1
|
Peric S, Ivanovic V, Ashley EJ, Esparis B, Campbell C, Wenninger S, Monckton D, Marini-Bettolo C, Walker H, Voháňka S, Cumming K, Łusakowska A, Hodgkinson V, Cosyns M, Rodrigues M, Yiu E, Mazanec R, Stevenson T, Kostera-Pruszczyk A, Korngut L, Jagut M, Schoser B, Forbes R, Poll A, Roxburgh R. International collaboration to improve knowledge on myotonic dystrophy type 2. J Neuromuscul Dis 2024; 11:1229-1237. [PMID: 39973464 DOI: 10.1177/22143602241290353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND The TREAT-NMD Global Registry Network is a global collaboration of neuromuscular disease registries, including myotonic dystrophy type 2 (DM2), which aims to facilitate collaborative research and clinical trials. OBJECTIVES This study aimed to assess DM2 patients included in the network, and to analyse their socio-demographic and clinical features. METHODS Data were collected through email surveys sent to 16 TREAT-NMD myotonic dystrophy core member registries. 10 registries enrolled DM2 patients. RESULTS The total number of DM2 cases was 1,720, with the Czech, German, and USA registries enrolling the most patients (445, 430, and 339 cases, respectively). The highest rates were seen in Czechia and Serbia (4.2 and 2.0 registered per 100,000 population, respectively). High DM2:DM1 ratios were seen in Central Europe. The median age at registry entry was 51 years. Symptom onset occurred before age 20 in 14% of cases. One fifth of patients used an assistive device to walk, and 4% were non-ambulatory. Insertion of a pacemaker or implantable cardioverter-defibrillator was reported in 4% of subjects, while 7% used non-invasive ventilation. CONCLUSIONS This represents the largest DM2 cohort assembled to date, providing demographic and clinical data for future research and trial recruitment, illustrating TREAT-NMD's international reach and the importance of capturing DM2 data.
Collapse
Affiliation(s)
- Stojan Peric
- University Clinical Center of Serbia - Neurology Clinic, University of Belgrade - Faculty of Medicine, Belgrade, Serbia
| | - Vukan Ivanovic
- University Clinical Center of Serbia - Neurology Clinic, University of Belgrade - Faculty of Medicine, Belgrade, Serbia
| | | | - Belen Esparis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Craig Campbell
- Department of Pediatrics, Epidemiology and Clinical Neurological Sciences, Schulich School of Medicine, Western University, London, Canada
| | - Stephan Wenninger
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Germany
| | - Darren Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Helen Walker
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Stanislav Voháňka
- Department of Neurology, University Hospital Brno, Brno, Czech Republic
| | - Kleed Cumming
- Myotonic Dystrophy Family Registry, Myotonic Dystrophy Foundation, Oakland, California, USA
| | - Anna Łusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Victoria Hodgkinson
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Marjan Cosyns
- Belgian Neuromuscular Diseases Registry, Sciensano, Brussels, Belgium
| | - Miriam Rodrigues
- Centre for Brain Research Neurogenetics Clinic, University of Auckland, Auckland, New Zealand
| | - Eppie Yiu
- Australian Neuromuscular Disease Registry, Murdoch Children's Research Institute, Melbourne, Australia
| | - Radim Mazanec
- Department of Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tanya Stevenson
- Myotonic Dystrophy Family Registry, Myotonic Dystrophy Foundation, Oakland, California, USA
| | | | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Marlène Jagut
- Belgian Neuromuscular Diseases Registry, Sciensano, Brussels, Belgium
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Germany
| | - Robin Forbes
- Australian Neuromuscular Disease Registry, Murdoch Children's Research Institute, Melbourne, Australia
| | - Annie Poll
- TREAT-NMD Services Limited, Newcastle Upon Tyne, UK
| | - Richard Roxburgh
- Centre for Brain Research Neurogenetics Clinic, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Damen MJ, Muilwijk OG, Olde Dubbelink TB, van Engelen BG, Voermans NC, Tieleman AA. Life expectancy and causes of death in patients with Myotonic Dystrophy Type 2. J Neuromuscul Dis 2024; 11:1221-1228. [PMID: 39240646 DOI: 10.3233/jnd-240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Myotonic Dystrophy type 2 (DM2) is a dominantly inherited multisystem disease caused by a CCTG repeat expansion in intron 1 of the CNBP gene. Although in the last two decades over 1500 patients with DM2 have been diagnosed worldwide, our clinical impression of a reduced life expectancy in DM2 has not been investigated previously. OBJECTIVE The aim of this observational study was to determine the life expectancy and the causes of death in patients with genetically confirmed DM2. METHODS We identified the data of all deceased patients with DM2 in the Dutch neuromuscular database between 2000 and 2023. Ages and causes of death and the patients' clinical features during lifetime were determined. Age of death in DM2 was compared to the general population by using life tables with prognostic cohort life expectancy (CLE) and period life expectancy (PLE) data of the Dutch electronic database of statistics (CBS StatLine). RESULTS Twenty-six deceased patients were identified in the Dutch DM2 cohort (n = 125). Median age of death in DM2 (70.9 years) was significantly lower compared to sex- and age-matched CLE (78.1 years) and PLE (82.1 years) in the Netherlands. Main causes of death were cardiac diseases (31%) and pneumonia (27%). Seven patients (27%) had a malignancy at the time of death. CONCLUSION These results provide new insights into the phenotype of DM2. Life expectancy in patients with DM2 is reduced, possibly attributable to multiple causes including increased risk of cardiac disease, pneumonia, and malignancies. The occurrence of a significantly reduced life expectancy has implications for clinical practice and may form a basis for advanced care planning, including end-of-life care, to optimize quality of life for patients with DM2 and their family. Research in larger cohorts should be done to confirm these findings and to ascertain more about the natural course in DM2.
Collapse
Affiliation(s)
- Manon J Damen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Otto G Muilwijk
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Bg Olde Dubbelink
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Baziel Gm van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alide A Tieleman
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Meziab O, Seckeler MD, Scherer K, Barber BJ. Prevalence of cardiovascular implantable electronic devices in children with type 1 myotonic dystrophy. Muscle Nerve 2024; 70:1077-1081. [PMID: 38943290 DOI: 10.1002/mus.28188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION/AIMS Type 1 myotonic dystrophy (DM1) is a neuromuscular disorder of multiple organ systems with important electrophysiologic (EP) manifestations, leading to a cumulative incidence of sudden death of 6.6%. Due to genetic anticipation, there is a pediatric subset of this patient population. However, most EP research on DM1 patients has been in adults, making cardiac care for pediatric patients difficult and directed by adult guidelines which often leads to cardiovascular implantable electronic device (CIED) implants. We sought to investigate the prevalence of CIEDs in the pediatric DM1 population. METHODS The Vizient® Clinical Data Base was queried from October 2019 to October 2023 for admissions with and without ICD-10 code for myotonic dystrophy (G71.11), with and without codes for presence of a pacemaker or ICD (Z95.0, Z95.810). Patients who were identified were stratified by age: Pediatric (0-21 years) and Adult (22-50 years). RESULTS Prevalence of CIED in pediatric DM1 was 2.1% and in adult DM1 was 15.8%. When comparing to pediatric and adult patients with CIED and without DM1, the odds ratio for CIED in pediatric DM1 was 48.8, compared to 23.3 for CIED in adult DM1. DISCUSSION There are pediatric DM1 patients who have received CIED despite a lack of data to inform this decision-making. Further research will be important to ensure appropriate use of CIED in this population and to develop appropriate guidelines to direct management.
Collapse
Affiliation(s)
- Omar Meziab
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona, USA
| | - Michael D Seckeler
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona, USA
| | - Katalin Scherer
- Department of Neurology, University of Arizona, Tucson, Arizona, USA
| | - Brent J Barber
- Department of Pediatrics (Cardiology), University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Aimo A, Milandri A, Barison A, Pezzato A, Morfino P, Vergaro G, Merlo M, Argirò A, Olivotto I, Emdin M, Finocchiaro G, Sinagra G, Elliott P, Rapezzi C. Electrocardiographic abnormalities in patients with cardiomyopathies. Heart Fail Rev 2024; 29:151-164. [PMID: 37848591 PMCID: PMC10904564 DOI: 10.1007/s10741-023-10358-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Abnormalities in impulse generation and transmission are among the first signs of cardiac remodeling in cardiomyopathies. Accordingly, 12-lead electrocardiogram (ECG) of patients with cardiomyopathies may show multiple abnormalities. Some findings are suggestive of specific disorders, such as the discrepancy between QRS voltages and left ventricular (LV) mass for cardiac amyloidosis or the inverted T waves in the right precordial leads for arrhythmogenic cardiomyopathy. Other findings are less sensitive and/or specific, but may orient toward a specific diagnosis in a patient with a specific phenotype, such as an increased LV wall thickness or a dilated LV. A "cardiomyopathy-oriented" mindset to ECG reading is important to detect the possible signs of an underlying cardiomyopathy and to interpret correctly the meaning of these alterations, which differs in patients with cardiomyopathies or other conditions.
Collapse
Affiliation(s)
- Alberto Aimo
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | | | - Andrea Barison
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Andrea Pezzato
- Center for Diagnosis and Management of Cardiomyopathies, Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Paolo Morfino
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Marco Merlo
- Center for Diagnosis and Management of Cardiomyopathies, Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | | | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital Florence, Florence, Italy
| | - Michele Emdin
- Interdisciplinary Center for Health Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Gherardo Finocchiaro
- Royal Brompton and Harefield Hospital, London, UK
- St George's University of London, London, UK
| | - Gianfranco Sinagra
- Center for Diagnosis and Management of Cardiomyopathies, Cardiothoracovascular Department Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Perry Elliott
- UCL Centre for Heart Muscle Disease and Lead of the Inherited Cardiovascular Disease Unit, Bart's Heart Centre, London, UK
- Cardiology Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Rapezzi
- UCL Centre for Heart Muscle Disease and Lead of the Inherited Cardiovascular Disease Unit, Bart's Heart Centre, London, UK
| |
Collapse
|
5
|
Gutschmidt K, Wirner-Piotrowski C, Angarita NG, Montagnese F, Schoser B, Wenninger S. Prediction of respiratory impairment in myotonic dystrophies using the 'Respiratory involvement symptom checklist' (Respicheck). Neuromuscul Disord 2023; 33:610-618. [PMID: 37399783 DOI: 10.1016/j.nmd.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 07/05/2023]
Abstract
Chronic hypoventilation due to involvement of respiratory muscles is a frequent symptom in autosomal dominant inherited myotonic dystrophies, especially in type 1 (DM1), leading to a severely reduced quality of life, an early need for ventilatory support, or premature death. Thus, early knowledge of respiratory muscle weakness is essential to initiate further diagnostic and therapeutic measures. To get early, simple, and reliable information about respiratory impairment in DM patients, we performed a prospective controlled cohort study with DM1 and DM2 patients analysing the suitability of 'Respiratory involvement symptom checklist (Respicheck) as a clinically meaningful screening questionnaire for ventilatory impairment in patients with DM1 or DM2. Clinical assessments included a one-time pulmonary function test (spirometry and manometry) and the completion of the Respicheck. 172 participants were enrolled in this study (74 DM1, 72 DM2, 26 healthy controls). With a cut-off RespicheckCAT score of 4, the Respicheck can distinguish between patients with and without respiratory impairment with higher sensitivity and positive predictive value for DM1 than DM2 patients (DM1: sensitivity 77-87; positive predictive value 50-94%; DM2: sensitivity 67-80%; positive predictive value 14-38). In summary, our results confirm a clinically meaningful use of the Respicheck to detect respiratory impairments predominantly in DM1 patients.
Collapse
Affiliation(s)
- Kristina Gutschmidt
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany
| | - Corinna Wirner-Piotrowski
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany
| | - Natalia García Angarita
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany
| | - Federica Montagnese
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany
| | - Benedikt Schoser
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany
| | - Stephan Wenninger
- Friedrich Baur Institute at the Department of Neurology, LMU University Hospital, LMU Munich, Ziemssenstr. 1, 80336 Munich, Germany.
| |
Collapse
|
6
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Refractory Ventricular Arrhythmia and Dilated Cardiomyopathy as the Initial Presentation of Myotonic Dystrophy Type 2. J Clin Neuromuscul Dis 2022; 24:59-60. [PMID: 36005475 DOI: 10.1097/cnd.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Cardiac Complications of Neuromuscular Disorders. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Grigoratos C, Aimo A, Barison A, Castiglione V, Todiere G, Ricci G, Siciliano G, Emdin M. Cardiac magnetic resonance in patients with muscular dystrophies. Eur J Prev Cardiol 2021; 28:1526-1535. [PMID: 32418485 DOI: 10.1177/2047487320923052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/10/2020] [Indexed: 01/15/2023]
Abstract
Muscular dystrophies are inherited disorders sharing similar clinical features and dystrophic changes on muscle biopsy. Duchenne muscular dystrophy is the most common inherited muscle disease of childhood, and Becker muscular dystrophy is a milder allelic variant with a slightly lower prevalence. Myotonic dystrophy is the most frequent form in adults. Cardiac magnetic resonance is the gold standard technique for the quantification of cardiac chamber volumes and function, and also enables a characterisation of myocardial tissue. Most cardiac magnetic resonance studies in the setting of muscular dystrophy were carried out at single centres, evaluated small numbers of patients and used widely heterogeneous protocols. Even more importantly, those studies analysed more or less extensively the patterns of cardiac involvement, but usually did not try to establish the added value of cardiac magnetic resonance to standard echocardiography, the evolution of cardiac disease over time and the prognostic significance of cardiac magnetic resonance findings. As a result, the large and heterogeneous amount of information on cardiac involvement in muscular dystrophies cannot easily be translated into recommendations on the optimal use of cardiac magnetic resonance. In this review, whose targets are cardiologists and neurologists who manage patients with muscular dystrophy, we try to summarise cardiac magnetic resonance findings in patients with muscular dystrophy, and the results of studies evaluating the role of cardiac magnetic resonance as a tool for diagnosis, risk stratification and follow-up. Finally, we provide some practical recommendations about the need and timing of cardiac magnetic resonance examination for the management of patients with muscular dystrophy.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| | - Andrea Barison
- Fondazione Toscana Gabriele Monasterio, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| | | | | | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Michele Emdin
- Fondazione Toscana Gabriele Monasterio, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Italy
| |
Collapse
|
10
|
Roy B, Wu Q, Whitaker CH, Felice KJ. Myotonic Muscular Dystrophy Type 2 in CT, USA: A Single-Center Experience With 50 Patients. J Clin Neuromuscul Dis 2021; 22:135-146. [PMID: 33595997 DOI: 10.1097/cnd.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder due to a (CCTG)n repeat expansion in intron 1 of the CNBP gene. In this article, we report the clinicopathologic findings in 50 patients seen at a single site over a 27 year period. DM2 was the fifth most common type of muscular dystrophy seen at our center with a 5-fold lower frequency as compared to DM1. Age of symptom onset ranged from 15 to 72 years, and the mean duration between symptom onset and diagnosis was 7.4 years. Weakness referable to the proximal lower extremities was the presenting symptom in 62% of patients. The degree of generalized weakness varied from severe in 30% to no weakness in 20% of patients. Clinical myotonia was noted in 18% and myotonic discharges on electromyography in 97% of patients. Pain symptoms were uncommon in our cohort. A significant correlation was noted between limb weakness and degree of muscle pathologic changes. There was no correlation between CCTG repeat size and other clinicopathologic findings. Six patients (12%) had cardiac abnormalities including one who developed progressive nonischemic dilated cardiomyopathy ultimately leading to cardiac transplantation. In 21 patients followed for 2 or more years, we noted a mean rate of decline in total Medical Research Council score of about 1% per year.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT
| | - Qian Wu
- Department of Pathology and Laboratory Medicine, University of Connecticut School of Medicine, Farmington, CT; and
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| | - Kevin J Felice
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| |
Collapse
|
11
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
12
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
13
|
Wenninger S, Stahl K, Montagnese F, Schoser B. Utility and Results from a Patient-Reported Online Survey in Myotonic Dystrophies Types 1 and 2. Eur Neurol 2020; 83:523-533. [PMID: 33120389 DOI: 10.1159/000511237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Myotonic dystrophies (DMs) are the most frequent autosomal dominant neuromuscular disorders in adults. Our objective was to evaluate the utility of an online survey in a rare disease as well as to assess and compare the onset and the progression of clinical symptoms in patients with myotonic dystrophy types 1 (DM1) and 2 (DM2). METHODS We conducted a patient's reported online survey assessing demographics, disease-related symptoms (age of onset, first symptom, time of diagnosis, current symptoms, inheritance, and family history) combined with capturing current symptoms by validated questionnaires. The questionnaire consisted of open, closed, single- and multiple-choice questions. Multiple answers were possible in some cases. Patients with genetically confirmed DM1 or DM2 who were registered in the German DM registry or the Deutsche Gesellschaft für Muskelkranke e.V. - Diagnostic Group for DMs were invited to participate in this online survey. We calculated descriptive and exploratory analysis, where applicable. RESULTS Out of 677 data sets from respondents, 394 were suitable for final analysis, containing completed questionnaires from 207 DM1 (56% female) and 187 DM2 patients (71% female). The median age of onset was 28 years for DM1 and 35 years for DM2. Muscular symptoms were most frequently reported as the first symptom. The onset of myotonia was earlier than the onset of muscle weakness in both DM1 and DM2. Forty-four percent of patients with DM1 and one-third of patients with DM2 indicated muscle weakness as the first symptom. Patients with DM1 were significantly younger when experiencing muscle weakness as first symptom. Fatigue was only mentioned by a small fraction of patients as a first symptom but increased significantly in the course of the disease. There was no statistically significant difference in the incidence of cataracts, cardiac symptoms, and gastrointestinal symptoms between DM1 and DM2. Falls were reported almost equally in both groups, and most of the patients reported 2-3 falls within the past year. DISCUSSION Overall, as our results are consistent with the results of clinical studies and online registries, it can be assumed that this type of systematic gathering of data from patients with rare diseases is useful and provides realistic and appropriate results. Due to the nature of online surveys and the absence of an assessor, some uncertainty remains. Furthermore, survey frauds cannot be completely excluded. An additional clinical assessment could confirm the given information and will improve the utility and validity of reported symptoms participants provide in online surveys. Therefore, we recommend a combination of data collecting by online surveys and clinical assessments.
Collapse
Affiliation(s)
- Stephan Wenninger
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany,
| | - Kristina Stahl
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
14
|
Giuliani L, Di Toro A, Urtis M, Smirnova A, Concardi M, Favalli V, Serio A, Grasso M, Arbustini E. Hereditary muscle diseases and the heart: the cardiologist’s perspective. Eur Heart J Suppl 2020; 22:E13-E19. [PMID: 32523431 PMCID: PMC7270924 DOI: 10.1093/eurheartj/suaa051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Mario Urtis
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Alexandra Smirnova
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Monica Concardi
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Alessandra Serio
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
15
|
Schmid J, Beer M, Berghold A, Stojakovic T, Scharnagl H, Dieplinger B, Quasthoff S, Binder JS, Rainer PP. Cardiac involvement in a cross-sectional cohort of myotonic dystrophies and other skeletal myopathies. ESC Heart Fail 2020; 7:1900-1908. [PMID: 32476276 PMCID: PMC7373928 DOI: 10.1002/ehf2.12763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Cardiac involvement in myopathies that primarily affect the skeletal muscle is variable and may be subtle, necessitating sensitive diagnostic approaches. Here, we describe the prevalence of cardiac abnormalities in a cohort of patients with skeletal muscle disease presenting at a tertiary care neuromuscular centre. Methods and results We systematically investigated patients with skeletal myopathies and comprehensively analysed their cardiac phenotype including 24 h electrocardiogram, echocardiography with strain analyses, contrast‐enhanced cardiac magnetic resonance imaging, and, if at increased risk of coronary artery disease, computed tomography coronary angiography. We prospectively screened 91 patients with diverse skeletal myopathies and enrolled 73 patients. The most pronounced cardiac involvement was present in patients with dystrophic myopathies (cardiac abnormalities in 59% of patients). We analysed myotonic dystrophies (n = 29) in more detail and found prolonged QRS (99.4 ± 15.6 vs. 91.5 ± 10.3 ms; P = 0.027) and QTc times (441.1 ± 28.1 vs. 413.0 ± 23.3 ms; P < 0.001) and increased left atrial size (27.28 ± 3.9 vs. 25.0 ± 3.2 mm/m2; P = 0.021) when compared with healthy controls. Left ventricular systolic function was reduced (ejection fraction < 55%) in 31% of myotonic dystrophies, while only 4% had an ejection fraction < 50%. Apical peak systolic longitudinal strain was slightly reduced (P = 0.023). Conclusions Screening for cardiac involvement in the skeletal muscle disease seems prudent particularly in patients with dystrophic myopathies. In the subset of myotonic dystrophy patients, QRS and QTc times as well as myocardial strain may be useful parameters. Their potential for predicting cardiac adverse events needs further evaluation.
Collapse
Affiliation(s)
- Johannes Schmid
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Division of General Radiology, Department of Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
| | - Meinrad Beer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz, Seilerstaette 4, 4010, Linz, Austria
| | - Stefan Quasthoff
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
| | - Josepha S Binder
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
17
|
Arbustini E, Di Toro A, Giuliani L, Favalli V, Narula N, Grasso M. Cardiac Phenotypes in Hereditary Muscle Disorders: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 72:2485-2506. [PMID: 30442292 DOI: 10.1016/j.jacc.2018.08.2182] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023]
Abstract
Hereditary muscular diseases commonly involve the heart. Cardiac manifestations encompass a spectrum of phenotypes, including both cardiomyopathies and rhythm disorders. Common biomarkers suggesting cardiomuscular diseases include increased circulating creatine kinase and/or lactic acid levels or disease-specific metabolic indicators. Cardiac and extra-cardiac traits, imaging tests, family studies, and genetic testing provide precise diagnoses. Cardiac phenotypes are mainly dilated and hypokinetic in dystrophinopathies, Emery-Dreifuss muscular dystrophies, and limb girdle muscular dystrophies; hypertrophic in Friedreich ataxia, mitochondrial diseases, glycogen storage diseases, and fatty acid oxidation disorders; and restrictive in myofibrillar myopathies. Left ventricular noncompaction is variably associated with the different myopathies. Conduction defects and arrhythmias constitute a major phenotype in myotonic dystrophies and skeletal muscle channelopathies. Although the actual cardiac management is rarely based on the cause, the cardiac phenotypes need precise characterization because they are often the only or the predominant manifestations and the prognostic determinants of many hereditary muscle disorders.
Collapse
Affiliation(s)
- Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy.
| | - Alessandro Di Toro
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Giuliani
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | | | - Nupoor Narula
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy; Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maurizia Grasso
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
18
|
Wahbi K, Furling D. Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med 2019; 30:232-238. [PMID: 31213350 DOI: 10.1016/j.tcm.2019.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Patients with myotonic dystrophy, the most common neuromuscular dystrophy in adults, have a high prevalence of arrhythmic complications with increased cardiovascular mortality and high risk for sudden death. Sudden death prevention is central and relies on annual follow-up and prophylactic permanent pacing in patients with conduction defects on electrocardiogram and/or infrahisian blocks on electrophysiological study. Implantable cardiac defibrillator therapy may be indicated in patients with ventricular tachyarrhythmia.
Collapse
Affiliation(s)
- Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, Centre de Référence de Pathologie Neuromusculaire, Nord Est, Ile de France, Paris-Descartes, Sorbonne Paris Cité University, Cochin Hospital, 27 Rue du Faubourg Saint Jacques, 75679 Paris Cedex 14 Paris, France.
| | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
19
|
Heart involvement in patients with myotonic dystrophy type 2. Acta Neurol Belg 2019; 119:77-82. [PMID: 30536153 DOI: 10.1007/s13760-018-1052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Myotonic dystrophy type 2 (DM2) is a slowly progressive, autosomal-dominant disease. This is a multisystemic disorder that affects the heart, which is one of the main causes of morbidity and mortality in DM2. The aim of the study was to define cardiac impairments in patients with DM2 and its association with sociodemographic and clinical features of patients. This retrospective study comprised 62 adult patients with DM2 hospitalized at the Neurology Clinic, Clinical Center of Serbia from 2013 until 2018, who underwent electrocardiography (ECG) and echocardiography examinations. Hypertension was observed in 42% of DM2 patients. One-fifth of DM2 patients had bradycardia, while other conduction and rhythm impairments were rare. Only one patient had a pacemaker implanted because of the first degree AV block associated with incomplete left bundle branch block. Echocardiography showed diastolic dysfunction of the left ventricle in 44% of patients, while systolic dysfunction was found in only 4%. Cardiomyopathy was observed in 18% of patients, of whom three-fourth had dilated type. Cardiac conduction and rhythm defects are relatively rare in DM2, while diastolic dysfunction is common. This suggests that regular ECG and echocardiography screening is needed in DM2. Adequate therapy should be introduced in patients with DM2 on time to reduce the frequency of heart complications and to prevent premature death.
Collapse
|
20
|
Sulek A, Lusakowska A, Krysa W, Rajkiewicz M, Kaminska A, Nojszewska M, Kostera-Pruszczyk A, Zdzienicka E, Kubalska J, Rakowicz M, Szirkowiec W, Kwiecinski H, Zaremba J. WITHDRAWN: Evidence for a relatively high proportion of DM2 mutations in a large group of Polish patients. Neurol Neurochir Pol 2018:S0028-3843(18)30152-X. [PMID: 29880430 DOI: 10.1016/j.pjnns.2018.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, 10.1016/j.pjnns.2018.02.008. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University, Warsaw, Poland
| | | | | | - Elzbieta Zdzienicka
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
21
|
Wenninger S, Montagnese F, Schoser B. Core Clinical Phenotypes in Myotonic Dystrophies. Front Neurol 2018; 9:303. [PMID: 29770119 PMCID: PMC5941986 DOI: 10.3389/fneur.2018.00303] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) represent the most frequent multisystemic muscular dystrophies in adulthood. They are progressive, autosomal dominant diseases caused by an abnormal expansion of an unstable nucleotide repeat located in the non-coding region of their respective genes DMPK for DM1 and CNBP in DM2. Clinically, these multisystemic disorders are characterized by a high variability of muscular and extramuscular symptoms, often causing a delay in diagnosis. For both subtypes, many symptoms overlap, but some differences allow their clinical distinction. This article highlights the clinical core features of myotonic dystrophies, thus facilitating their early recognition and diagnosis. Particular attention will be given to signs and symptoms of muscular involvement, to issues related to respiratory impairment, and to the multiorgan involvement. This article is part of a Special Issue entitled “Beyond Borders: Myotonic Dystrophies—A European Perception.”
Collapse
Affiliation(s)
- Stephan Wenninger
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| | | | - Benedikt Schoser
- Friedrich-Baur-Institute, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
22
|
Sulek A, Lusakowska A, Krysa W, Rajkiewicz M, Kaminska A, Nojszewska M, Kostera-Pruszczyk A, Zdzienicka E, Kubalska J, Rakowicz M, Szirkowiec W, Kwiecinski H, Zaremba J. Evidence for a relatively high proportion of DM2 mutations in a large group of Polish patients. Neurol Neurochir Pol 2018; 52:736-742. [PMID: 29588063 DOI: 10.1016/j.pjnns.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Myotonic dystrophies (DMs) type 1 (DM1) and type 2 (DM2) are autosomal dominant, multisystem disorders, considered the most common dystrophies in adults. DM1 and DM2 are caused by dynamic mutations in the DMPK and CNBP genes, respectively. METHODS Molecular analyses were performed by PCR and the modified RP-PCR in patients, in their at-risk relatives and prenatal cases. RESULTS The analysis of Polish controls revealed the range of 5-31 CTG repeats for DM1 and 110-228 bp alleles for DM2. Among 318 confirmed probands - 196 (62%) were DM1 and 122 (38%) - DM2. Within DM1families, 10 subjects carried a low expanded CTG tract (< 100 repeats), which resulted in a full mutation in subsequent generations. Two related individuals had unstable alleles-188 bp and 196 bp without common interruptions. CONCLUSION The relative frequencies of DM1/DM2 among Polish patients were 68% and 32%, respectively, with a relatively high proportion of DM2 mutations (1.6:1).
Collapse
Affiliation(s)
- Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Krysa
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Marta Rajkiewicz
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Kaminska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Nojszewska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - Elzbieta Zdzienicka
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jolanta Kubalska
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Hubert Kwiecinski
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Jacek Zaremba
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This article describes clinical and electrical myotonia and provides an update on the classification, diagnosis, and management of myotonic disorders. RECENT FINDINGS In the myotonic dystrophies, antisense oligonucleotides provide a general strategy to correct RNA gain of function and modulate the expression of CTG expanded repeats; they are currently being tested in a phase 1-2 randomized controlled trial in patients with adult-onset myotonic dystrophy type 1. New genetic mutations are continuously being identified in the nondystrophic myotonias involving sodium and chloride channels. This contributes to the difficulty in describing genotype-phenotype correlations as the same mutations can give rise to different phenotypes, and the same phenotypes can arise from different mutations. Pharmacologic therapy is moving toward mutation-targeted treatments. SUMMARY This article describes the clinical and diagnostic characteristics and management of the myotonic dystrophies and the nondystrophic myotonias. Clinical features of the congenital, juvenile, and classic adult forms of myotonic dystrophy type 1 are reviewed, and for the adult form, reference is made to the main diagnostic and follow-up tests for which general consensus exists. The different clinical presentations of myotonic dystrophy type 2 and its main differential diagnostic options are also discussed. The clinical spectrum of the sodium and chloride channelopathies is described, and clinical diagnostic clues to differentiate between these two groups are provided. Therapeutic options for patients with nondystrophic myotonias are also presented with reference to literature review and the author's personal experience.
Collapse
|
24
|
Limpitikul W, Ong CS, Tomaselli GF. Neuromuscular Disease: Cardiac Manifestations and Sudden Death Risk. Card Electrophysiol Clin 2017; 9:731-747. [PMID: 29173414 DOI: 10.1016/j.ccep.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiovascular complications of neuromuscular diseases disproportionately affect the cardiac conduction system. Cardiomyopathy and cardiac arrhythmias produce significant morbidity and mortality. Patients with neuromuscular diseases should be carefully and frequently evaluated for the presence of bradycardia, heart block, and tachyarrhythmias. Preemptive treatment with permanent pacemakers or implanted defibrillators is appropriate in patients with conduction system disease or who are at risk for ventricular arrhythmias.
Collapse
Affiliation(s)
- Worawan Limpitikul
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chin Siang Ong
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon F Tomaselli
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
26
|
Cardiac involvement in myotonic dystrophy: The role of troponins and N-terminal pro B-type natriuretic peptide. Atherosclerosis 2017; 267:110-115. [PMID: 29121498 DOI: 10.1016/j.atherosclerosis.2017.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/19/2017] [Accepted: 10/18/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are dominant inherited muscular dystrophies with multiple systemic involvement, often producing cardiac injury. This study sought to determine the clinical significance of elevated high sensitivity cardiac troponin T and I (hs-cTnT and hs-cTnI), and N-terminal pro B-type natriuretic peptide (NT-pro-BNP) in this population. METHODS Sixty DM patients (35 men and 25 women; mean age: 45.1 years, range: 12-73 years) underwent clinical cardiac investigations and measurements of serum hs-cTnT, hs-cTnI, creatine kinase (CK), and NT-proBNP. Left ventricular (LV) ejection fraction (EF) was assessed by echocardiography. RESULTS Genetic analysis revealed that 46 of the 60 patients were DM1, and 14 DM2. Blood measurements showed persistent elevation of hs-cTnT and CK in 55/60 DM patients (91.73%). In contrast, hs-cTnI values were persistently normal throughout the study. Only 2 patients showed an EF <50%, being the overall range of this population between 40% and 79%. We found ECG abnormalities in 19 patients. Of these patients, 13 showed first or second-degree atrio ventricular (AV) blocks (PR interval ≥ 200 ms), 4 showed a left bundle branch block (LBBB) prolonged (QRS duration ≥120 ms), and 2 had an incomplete bundle branch block (QRS duration between 110 and 119 ms). After excluding patients with EF <50%, NT-pro-BNP measurement > 125 pg/mL was an independent predictor of ECG abnormalities. CONCLUSIONS NT-pro-BNP levels may be considered to be used clinically to identify DM patients at increased risk of developing myocardial conduction abnormalities.
Collapse
|
27
|
Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation 2017; 136:e200-e231. [DOI: 10.1161/cir.0000000000000526] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Schmacht L, Traber J, Grieben U, Utz W, Dieringer MA, Kellman P, Blaszczyk E, von Knobelsdorff-Brenkenhoff F, Spuler S, Schulz-Menger J. Cardiac Involvement in Myotonic Dystrophy Type 2 Patients With Preserved Ejection Fraction: Detection by Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2017; 9:CIRCIMAGING.115.004615. [PMID: 27363857 DOI: 10.1161/circimaging.115.004615] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Myotonic dystrophy type 2 (DM2) is a genetic disorder characterized by skeletal muscle symptoms, metabolic changes, and cardiac involvement. Histopathologic alterations of the skeletal muscle include fibrosis and fatty infiltration. The aim of this study was to investigate whether subclinical cardiac involvement in DM2 is already detectable in preserved left ventricular function by cardiovascular magnetic resonance. METHODS AND RESULTS Twenty-seven patients (mean age, 54±10 years; 20 females) with a genetically confirmed diagnosis of DM2 were compared with 17 healthy age- and sex-matched controls using a 1.5 T magnetic resonance imaging. For myocardial tissue differentiation, T1 and T2 mapping, fat/water-separated imaging, focal fibrosis imaging (late gadolinium enhancement [LGE]), and (1)H magnetic resonance spectroscopy were performed. Extracellular volume fraction was calculated. Conduction abnormalities were diagnosed based on Groh criteria. LGE located subepicardial basal inferolateral was detectable in 22% of the patients. Extracellular volume was increased in this region and in the adjacent medial inferolateral segment (P=0.03 compared with healthy controls). In 21% of patients with DM2, fat deposits were detectable (all women). The control group showed no abnormalities. Myocardial triglycerides were not different in LGE-positive and LGE-negative subjects (P=0.47). Six patients had indicators for conduction disease (60% of LGE-positive patients and 12.5% of LGE-negative patients). CONCLUSIONS In DM2, subclinical myocardial injury was already detectable in preserved left ventricular ejection fraction. Extracellular volume was also increased in regions with no focal fibrosis. Myocardial fibrosis was related to conduction abnormalities.
Collapse
Affiliation(s)
- Luisa Schmacht
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Julius Traber
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Ulrike Grieben
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Wolfgang Utz
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Matthias A Dieringer
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Peter Kellman
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Edyta Blaszczyk
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Florian von Knobelsdorff-Brenkenhoff
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Simone Spuler
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.)
| | - Jeanette Schulz-Menger
- From the Working Group on Cardiovascular Magnetic Resonance, Experimental, and Clinical Research Center, a joint cooperation between the Charité University Medicine Berlin and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Germany (L.S., J.T., W.U., M.A.D., E.B., F.v.K.-B., J.S.-M.); DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (L.S., F.v.K.-B, J.S.-M.); Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany (U.G., S.S.); and Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (P.K.).
| |
Collapse
|
29
|
Chou CC, Chang PC, Wei YC, Lee KY. Optical Mapping Approaches on Muscleblind-Like Compound Knockout Mice for Understanding Mechanistic Insights Into Ventricular Arrhythmias in Myotonic Dystrophy. J Am Heart Assoc 2017; 6:JAHA.116.005191. [PMID: 28416514 PMCID: PMC5533016 DOI: 10.1161/jaha.116.005191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Cardiac arrhythmias are common causes of death in patients with myotonic dystrophy (dystrophia myotonica [DM]). Evidence shows that atrial tachyarrhythmia is an independent risk factor for sudden death; however, the relationship is unclear. Methods and Results Control wild‐type (Mbnl1+/+; Mbnl2+/+) and DM mutant (Mbnl1−/−; Mbnl2+/−) mice were generated by crossing double heterozygous knockout (Mbnl1+/−; Mbnl2+/−) mice. In vivo electrophysiological study and optical mapping technique were performed to investigate mechanisms of ventricular tachyarrhythmias. Transmission electron microscopy scanning was performed for myocardium ultrastructural analysis. DM mutant mice were more vulnerable to anesthesia medications and program electrical pacing: 2 of 12 mice had sudden apnea and cardiac arrest during premedication of general anesthesia; 9 of the remaining 10 had atrial tachycardia and/or atrioventricular block, but none of the wild‐type mice had spontaneous arrhythmias; and 9 of 10 mice had pacing‐induced ventricular tachyarrhythmias, but only 1 of 14 of the wild‐type mice. Optical mapping studies revealed prolonged action potential duration, slower conduction velocity, and steeper conduction velocity restitution curves in the DM mutant mice than in the wild‐type group. Spatially discordant alternans was more easily inducible in DM mutant than wild‐type mice. Transmission electron microscopy showed disarranged myofibrils with enlarged vacuole‐occupying mitochondria in the DM mutant group. Conclusions This DM mutant mouse model presented with clinical myofibril ultrastructural abnormality and cardiac arrhythmias, including atrial tachyarrhythmias, atrioventricular block, and ventricular tachyarrhythmias. Optical mapping studies revealed prolonged action potential duration and slow conduction velocity in the DM mice, leading to vulnerability of spatially discordant alternans and ventricular arrhythmia induction to pacing.
Collapse
Affiliation(s)
- Chung-Chuan Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Cheng Chang
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chia Wei
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
30
|
Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017; 38:535-546. [PMID: 28078562 DOI: 10.1007/s10072-016-2805-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia, and multiorgan involvement. To date, two distinct forms caused by similar mutations in two different genes have been identified: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2). Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of function has been suggested to cause the complex phenotype in DM1 and DM2. However, despite clinical and genetic similarities, DM1 and DM2 may be considered as distinct disorders. This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Piazza E. Malan, 1, San Donato Mil., 20097, Milan, Italy. .,Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
31
|
BIENIAS PIOTR, ŁUSAKOWSKA ANNA, CIURZYŃSKI MICHAŁ, RYMARCZYK ZUZANNA, IRZYK KATARZYNA, KURNICKA KATARZYNA, KAMIŃSKA ANNA, PRUSZCZYK PIOTR. Supraventricular and Ventricular Arrhythmias Are Related to the Type of Myotonic Dystrophy but Not to Disease Duration or Neurological Status. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:959-68. [DOI: 10.1111/pace.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/30/2016] [Accepted: 07/17/2016] [Indexed: 01/16/2023]
Affiliation(s)
- PIOTR BIENIAS
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ANNA ŁUSAKOWSKA
- Department of Neurology; Medical University of Warsaw; Warsaw Poland
| | - MICHAŁ CIURZYŃSKI
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ZUZANNA RYMARCZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - KATARZYNA IRZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - KATARZYNA KURNICKA
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| | - ANNA KAMIŃSKA
- Department of Neurology; Medical University of Warsaw; Warsaw Poland
| | - PIOTR PRUSZCZYK
- Department of Internal Medicine and Cardiology; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
32
|
Shah RV, Semigran MJ. Targeting the Heart for Risk Assessment in Myotonic Dystrophy. Circ Cardiovasc Imaging 2016; 9:CIRCIMAGING.116.005092. [DOI: 10.1161/circimaging.116.005092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ravi V. Shah
- From the Heart Failure and Cardiac Transplant Section, Division of Cardiology, Department of Medicine (R.V.S., M.J.S.) and Cardiac MR, PET, CT Program, Department of Radiology (R.V.S.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marc J. Semigran
- From the Heart Failure and Cardiac Transplant Section, Division of Cardiology, Department of Medicine (R.V.S., M.J.S.) and Cardiac MR, PET, CT Program, Department of Radiology (R.V.S.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
33
|
Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy. Nat Commun 2016; 7:11067. [PMID: 27063795 PMCID: PMC4831019 DOI: 10.1038/ncomms11067] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy. Patients with myotonic dystrophy (MD) suffer from severe cardiac issues of unknown aetiology. Freyermuth et al. show that fatal changes in cardiac electrophysiological properties in humans and mice with MD may arise from misregulation of the alternative splicing of the cardiac Na+ channel SCN5A transcript, resulting in expression of its fetal form.
Collapse
|
34
|
Finsterer J, Stöllberger C, Maeztu C. Sudden cardiac death in neuromuscular disorders. Int J Cardiol 2016; 203:508-15. [DOI: 10.1016/j.ijcard.2015.10.176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/25/2015] [Accepted: 10/24/2015] [Indexed: 12/31/2022]
|
35
|
Valaperta R, Lombardi F, Cardani R, Fossati B, Brigonzi E, Merli I, Sansone V, Merletti G, Spina E, Meola G, Costa E. Development and Validation of a New Molecular Diagnostic Assay for Detection of Myotonic Dystrophy Type 2. Genet Test Mol Biomarkers 2015; 19:703-9. [DOI: 10.1089/gtmb.2015.0135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rea Valaperta
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| | - Fortunata Lombardi
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Elisa Brigonzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Ilaria Merli
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valeria Sansone
- Neurorehabilitation Unit, University of Milan, NEMO Clinical Center (NeuroMuscular Omnicomprehensive), Fondazione Serena, Milan, Italy
| | - Giulia Merletti
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Edoardo Spina
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, IRCCS-Policlinico San Donato, Milan, Italy
| | - Elena Costa
- Research Laboratories—Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
- Service of Laboratory Medicine, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
36
|
Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ. RNA imaging in living cells - methods and applications. RNA Biol 2015; 11:1083-95. [PMID: 25483044 PMCID: PMC4615301 DOI: 10.4161/rna.35506] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Numerous types of transcripts perform multiple functions in cells, and these functions are mainly facilitated by the interactions of the RNA with various proteins and other RNAs. Insight into the dynamics of RNA biosynthesis, processing and cellular activities is highly desirable because this knowledge will deepen our understanding of cell physiology and help explain the mechanisms of RNA-mediated pathologies. In this review, we discuss the live RNA imaging systems that have been developed to date. We highlight information on the design of these systems, briefly discuss their advantages and limitations and provide examples of their numerous applications in various organisms and cell types. We present a detailed examination of one application of RNA imaging systems: this application aims to explain the role of mutant transcripts in human disease pathogenesis caused by triplet repeat expansions. Thus, this review introduces live RNA imaging systems and provides a glimpse into their various applications.
Collapse
Affiliation(s)
- Martyna O Urbanek
- a Department of Molecular Biomedicine; Institute of Bioorganic Chemistry; Polish Academy of Sciences ; Poznan , Poland
| | | | | | | |
Collapse
|
37
|
Meola G, Cardani R. Myotonic Dystrophy Type 2: An Update on Clinical Aspects, Genetic and Pathomolecular Mechanism. J Neuromuscul Dis 2015; 2:S59-S71. [PMID: 27858759 PMCID: PMC5240594 DOI: 10.3233/jnd-150088] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical manifestations and pathophysiology between the two forms of myotonic dystrophies.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
38
|
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is one of the most common lethal monogenic disorders in populations of European descent. DM type 1 was first described over a century ago. More recently, a second form of the disease, DM type 2 was recognized, which results from repeat expansion in a different gene. Both disorders have autosomal dominant inheritance and multisystem features, including myotonic myopathy, cataract, and cardiac conduction disease. This article reviews the clinical presentation and pathophysiology of DM and discusses current management and future potential for developing targeted therapies.
Collapse
Affiliation(s)
- Charles A Thornton
- Department of Neurology, Center for Neural Development and Disease, Center for RNA Biology, University of Rochester Medical Center, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
39
|
Meola G, Cardani R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta Mol Basis Dis 2014; 1852:594-606. [PMID: 24882752 DOI: 10.1016/j.bbadis.2014.05.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. When transcribed into CUG/CCUG-containing RNA, mutant transcripts aggregate as nuclear foci that sequester RNA-binding proteins, resulting in spliceopathy of downstream effector genes. However, it is now clear that additional pathogenic mechanism like changes in gene expression, protein translation and micro-RNA metabolism may also contribute to disease pathology. Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, San Donato Milanese, Milan, Italy; Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy.
| |
Collapse
|
40
|
Lund M, Diaz LJ, Ranthe MF, Petri H, Duno M, Juncker I, Eiberg H, Vissing J, Bundgaard H, Wohlfahrt J, Melbye M. Cardiac involvement in myotonic dystrophy: a nationwide cohort study. Eur Heart J 2014; 35:2158-64. [DOI: 10.1093/eurheartj/ehu157] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Epicardial ablation cures electrical storm caused by cardiac involvement in myotonic dystrophia type 2. Clin Res Cardiol 2013; 103:315-7. [DOI: 10.1007/s00392-013-0645-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022]
|
42
|
Sansone V, Brigonzi E, Schoser B, Villani S, Gaeta M, De Ambroggi G, Bandera F, De Ambroggi L, Meola G. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): Long-term outcomes. Int J Cardiol 2013; 168:1147-53. [DOI: 10.1016/j.ijcard.2012.11.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/11/2012] [Indexed: 11/29/2022]
|
43
|
Gawel M, Szmidt-Salkowska E, Lusakowska A, Nojszewska M, Sulek A, Krysa W, Rajkiewicz M, Seroka A, Kaminska AM. Value of short exercise and short exercise with cooling tests in the diagnosis of myotonic dystrophies (DM1 AND DM2). Muscle Nerve 2013; 49:277-83. [DOI: 10.1002/mus.23908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Malgorzata Gawel
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | | | - Anna Lusakowska
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Monika Nojszewska
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Anna Sulek
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Wioletta Krysa
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Marta Rajkiewicz
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| | - Andrzej Seroka
- Department of Neurology; Medical University of Warsaw; Banacha 1A Warsaw 02-097 Poland
| | - Anna M. Kaminska
- Department of Genetics; Institute of Psychiatry and Neurology; Warsaw Poland
| |
Collapse
|
44
|
Cardiomyopathy in neurological disorders. Cardiovasc Pathol 2013; 22:389-400. [PMID: 23433859 DOI: 10.1016/j.carpath.2012.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/26/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022] Open
Abstract
According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.
Collapse
|
45
|
Abstract
Heart rate variability (HRV) provides indirect insight into autonomic nervous system tone, and has a well-established role as a marker of cardiovascular risk. Recent decades brought an increasing interest in HRV assessment as a diagnostic tool in detection of autonomic impairment, and prediction of prognosis in several neurological disorders. Both bedside analysis of simple markers of HRV, as well as more sophisticated HRV analyses including time, frequency domain and nonlinear analysis have been proven to detect early autonomic involvement in several neurological disorders. Furthermore, altered HRV parameters were shown to be related with cardiovascular risk, including sudden cardiac risk, in patients with neurological diseases. This chapter aims to review clinical and prognostic application of HRV analysis in diabetes, stroke, multiple sclerosis, muscular dystrophies, Parkinson's disease and epilepsy.
Collapse
Affiliation(s)
- Iwona Cygankiewicz
- Department of Electrocardiology, Medical University of Lodz, Lodz, Poland.
| | | |
Collapse
|
46
|
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012; 11:891-905. [DOI: 10.1016/s1474-4422(12)70204-1] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Lee TM, Maurer MS, Karbassi I, Braastad C, Batish SD, Chung WK. Severe dilated cardiomyopathy in a patient with myotonic dystrophy type 2 and homozygous repeat expansion in ZNF9. ACTA ACUST UNITED AC 2011; 18:183-6. [PMID: 22587749 DOI: 10.1111/j.1751-7133.2011.00265.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Teresa M Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
48
|
Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet 2011; 20:3811-21. [PMID: 21729883 PMCID: PMC3168290 DOI: 10.1093/hmg/ddr299] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Discrete and punctate nuclear RNA foci are characteristic molecular hallmarks of pathogenesis in myotonic dystrophy type 1 and type 2. Intranuclear RNA inclusions of distinct morphology have also been found in fragile X-associated tremor ataxia syndrome, Huntington's disease-like 2, spinocerebellar ataxias type 8, type 10 and type 31. These neurological diseases are associated with the presence of abnormally long simple repeat expansions in their respective genes whose expression leads to the formation of flawed transcripts with altered metabolisms. Expanded CUG, CCUG, CGG, CAG, AUUCU and UGGAA repeats are associated with the diseases and accumulate in nuclear foci, as demonstrated in variety of cells and tissues of human and model organisms. These repeat RNA foci differ in size, shape, cellular abundance and protein composition and their formation has a negative impact on cellular functions. This review summarizes the efforts of many laboratories over the past 15 years to characterize nuclear RNA foci that are recognized as important triggers in the mutant repeat RNA toxic gain-of-function mechanisms of pathogenesis in neurological disorders.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
49
|
Suominen T, Bachinski LL, Auvinen S, Hackman P, Baggerly KA, Angelini C, Peltonen L, Krahe R, Udd B. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet 2011; 19:776-82. [PMID: 21364698 PMCID: PMC3137497 DOI: 10.1038/ejhg.2011.23] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy (DM) is the most common adult-onset muscular dystrophy with an estimated prevalence of 1/8000. There are two genetically distinct types, DM1 and DM2. DM2 is generally milder with more phenotypic variability than the classic DM1. Our previous data on co-segregation of heterozygous recessive CLCN1 mutations in DM2 patients indicated a higher than expected DM2 prevalence. The aim of this study was to determine the DM2 and DM1 frequency in the general population, and to explore whether the DM2 mutation functions as a modifier in other neuromuscular diseases (NMD) to account for unexplained phenotypic variability. We genotyped 5535 Finnish individuals: 4532 normal blood donors, 606 patients with various non-myotonic NMD, 221 tibial muscular dystrophy patients and their 176 healthy relatives for the DM2 and DM1 mutations. We also genotyped an Italian idiopathic non-myotonic proximal myopathy cohort (n = 93) for the DM2 mutation. In 5496 samples analyzed for DM2, we found three DM2 mutations and two premutations. In 5511 samples analyzed for DM1, we found two DM1 mutations and two premutations. In the Italian cohort, we identified one patient with a DM2 mutation. We conclude that the DM2 mutation frequency is significantly higher in the general population (1/1830; P-value = 0.0326) than previously estimated. The identification of DM2 mutations in NMD patients with clinical phenotypes not previously associated with DM2 is of particular interest and is in accord with the high overall prevalence. On the basis of our results, DM2 appears more frequent than DM1, with most DM2 patients currently undiagnosed with symptoms frequently occurring in the elderly population.
Collapse
Affiliation(s)
- Tiina Suominen
- Neuromuscular Research Unit, Medical School, University of Tampere, Tampere, Finland
| | - Linda L Bachinski
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Satu Auvinen
- Department of Neurology, Central Hospital of Jyväskylä, Jyväskylä, Finland
| | - Peter Hackman
- Department of Medical Genetics, Haartman Institute, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Keith A Baggerly
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Human and Molecular Genetics, University of Texas at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Corrado Angelini
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Leena Peltonen
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Human and Molecular Genetics, University of Texas at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Genes and Development, University of Texas at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bjarne Udd
- Neuromuscular Research Unit, Medical School, University of Tampere, Tampere, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Neurology, Tampere University Hospital, Tampere, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
50
|
Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B, Dembele D, Gourdon G, Nicole A, Duboc D, Wahbi K, Day JW, Fujimura H, Takahashi MP, Auboeuf D, Dreumont N, Furling D, Charlet-Berguerand N. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 2011; 18:840-5. [PMID: 21685920 DOI: 10.1038/nsmb.2067] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 04/07/2011] [Indexed: 12/23/2022]
Abstract
Myotonic dystrophy is an RNA gain-of-function disease caused by expanded CUG or CCUG repeats, which sequester the RNA binding protein MBNL1. Here we describe a newly discovered function for MBNL1 as a regulator of pre-miR-1 biogenesis and find that miR-1 processing is altered in heart samples from people with myotonic dystrophy. MBNL1 binds to a UGC motif located within the loop of pre-miR-1 and competes for the binding of LIN28, which promotes pre-miR-1 uridylation by ZCCHC11 (TUT4) and blocks Dicer processing. As a consequence of miR-1 loss, expression of GJA1 (connexin 43) and CACNA1C (Cav1.2), which are targets of miR-1, is increased in both DM1- and DM2-affected hearts. CACNA1C and GJA1 encode the main calcium- and gap-junction channels in heart, respectively, and we propose that their misregulation may contribute to the cardiac dysfunctions observed in affected persons.
Collapse
Affiliation(s)
- Frédérique Rau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|