1
|
The effect of dexamethasone on labor induction: a systematic review. BMC Pregnancy Childbirth 2021; 21:563. [PMID: 34404372 PMCID: PMC8369774 DOI: 10.1186/s12884-021-04010-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the effect of dexamethasone administration on the interval between initiation of labor induction and active phase of labor. METHODS The databases including PubMed, Cochrane Library, Embase, Scopus and Web of Science were searched for studies published up to June 27, 2021. Two types of articles were included: a) full-text articles published in English or any other languages, and b) Randomized Controlled Trials (RCTs). Participants were primi- or multigravida women with term or post-term pregnancy. The intervention group received parenteral or extra-amniotic dexamethasone whereas the control group received normal saline or no treatment before initiation of labor induction. All data were analyzed using Review Manager 5.3. RESULTS Seventeen studies involving 1879 patients were included in the meta-analysis. Administration of dexamethasone reduced the interval between the initiation of labor induction and the beginning of active phase by about 70 min [MD: - 1.17 (- 1.37, - 1.00); P < 0.00001]. Duration of the first stage of labor in the dexamethasone group was about 88 min shorter than that in the control. There were no maternal and fetal adverse effects. CONCLUSIONS Dexamethasone could significantly reduce the length of induction-active phase interval, and length of the first stage of labor, with no difference in maternal or fetal adverse effects.
Collapse
|
2
|
Expression of Stress-Mediating Genes is Increased in Term Placentas of Women with Chronic Self-Perceived Anxiety and Depression. Genes (Basel) 2020; 11:genes11080869. [PMID: 32752005 PMCID: PMC7463995 DOI: 10.3390/genes11080869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 01/04/2023] Open
Abstract
Anxiety, chronical stress, and depression during pregnancy are considered to affect the offspring, presumably through placental dysregulation. We have studied the term placentae of pregnancies clinically monitored with the Beck’s Anxiety Inventory (BAI) and Edinburgh Postnatal Depression Scale (EPDS). A cutoff threshold for BAI/EPDS of 10 classed patients into an Index group (>10, n = 23) and a Control group (<10, n = 23). Cortisol concentrations in hair (HCC) were periodically monitored throughout pregnancy and delivery. Expression differences of main glucocorticoid pathway genes, i.e., corticotropin-releasing hormone (CRH), 11β-hydroxysteroid dehydrogenase (HSD11B2), glucocorticoid receptor (NR3C1), as well as other key stress biomarkers (Arginine Vasopressin, AVP and O-GlcNAc transferase, OGT) were explored in medial placentae using real-time qPCR and Western blotting. Moreover, gene expression changes were considered for their association with HCC, offspring, gender, and birthweight. A significant dysregulation of gene expression for CRH, AVP, and HSD11B2 genes was seen in the Index group, compared to controls, while OGT and NR3C1 expression remained similar between groups. Placental gene expression of the stress-modulating enzyme 11β-hydroxysteroid dehydrogenase (HSD11B2) was related to both hair cortisol levels (Rho = 0.54; p < 0.01) and the sex of the newborn in pregnancies perceived as stressful (Index, p < 0.05). Gene expression of CRH correlated with both AVP (Rho = 0.79; p < 0.001) and HSD11B2 (Rho = 0.45; p < 0.03), and also between AVP with both HSD11B2 (Rho = 0.6; p < 0.005) and NR3C1 (Rho = 0.56; p < 0.03) in the Control group but not in the Index group; suggesting a possible loss of interaction in the mechanisms of action of these genes under stress circumstances during pregnancy.
Collapse
|
3
|
Pan X, Bowman M, Scott RJ, Fitter J, Smith R, Zakar T. Promoter Methylation Pattern Controls Corticotropin Releasing Hormone Gene Activity in Human Trophoblasts. PLoS One 2017; 12:e0170671. [PMID: 28151936 PMCID: PMC5289476 DOI: 10.1371/journal.pone.0170671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 02/03/2023] Open
Abstract
Placental CRH production increases with advancing pregnancy in women and its course predicts gestational length. We hypothesized that CRH gene expression in the placenta is epigenetically controlled setting gestational trajectories characteristic of normal and pathological pregnancies. Here we determined histone modification and DNA methylation levels and DNA methylation patterns at the CRH promoter in primary trophoblast cultures by chromatin immunoprecipitation combined with clonal bisulfite sequencing and identified the transcriptionally active epialleles that associate with particular histone modifications and transcription factors during syncytialisation and cAMP-stimulation. CRH gene expression increased during syncytial differentiation and cAMP stimulation, which was associated with increased activating and decreased repressive histone modification levels at the promoter. DNA methylation levels remained unchanged. The nine CpGs of the CRH proximal promoter were partially and allele-independently methylated displaying many (>100) epialleles. RNA-polymerase-II (Pol-II) bound only to three particular epialleles in cAMP-stimulated cells, while phospho-cAMP response element-binding protein (pCREB) bound to only one epiallele, which was different from those selected by Pol-II. Binding of TATA-binding protein increased during syncytial differentiation preferentially at epialleles compatible with Pol-II and pCREB binding. Histone-3 acetylation was detected only at epialleles targeted by Pol-II and pCREB, while gene activating histone-4 acetylation and histone-3-lysine-4 trimethylation occurred at CRH epialleles not associated with Pol-II or pCREB. The suppressive histone-3-lysine-27 trimethyl and-lysine-9 trimethyl modifications showed little or no epiallele preference. The epiallele selectivity of activating histone modifications and transcription factor binding demonstrates the epigenetic and functional diversity of the CRH gene in trophoblasts, which is controlled predominantly by the patterns, not the overall extent, of promoter methylation. We propose that conditions impacting on epiallele distribution influence the number of transcriptionally active CRH gene copies in the trophoblast cell population determining the gestational trajectory of placental CRH production in normal and pathological pregnancies.
Collapse
Affiliation(s)
- Xin Pan
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Reproductive Science, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Maria Bowman
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rodney J. Scott
- Priority Research Centre for Reproductive Science, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Molecular Medicine, Hunter Area Pathology Service, New Lambton Heights, NSW, Australia
| | - John Fitter
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Reproductive Science, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Reproductive Science, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Reproductive Science, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Chen Y, Allars M, Pan X, Maiti K, Angeli G, Smith R, Nicholson RC. Effects of corticotrophin releasing hormone (CRH) on cell viability and differentiation in the human BeWo choriocarcinoma cell line: a potential syncytialisation inducer distinct from cyclic adenosine monophosphate (cAMP). Reprod Biol Endocrinol 2013; 11:30. [PMID: 23587111 PMCID: PMC3639788 DOI: 10.1186/1477-7827-11-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/09/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Placental production of corticotrophin releasing hormone (CRH) rises exponentially as pregnancy progresses, and has been linked with the onset of normal and preterm labour. CRH is produced in syncytiotrophoblast cells and production is increased by glucocorticoids and cAMP. It remains unclear whether cAMP acts by inducing differentiation of cytotrophoblasts and/or through induction of syncytialisation. As CRH can stimulate cAMP pathways we have tested whether a feed-forward system may exist in placental cells during syncytialisation. METHODS The choriocarcinoma BeWo cell line was treated with cAMP, CRH or vehicle. Cell viability was determined by MTT assay, while apoptosis was analysed by DAPI staining and by FACS. Differentiation was measured by assaying message for hCG and ERVW-1 (syncytin1) by qRT-PCR, as well as the respective protein by ELISA. Fusion of BeWo cells was assessed by co-staining cell membrane and nuclei with CellMask and Hoechst 33342. CRHR1 and CRHR2 mRNA levels were measured by qRT-PCR. RESULTS We show that cAMP has an inductive effect on syncytialisation, as evidenced by induction of hCG secretion, by ERVW-1 mRNA expression and by formation of multinuclear cells. CRH mRNA expression was found to increase prior to the changes in the other syncytialisation markers. cAMP had an inhibitory effect on BeWo cell viability, but exogenous CRH did not. However, CRH did mimic the differentiation inducing effect of cAMP, suggesting a link between CRH and cAMP signalling in syncytialisation. We also found that treatment of BeWo cells with exogenous CRH resulted in elevated cellular CRHR1 levels. CONCLUSIONS This study suggests a positive feed-forward role exists for CRH in trophoblast cell differentiation, which may underlie the exponential rise in CRH observed as gestation advances.
Collapse
Affiliation(s)
- YuXia Chen
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Megan Allars
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Xin Pan
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Kaushik Maiti
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Giavanna Angeli
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Roger Smith
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
| | - Richard C Nicholson
- Mothers & Babies Research Centre, Hunter Medical Research Institute, John Hunter Hospital, University of Newcastle, Newcastle, NSW 2305, Australia
- Department of Physiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Wang B, Parobchak N, Rosen T. RelB/NF-κB2 regulates corticotropin-releasing hormone in the human placenta. Mol Endocrinol 2012; 26:1356-69. [PMID: 22734038 DOI: 10.1210/me.2012-1035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Placental CRH may be part of a clock that governs the length of human gestation. The mechanism underlying differential regulation of CRH in the human placenta is poorly understood. We report here that constitutively activated RelB/nuclear factor-κB2 (NF-κB)-2 (p100/p52) acts as an endogenous stimulatory signal to regulate CRH by binding to an NF-κB enhancer of CRH gene promoter in the human placenta. Nuclear staining of NF-κB2 and RelB in villous syncytiotrophoblasts and cytotrophoblasts was coupled with cytoplasmic CRH in syncytial knots of cytotrophoblasts. Chromatin immunoprecipitation identified that CRH gene associated with both RelB and NF-κB2 (p52). Dexamethasone increased synthesis and nuclear translocation of RelB and NF-κB2 (p52) and their association with the CRH gene. In contrast, progesterone, a down-regulator of placental CRH, repressed NF-κB2 (p100) processing, nuclear translocation of RelB and NF-κB2 (p52), and their association with the CRH gene. Luciferase reporter assay determined that the NF-κB enhancer of CRH was sufficient to regulate transcriptional activity of a heterologous promoter in primary cytotrophoblasts. RNA interference-mediated repression of RelB or NF-κB2 resulted in significant inhibition of CRH at both transcriptional and translational levels and prevented the dexamethasone-mediated up-regulation of CRH transcription and translation. These results suggest that the noncanonical NF-κB pathway regulates CRH production in the human placenta and is responsible for the positive regulation of CRH by glucocorticoids.
Collapse
Affiliation(s)
- Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Maternal-Fetal Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA.
| | | | | |
Collapse
|
6
|
Fetal programming of body composition, obesity, and metabolic function: the role of intrauterine stress and stress biology. J Nutr Metab 2012; 2012:632548. [PMID: 22655178 PMCID: PMC3359710 DOI: 10.1155/2012/632548] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/21/2012] [Indexed: 12/12/2022] Open
Abstract
Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice.
Collapse
|
7
|
Wadhwa PD, Entringer S, Buss C, Lu MC. The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol 2011; 38:351-84. [PMID: 21890014 PMCID: PMC3179976 DOI: 10.1016/j.clp.2011.06.007] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preterm birth represents the most significant problem in maternal-child health, with maternal stress identified as a variable of interest. The effects of maternal stress on risk of preterm birth may vary as a function of context. This article focuses on select key issues and questions highlighting the need to develop a better understanding of which particular subgroups of pregnant women may be especially vulnerable to the potentially detrimental effects of maternal stress, and under what circumstances and at which stages of gestation. Issues related to the characterization and assessment of maternal stress and candidate biologic mechanisms are addressed.
Collapse
Affiliation(s)
- Pathik D Wadhwa
- Departments of Psychiatry & Human Behavior, Obstetrics & Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, 3177 Gillespie Neuroscience Research Facility, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
8
|
Fogarty NME, Mayhew TM, Ferguson-Smith AC, Burton GJ. A quantitative analysis of transcriptionally active syncytiotrophoblast nuclei across human gestation. J Anat 2011; 219:601-10. [PMID: 21883201 DOI: 10.1111/j.1469-7580.2011.01417.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The syncytiotrophoblast (STB) epithelial covering of the human placenta is a unique terminally differentiated, multi-nucleated syncytium. No mitotic bodies are observed in the STB, which is sustained by continuous fusion of underlying cytotrophoblast cells (CTB). As a result, STB nuclei are of different ages. Morphologically, they display varying degrees of chromatin compaction, suggesting progressive maturational changes. Until recently, it was thought that STB nuclei were transcriptionally inactive, with all the mRNAs required by the syncytium being incorporated upon fusion of CTB. However, recent research has shown the presence of the active form of RNA polymerase II (RNA Pol II) in some STB nuclei. In this study, we confirm the presence of transcriptional activity in STB nuclei by demonstrating immunoreactivity for a transcription factor and an RNA polymerase I (RNA Pol I) co-factor, phospho-cAMP response element-binding protein and phospho-upstream binding factor, respectively. We also show, through immunoco-localisation studies, that a proportion of STB nuclei are both RNA Pol I and II transcriptionally active. Finally, we quantify the numerical densities of nuclei immunopositive and immunonegative for RNA Pol II in the STB of normal placentas of 11-39 weeks gestational age using an unbiased stereological counting tool, the physical disector. These data were combined with estimates of the volume of trophoblast to calculate total numbers of both types of nuclei at each gestational age. We found no correlation between gestational age and the numerical density of RNA Pol II-positive nuclei in the villous trophoblast (r = 0.39, P > 0.05). As the number of STB nuclei increases exponentially during gestation, we conclude that the number of transcriptionally active nuclei increases in proportion to trophoblast volume. The ratio of active to inactive nuclei remains constant at 3.9:1. These findings confirm that the majority of STB nuclei have intrinsic transcriptional activity, and that the STB is not dependent on CTB fusion for the provision of transcripts.
Collapse
Affiliation(s)
- N M E Fogarty
- Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
9
|
Liu Y, Knobloch HS, Grinevich V, Aguilera G. Stress induces parallel changes in corticotrophin-releasing hormone (CRH) Transcription and nuclear translocation of transducer of regulated cAMP response element-binding activity 2 in hypothalamic CRH neurones. J Neuroendocrinol 2011; 23:216-23. [PMID: 21121974 PMCID: PMC3042526 DOI: 10.1111/j.1365-2826.2010.02101.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies in vitro have shown that the cAMP response element-binding (CREB) co-activator, transducer of regulated CREB activity (TORC), is required for transcriptional activation of the corticotrophin-releasing hormone (CRH) gene. To determine the physiological importance of TORC2 regulating CRH transcription during stress, we examined the localisation of TORC2 in CRH neurones, as well as the relationship between changes in CRH heterogeneous nuclear (hn)RNA, nuclear translocation of TORC2 and binding of TORC2 to the CRH promoter. Immunohistochemistry revealed TORC2 immunoreactivity (irTORC2) in the dorsolateral (magnocellular) and dorsomedial (parvocellular) regions of the hypothalamic paraventricular nucleus (PVN). Although staining was mostly cytosolic under basal conditions, there was a marked increase in nuclear irTORC2 in the dorsomedial region after 30 min of restraint, concomitant with increases in CRH hnRNA levels. Levels of nuclear irTORC2 and CRH hnRNA had returned to basal 4 h after stress. Double-staining immunohistochemistry showed TORC2 co-staining in 100% of detected CRH neurones, and nuclear translocation after 30 min of restraint in 61%. Cellular distribution of TORC2 in the dorsolateral PVN was unaffected by restraint. Chromatin immunoprecipitation experiments showed recruitment of TORC2 and phosphorylated CREB (pCREB) by the CRH promoter after 30 min of restraint, but 4 h after stress only pCREB was associated with the CRH promoter. The demonstration that TORC2 translocates to the nucleus of hypothalamic CRH neurones and interacts with the CRH promoter in conjunction with the activation of CRH transcription during restraint stress, provides strong evidence for the involvement of TORC2 in the physiological regulation of CRH transcription.
Collapse
Affiliation(s)
- Ying Liu
- Section on Endocrine Physiology, PDEGEN, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - H. Sophie Knobloch
- Department of Molecular Neurobiology, Max-Planck-Institute, Heidelberg, Germany
| | - Valery Grinevich
- Department of Molecular Neurobiology, Max-Planck-Institute, Heidelberg, Germany
| | - Greti Aguilera
- Section on Endocrine Physiology, PDEGEN, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| |
Collapse
|
10
|
Entringer S, Buss C, Wadhwa PD. Prenatal stress and developmental programming of human health and disease risk: concepts and integration of empirical findings. Curr Opin Endocrinol Diabetes Obes 2010; 17:507-16. [PMID: 20962631 PMCID: PMC3124255 DOI: 10.1097/med.0b013e3283405921] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The concept of the developmental origins of health and disease susceptibility is rapidly attracting interest and gaining prominence as a complementary approach to understanding the causation of many complex common disorders that confer a major burden of disease; however several important issues and questions remain to be addressed, particularly in the context of humans. RECENT FINDINGS In this review we enunciate some of these questions and issues, review empirical evidence primarily from our own recent studies on prenatal stress and stress biology, and discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie and mediate short-term and long-term effects of prenatal stress on the developing human embryo and fetus, with a specific focus on body composition, metabolic function, and obesity risk. SUMMARY The implications for research and clinical practice are discussed with a summary of recent advances in noninvasive methods to characterize fetal, newborn, infant, and child developmental and health-related processes that, when coupled with available state-of-the-art statistical modeling approaches for longitudinal, repeated measures time series analysis, now afford unprecedented opportunities to explore and uncover the developmental origins of human health and disease.
Collapse
Affiliation(s)
- Sonja Entringer
- Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Claudia Buss
- Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pathik D. Wadhwa
- Department of Psychiatry and Human Behavior, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Obstetrics and Gynecology, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Epidemiology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
11
|
Uh A, Simmons CF, Bresee C, Khoury N, Gombart AF, Nicholson RC, Kocak H, Equils O. MyD88 and TRIF mediate the cyclic adenosine monophosphate (cAMP) induced corticotropin releasing hormone (CRH) expression in JEG3 choriocarcinoma cell line. Reprod Biol Endocrinol 2009; 7:74. [PMID: 19615077 PMCID: PMC2720972 DOI: 10.1186/1477-7827-7-74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/17/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Classically protein kinase A (PKA) and transcription factor activator protein 1 (AP-1) mediate the cyclic AMP (cAMP) induced-corticotrophin releasing hormone (CRH) expression in the placenta. However enteric Gram (-) bacterial cell wall component lipopolysaccharide (LPS) may also induce-CRH expression via Toll like receptor (TLR)4 and its adaptor molecule Myd88. Here we investigated the role of MyD88, TRIF and IRAK2 on cAMP-induced CRH promoter activation in JEG3 cells in the absence of LPS/TLR4 stimulation. METHODS JEG3 cells were transfected with CRH-luciferase and Beta-galactosidase expression vectors and either empty or dominant-negative (DN)-MyD88, DN-TRIF or DN-IRAK2 vectors using Fugene6 (Roche). cAMP-induced CRH promoter activation was examined by using a luminometer and luciferase assay. Calorimetric Beta-galactosidase assays were performed to correct for transfection efficiency. Luciferase expression vectors of cAMP-downstream molecules, CRE and AP-1, were used to further examine the signaling cascades. RESULTS cAMP stimulation induced AP-1 and CRE promoter expression and led to dose-dependent CRH promoter activation in JEG3 cells. Inhibition of MyD88 signaling blocked cAMP-induced CRE and CRH promoter activation. Inhibition of TRIF signaling blocked cAMP-induced CRH but not CRE expression, while inhibition of IRAK2 did not have an effect on cAMP-induced CRH expression. CONCLUSION MyD88 and TRIF exert direct regulatory effect on cAMP-induced CRH promoter activation in JEG3 cells in the absence of infection. MyD88 most likely interacts with molecules upstream of IRAK2 to regulate cAMP-induced CRH expression.
Collapse
Affiliation(s)
- Andy Uh
- Ahmanson Department of Pediatrics, Room 4221, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Charles F Simmons
- Ahmanson Department of Pediatrics, Room 4221, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Catherine Bresee
- Samuel Oschin Comprehensive Cancer Institute Biostatistics Core, Cedars-Sinai Medical Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nasif Khoury
- Ahmanson Department of Pediatrics, Room 4221, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Adrian F Gombart
- Linus Pauling Institute; Department of Biochemistry and Biophysics; ALS 2011, Oregon State University; Corvallis, OR 97331-7305, USA
| | - Richard C Nicholson
- Mothers and Babies Research Center, Hunter Medical Research Institute, John Hunter Hospital, Newcastle, Australia
| | - Hande Kocak
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ozlem Equils
- Ahmanson Department of Pediatrics, Room 4221, Steven Spielberg Pediatric Research Center, Burns and Allen Research Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Lipopolysaccharide stimulation of trophoblasts induces corticotropin-releasing hormone expression through MyD88. Am J Obstet Gynecol 2008; 199:317.e1-6. [PMID: 18771998 DOI: 10.1016/j.ajog.2008.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/15/2007] [Accepted: 06/27/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE We hypothesized that intrauterine infection may lead to placental corticotrophin-releasing hormone (CRH) expression via Toll-like receptor signaling. STUDY DESIGN To test this hypothesis JEG3 cells were stimulated with lipopolysaccharide (LPS), chlamydial heat shock protein 60, and interleukin (IL)-1. CRH expression was assessed by reverse transcription polymerase chain reaction (RT-PCR). The signaling mechanisms that were involved were examined in transient transfection experiments with beta-galactosidase, CRH-luciferase, cyclic adenosine monophosphate (AMP) response element-luciferase, dominant-negative (DN)-myeloid differentiation primary response gene (MyD88) and DN-toll-IL-1-receptor domain containing adapter inducing interferon (TRIF) vectors. Luciferase activity was determined by luciferase assay. Beta-galactosidase assay was performed to determine transfection efficiency. RESULTS LPS, chlamydial heat shock protein 60, and IL-1 stimulation led to CRH expression in the JEG3 cells. LPS-induced CRH expression was not due to the autocrine effect of LPS-induced IL-1 because the supernatant from LPS-conditioned JEG3 cells did not induce CRH expression in the naïve cells. DN-MyD88, but not DN-TRIF, blocked the LPS-induced CRH expression. The cAMP response element did not play a role in LPS-induced CRH expression. CONCLUSION Toll-like receptor signaling 4 may induce placental CRH expression through MyD88.
Collapse
|