due to their sensitivity and vulnerability to changes in the environment. Developmental series of amphibians are informative about their biology, and X-ray based 3D reconstruction holds promise for quantifying morphological changes during growth—some with a direct impact on the possibility of an experimental investigation on several of the ecological topics listed above. However, 3D resolution and discrimination of their soft tissues have been difficult with traditional X-ray computed tomography, without time-consuming contrast staining. Tomographic data were initially performed (pre-processing and reconstruction) using the open-source software tool SYRMEP Tomo Project. Data processing and analysis of the reconstructed tomography volumes were conducted using the segmentation semi-automatic settings of the software Avizo Fire 8, which provide information about each investigated tissues, organs or bone elements. Hence, volumetric analyses were carried out to quantify the development of structures in different tadpole developmental stages. Our work shows that synchrotron X-ray microtomography using phase-contrast mode resolves the edges of the internal tissues (as well as overall tadpole morphology), facilitating the segmentation of the investigated tissues. Reconstruction algorithms and segmentation software played an important role in the qualitative and quantitative analysis of each target structure of the Thoropa miliaris tadpole at different stages of development, providing information on volume, shape and length. The use of the synchrotron X-ray microtomography setup of the SYRMEP beamline of Elettra Synchrotron, in phase-contrast mode, allows access to volumetric data for bone formation, eye development, nervous system and notochordal changes during the development (ontogeny) of tadpoles of a cycloramphid frog Thoropa miliaris. As key elements in the normal development of these and any other frog tadpole, the application of such a comparative ontogenetic study, may hold interest to researchers in experimental and environmental disciplines.
Collapse
Affiliation(s)
- G Fidalgo
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - K Paiva
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Mendes
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Barcellos
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Colaço
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Sena
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Pickler
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C L Mota
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Tromba
- Elettra/Sincrotrone Trieste S.C.P.a., Trieste, Italy
| | - L P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - D Braz
- Nuclear Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Silva
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M V Colaço
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R C Barroso
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Silva Barreto I, Le Cann S, Ahmed S, Sotiriou V, Turunen MJ, Johansson U, Rodriguez‐Fernandez A, Grünewald TA, Liebi M, Nowlan NC, Isaksson H. Multiscale Characterization of Embryonic Long Bone Mineralization in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002524. [PMID: 33173750 PMCID: PMC7610310 DOI: 10.1002/advs.202002524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 06/01/2023]
Abstract
Long bone mineralization occurs through endochondral ossification, where a cartilage template mineralizes into bone-like tissue with a hierarchical organization from the whole bone-scale down to sub-nano scale. Whereas this process has been extensively studied at the larger length scales, it remains unexplored at some of the smaller length scales. In this study, the changes in morphology, composition, and structure during embryonic mineralization of murine humeri are investigated using a range of high-resolution synchrotron-based imaging techniques at several length scales. With micro- and nanometer spatial resolution, the deposition of elements and the shaping of mineral platelets are followed. Rapid mineralization of the humeri occurs over approximately four days, where mineral to matrix ratio and calcium content in the most mineralized zone reach adult values shortly before birth. Interestingly, zinc is consistently found to be localized at the sites of ongoing new mineralization. The mineral platelets in the most recently mineralized regions are thicker, longer, narrower, and less aligned compared to those further into the mineralized region. In summary, this study demonstrates a specific spatial distribution of zinc, with highest concentration where new mineral is being deposited and that the newly formed mineral platelets undergo slight reshaping and reorganization during embryonic development.
Collapse
Affiliation(s)
| | - Sophie Le Cann
- Department of Biomedical EngineeringLund UniversityLund22100Sweden
| | - Saima Ahmed
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Vivien Sotiriou
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Mikael J. Turunen
- Department of Applied PhysicsUniversity of Eastern FinlandKuopio70211Finland
| | | | | | | | - Marianne Liebi
- Department of PhysicsChalmers University of TechnologyGothenburg41296Sweden
| | - Niamh C. Nowlan
- Department of BioengineeringImperial College LondonLondonSW72AZUK
| | - Hanna Isaksson
- Department of Biomedical EngineeringLund UniversityLund22100Sweden
| |
Collapse
|
47
|
Schoborg TA. Whole Animal Imaging of Drosophila melanogaster using Microcomputed Tomography. J Vis Exp 2020. [PMID: 32955492 DOI: 10.3791/61515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biomedical imaging tools permit investigation of molecular mechanisms across spatial scales, from genes to organisms. Drosophila melanogaster, a well-characterized model organism, has benefited from the use of light and electron microscopy to understand gene function at the level of cells and tissues. The application of imaging platforms that allow for an understanding of gene function at the level of the entire intact organism would further enhance our knowledge of genetic mechanisms. Here a whole animal imaging method is presented that outlines the steps needed to visualize Drosophila at any developmental stage using microcomputed tomography (µ-CT). The advantages of µ-CT include commercially available instrumentation and minimal hands-on time to produce accurate 3D information at micron-level resolution without the need for tissue dissection or clearing methods. Paired with software that accelerate image analysis and 3D rendering, detailed morphometric analysis of any tissue or organ system can be performed to better understand mechanisms of development, physiology, and anatomy for both descriptive and hypothesis testing studies. By utilizing an imaging workflow that incorporates the use of electron microscopy, light microscopy, and µ-CT, a thorough evaluation of gene function can be performed, thus furthering the usefulness of this powerful model organism.
Collapse
|
48
|
McDermott AM, Herberg S, Mason DE, Collins JM, Pearson HB, Dawahare JH, Tang R, Patwa AN, Grinstaff MW, Kelly DJ, Alsberg E, Boerckel JD. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med 2020; 11:11/495/eaav7756. [PMID: 31167930 DOI: 10.1126/scitranslmed.aav7756] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor-β1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation-induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.
Collapse
Affiliation(s)
- Anna M McDermott
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Devon E Mason
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph M Collins
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rui Tang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Amit N Patwa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Daniel J Kelly
- Department of Mechanical Engineering, Trinity Center for Bioengineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.,National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Ten Years of Micro-CT in Dentistry and Maxillofacial Surgery: A Literature Overview. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micro-computed tomography (micro-CT) is a consolidated imaging technology allowing non-destructive three-dimensional (3D) qualitative and quantitative analysis by the observation of microstructures with high resolution. This paper aims at delivering a structured overview of literature about studies performed using micro-CT in dentistry and maxillofacial surgery (MFS) by analyzing the entire set of articles to portray the state of the art of the last ten years of scientific publications on the topic. It draws the scenario focusing on biomaterials, in vitro and in/ex vivo applications, bone structure analysis, and tissue engineering. It confirms the relevance of the micro-CT analysis for traditional research applications and mainly in dentistry with respect to MFS. Possible developments are discussed in relation to the use of the micro-CT combined with other, traditional, and not, techniques and technologies, as the elaboration of 3D models based on micro-CT images and emerging numerical methods. Micro-CT results contribute effectively with whose ones obtained from other techniques in an integrated multimethod approach and for multidisciplinary studies, opening new possibilities and potential opportunities for the next decades of developments.
Collapse
|
50
|
Discovery of os cordis in the cardiac skeleton of chimpanzees (Pan troglodytes). Sci Rep 2020; 10:9417. [PMID: 32523027 PMCID: PMC7286900 DOI: 10.1038/s41598-020-66345-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/04/2020] [Indexed: 11/12/2022] Open
Abstract
Cardiovascular diseases, especially idiopathic myocardial fibrosis, is one of the most significant causes of morbidity and mortality in captive great apes. This study compared the structure and morphology of 16 hearts from chimpanzees (Pan troglodytes) which were either healthy or affected by myocardial fibrosis using X-ray microtomography. In four hearts, a single, hyperdense structure was detected within the right fibrous trigone of the cardiac skeleton. High resolution scans and histopathology revealed trabecular bones in two cases, hyaline cartilage in another case and a focus of mineralised fibro-cartilaginous metaplasia with endochondral ossification in the last case. Four other animals presented with multiple foci of ectopic calcification within the walls of the great vessels. All hearts affected by marked myocardial fibrosis presented with bone or cartilage formation, and increased collagen levels in tissues adjacent to the bone/cartilage, while unaffected hearts did not present with os cordis or cartilago cordis. The presence of an os cordis has been described in some ruminants, camelids, and otters, but never in great apes. This novel research indicates that an os cordis and cartilago cordis is present in some chimpanzees, particularly those affected by myocardial fibrosis, and could influence the risk of cardiac arrhythmias and sudden death.
Collapse
|