1
|
Singh T, Mehra A, Batabyal T, Joshi S, Kapur J. Thrombin mediates seizures following cortical injury-induced status epilepticus. Epilepsy Res 2025; 213:107549. [PMID: 40188738 PMCID: PMC12049253 DOI: 10.1016/j.eplepsyres.2025.107549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 05/06/2025]
Abstract
The neurobiological mechanisms underlying acute seizures, status epilepticus (SE), and cerebral edema following cortical insult are unknown. Currently, benzodiazepines are first-line therapy for SE, and mechanistic insight could lead to improved treatment for cortical-injury-related seizures. Cobalt was implanted in the supplementary motor cortex (M2). Homocysteine was administered sixteen hours later, which converted focal seizures to SE. Seizures were monitored by video-EEG. Blood-brain barrier (BBB) damage was assessed using Evans blue staining and Western blotting. Cerebral edema was evaluated using MRI and a wet-dry method of measuring brain water content. We also assessed if diazepam and thrombin inhibitor α-naphthylsulphonylglycyl-4-amidinophenylalanine piperidine (α-NAPAP) administered individually or together treated seizures and protected animals from edema and mortality. Blood proteins thrombin and albumin were present in the brain parenchyma, primarily in the ipsilateral hemisphere, of animals in SE. Evans blue staining revealed a wider spread of albumin in post-SE animals compared to those in early SE. The seizures rapidly became diazepam-resistant, and the drug did not reduce death due to cerebral edema. Thrombin inhibitor α-NAPAP reduced cerebral edema and prevented seizures. A combination of diazepam and α-NAPAP treatment suppressed seizures, lowered edema, and improved survival. Thrombin extravasation triggers seizures and edema following neocortical injury, and it is a therapeutic target. A combination of benzodiazepines and anti-thrombin agents could terminate SE and reduce mortality.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Arnav Mehra
- College of Arts and Sciences University of Virginia, Charlottesville, USA
| | - Tamal Batabyal
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Carneiro T, Goswami S, Smith CN, Giraldez MB, Maciel CB. Prolonged Monitoring of Brain Electrical Activity in the Intensive Care Unit. Neurol Clin 2025; 43:31-50. [PMID: 39547740 DOI: 10.1016/j.ncl.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Electroencephalography (EEG) has been used to assess brain electrical activity for over a century. More recently, technological advancements allowed EEG to be a widely available and powerful tool in the intensive care unit (ICU), where patients at risk for cerebral dysfunction and brain injury can be monitored in a continuous, real-time manner. In the last 2 decades, several organizations established guidelines for continuous EEG monitoring in the ICU, defining critical care EEG terminology and technical standards for technicians, machines, and electroencephalographers. This article provides an overview of the current role of continuous EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Thiago Carneiro
- Department of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA; Department of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-189, Gainesville, FL 32611, USA
| | - Shweta Goswami
- Cerebrovascular Center, Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue/Desk S80-806, Cleveland, OH 44195, USA
| | - Christine Nicole Smith
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA; Department of Neurology, Malcom Randall Veterans Affairs Medical Center, 1601 Southwest Archer Road, Gainesville, FL 32608, USA
| | - Maria Bruzzone Giraldez
- Department of Neurology, University of Florida, 1149 Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Carolina B Maciel
- Departments of Neurology, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA; Departments of Neurosurgery, McKnight Brain Institute, University of Florida, 1149 Newell Drive, L3-120, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Frontera JA, Rayi A, Tesoro E, Gilmore EJ, Johnson EL, Olson D, Ullman JS, Yuan Y, Zafar S, Rowe S. Guidelines for Seizure Prophylaxis in Patients Hospitalized with Nontraumatic Intracerebral Hemorrhage: A Clinical Practice Guideline for Health Care Professionals from the Neurocritical Care Society. Neurocrit Care 2025; 42:1-21. [PMID: 39707127 DOI: 10.1007/s12028-024-02183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND There is practice heterogeneity in the use, type, and duration of prophylactic antiseizure medications (ASM) in patients hospitalized with acute nontraumatic intracerebral hemorrhage (ICH). METHODS We conducted a systematic review and meta-analysis assessing ASM primary prophylaxis in adults hospitalized with acute nontraumatic ICH. The following population, intervention, comparison, and outcome (PICO) questions were assessed: (1) Should ASM versus no ASM be used in patients with acute ICH with no history of clinical or electrographic seizures? (2) If an ASM is used, should levetiracetam (LEV) or phenytoin/fosphenytoin (PHT/fPHT) be preferentially used? and (3) If an ASM is used, should a long (> 7 days) versus short (≤ 7 days) duration of prophylaxis be used? The main outcomes assessed were early seizure (≤ 14 days), late seizures (> 14 days), adverse events, mortality, and functional and cognitive outcomes. We used Grading of Recommendations Assessment, Development, and Evaluation methodology to generate recommendations. RESULTS The initial literature search yielded 1,988 articles, and 15 formed the basis of the recommendations. PICO 1: although there was no significant impact of ASM on the outcomes of early or late seizure or mortality, meta-analyses demonstrated increased adverse events and higher relative risk of poor functional outcomes at 90 days with prophylactic ASM use. PICO 2: we did not detect any significant positive or negative effect of PHT/fPHT compared to LEV for early seizures or adverse events, although point estimates tended to favor LEV. PICO 3: based on one decision analysis, quality-adjusted life-years were increased with a shorter duration of ASM prophylaxis. CONCLUSIONS We suggest avoidance of prophylactic ASM in hospitalized adult patients with acute nontraumatic ICH (weak recommendation, very low quality of evidence). If used, we suggest LEV over PHT/fPHT (weak recommendation, very low quality of evidence) for a short duration (≤ 7 days; weak recommendation, very low quality of evidence).
Collapse
Affiliation(s)
- Jennifer A Frontera
- Department of Neurology, New York University Grossman School of Medicine, 150 55th St., Brooklyn, New York, NY, 11220, USA.
| | - Appaji Rayi
- Department of Neurology, Charleston Area Medical Center, Charleston, WV, USA
| | - Eljim Tesoro
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - DaiWai Olson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie S Ullman
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY, USA
| | - Yuhong Yuan
- Division of Gastroenterology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sahar Zafar
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shaun Rowe
- Department of Clinical Pharmacology, University of Tennessee Health Science Center College of Pharmacy, Knoxville, TN, USA
| |
Collapse
|
4
|
Sheikh ZB, Dhakar MB, Fong MWK, Fang W, Ayub N, Molino J, Haider HA, Foreman B, Gilmore E, Mizrahi M, Karakis I, Schmitt SE, Osman G, Yoo JY, Hirsch LJ. Accuracy of a Rapid-Response EEG's Automated Seizure-Burden Estimator: AccuRASE Study. Neurology 2025; 104:e210234. [PMID: 39724534 DOI: 10.1212/wnl.0000000000210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/30/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The use of rapid response EEG (rr-EEG) has recently expanded in limited-resource settings and as a supplement to conventional EEG to rapidly detect and treat nonconvulsive status epilepticus. The study objective was to test the accuracy of an rr-EEG's automated seizure burden estimator (ASBE). METHODS This is a retrospective observational study using multiple blinded reviewers. All consecutive clinical rr-EEG procedures performed between November 2019 and February 2021 at Yale New Haven Hospital, one affiliated community hospital, and one affiliated inner-city regional hospital were included. Three reviewers blindly reviewed each EEG. The reference standard was 2/3 agreement. The co-primary outcome measures were the negative predictive value (NPV) of the ASBE for the detection of electrographic status epilepticus (ESE) or possible ESE (ESE/pESE) (to be used as a screening method to exclude ESE without the need for urgent expert review) and the positive predictive value (PPV, to be used for immediate treatment without requiring urgent expert review). These were assessed using a variety of seizure burden cutoffs determined by the algorithm (>1%, >10%, >20%, >50%, and >90%). RESULTS In the first 2 hours, a >10% burden cutoff detected 86% (95% CI 42%-100%) of studies with ESE alone and 88% (68%-97%) with ESE/pESE; this >10% cutoff had a NPV of 99% (97%-100%) for ESE and 98% (95%-100%) for ESE/pESE. The specificity at this threshold was 79% (73%-84%) for ESE and 84% (79%-89%) for ESE/pESE, but the PPV was low at 11% (4%-23%) for ESE and 39% (26%-53%) for ESE/pESE. A >90% burden cutoff was 97% (94%-99%) specific for detecting ESE (PPV 33% [7%-70%]) and 99% (97%-100%) specific for detecting ESE/pESE [PPV 78% (40%-97%)], although the sensitivity dropped significantly to 29% (13%-51%) for ESE/pESE and 43% (10%-82%) for ESE at the >90% threshold. DISCUSSION The ASBE has high specificity at >90% seizure burden threshold for detecting ESE and ESE/pESE, with good PPV for ESE/pESE, though with only low-to-moderate sensitivity; at this threshold, it can be used to help triage patients for immediate treatment/transfer, urgent expert review, and additional CEEG. A >10% threshold has a high sensitivity, detecting approximately 85% of patients with ESE; at this lower cutoff, it can be used as a screening tool to exclude ESE with >95% NPV. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that ASBE software can reliably exclude ESE (98% negative predictive value using a <10% burden cutoff) without expert review in most patients requiring rapid response EEG.
Collapse
Affiliation(s)
| | | | | | - Wei Fang
- West Virginia Clinical and Translational Science Institute, Morgantown
| | | | | | | | - Brandon Foreman
- Neurology and Rehab Medicine, Neurosurgery, University of Cincinnati, OH
| | | | | | | | | | | | - Ji Yeoun Yoo
- Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
5
|
Akras Z, Jing J, Westover MB, Zafar SF. Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury. Neurotherapeutics 2025; 22:e00524. [PMID: 39855915 PMCID: PMC11840355 DOI: 10.1016/j.neurot.2025.e00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Electroencephalography (EEG) is invaluable in the management of acute neurological emergencies. Characteristic EEG changes have been identified in diverse neurologic conditions including stroke, trauma, and anoxia, and the increased utilization of continuous EEG (cEEG) has identified potentially harmful activity even in patients without overt clinical signs or neurologic diagnoses. Manual annotation by expert neurophysiologists is a major resource limitation in investigating the prognostic and therapeutic implications of these EEG patterns and in expanding EEG use to a broader set of patients who are likely to benefit. Artificial intelligence (AI) has already demonstrated clinical success in guiding cEEG allocation for patients at risk for seizures, and its potential uses in neurocritical care are expanding alongside improvements in AI itself. We review both current clinical uses of AI for EEG-guided management as well as ongoing research directions in automated seizure and ischemia detection, neurologic prognostication, and guidance of medical and surgical treatment.
Collapse
Affiliation(s)
| | - Jin Jing
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston MA, USA
| | - M Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston MA, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston MA, USA.
| |
Collapse
|
6
|
Keenan JS, Harrar DB, Har C, Conley C, Staso K, Sansevere AJ. Electrographic Seizures and Predictors of Epilepsy after Pediatric Arteriovenous Malformation Rupture. J Pediatr 2025; 276:114325. [PMID: 39343131 DOI: 10.1016/j.jpeds.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To assess clinical and electroencephalogram (EEG) predictors of epilepsy and to describe the percentage of electrographic seizures and development of epilepsy among patients with spontaneous intracerebral hemorrhage (ICH) due to arteriovenous malformation (AVM) rupture. STUDY DESIGN Retrospective review of patients admitted to the pediatric intensive care unit with ICH secondary to AVM rupture over 11 years. Clinical variables were collected by review of the electronic medical record. Seizures were described as acute symptomatic (7 days after AVM rupture), subacute (7-30 days after AVM rupture) and remote (greater than 30 days after AVM rupture). Outcome metrics included mortality, and the development of epilepsy post discharge. Descriptive statistics were used. RESULTS Forty-three patients met inclusion criteria with a median age of 12.2 years (IQR 7.3-14.8) and 49% (21/43) were female. Sixteen percent (7/43) presented with a clinical seizure prior to EEG placement. EEG was performed in 62% (27/43) of patients; one had electrographic status epilepticus without clinical signs. Sixteen percent (7/43) of patients were diagnosed with epilepsy, with a median time to diagnosis of 1.34 years (IQR 0.55-2.07) after AVM rupture. One-year epilepsy-free survival was 84% (95% CI 70%-98%) and 2-year epilepsy-free survival was 79% (95% CI 63%-95%) Remote seizures were associated with epilepsy (P < .001), but acute symptomatic seizures were not (P = .16). CONCLUSIONS EEG-confirmed seizures are uncommon in patients with ICH secondary to AVM rupture; however, when identified, the seizure burden appears to be high. Patients with seizures 30 days after AVM rupture are more likely to develop epilepsy.
Collapse
Affiliation(s)
- Julia S Keenan
- Division of Epilepsy and Neurophysiology, Children's National Hospital, Washington, DC; Department of Neurology, Children's National Hospital, Washington, DC
| | - Dana B Harrar
- Division of Epilepsy and Neurophysiology, Children's National Hospital, Washington, DC; Department of Neurology, Children's National Hospital, Washington, DC; Department of Neurology and Pediatrics, George Washington University, Washington, DC
| | - Claire Har
- Division of Epilepsy and Neurophysiology, Children's National Hospital, Washington, DC; Department of Neurology, Children's National Hospital, Washington, DC
| | - Caroline Conley
- Department of Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Katelyn Staso
- Department of Critical Care Medicine, Children's National Hospital, Washington, DC
| | - Arnold J Sansevere
- Division of Epilepsy and Neurophysiology, Children's National Hospital, Washington, DC; Department of Neurology, Children's National Hospital, Washington, DC; Department of Neurology and Pediatrics, George Washington University, Washington, DC.
| |
Collapse
|
7
|
Gupta S, Ritzl EK, Husari KS. Lateralized Rhythmic Delta Activity and Lateralized Periodic Discharges in Critically Ill Pediatric Patients. J Clin Neurophysiol 2025; 42:44-50. [PMID: 38194635 DOI: 10.1097/wnp.0000000000001064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
PURPOSE To evaluate the clinical and electrographic characteristics of critically ill pediatric patients with lateralized rhythmic delta activity (LRDA) and compare them with patients with lateralized periodic discharges (LPDs). METHODS This was a retrospective study examining consecutive critically ill pediatric patients (1 month-18 years) with LRDA or LPDs monitored on continuous electroencephalography. Clinical, radiologic, and electrographic characteristics; disease severity; and acute sequelae were compared between the two groups. RESULTS Of 668 pediatric patients monitored on continuous electroencephalography during the study period, 12 (1.79%) patients had LRDA and 15 (2.24%) had LPDs. The underlying etiologies were heterogeneous with no difference in the acuity of brain MRI changes between both groups. Lateralized rhythmic delta activity and LPDs were concordant with the side of MRI abnormality in most patients [85.7% (LRDA) and 83.3% (LPD)]. There was no difference in the measures of disease severity between both groups. Seizures were frequent in both groups (42% in the LRDA group and 73% in the LPD group). Patients in the LPD group had a trend toward requiring a greater number of antiseizure medications for seizure control (median of 4 vs. 2 in the LRDA group, p = 0.09), particularly those patients with LPDs qualifying as ictal-interictal continuum compared with those without ictal-interictal continuum ( p = 0.02). CONCLUSIONS Lateralized rhythmic delta activity and LPDs are uncommon EEG findings in the pediatric population. Seizures occur commonly in patients with these patterns. Seizures in patients with LPDs, especially those qualifying as ictal-interictal continuum, showed a trend toward being more refractory. Larger studies are needed in the future to further evaluate these findings.
Collapse
Affiliation(s)
- Siddharth Gupta
- Comprehensive Epilepsy Center, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | | | | |
Collapse
|
8
|
Biyani S, Chang H, Shah VA. Neurologic prognostication in coma and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:237-264. [PMID: 39986724 DOI: 10.1016/b978-0-443-13408-1.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Coma and disorders of consciousness (DoC) are clinical syndromes primarily resulting from severe acute brain injury, with uncertain recovery trajectories that often necessitate prolonged supportive care. This imposes significant socioeconomic burdens on patients, caregivers, and society. Predicting recovery in comatose patients is a critical aspect of neurocritical care, and while current prognostication heavily relies on clinical assessments, such as pupillary responses and motor movements, which are far from precise, contemporary prognostication has integrated more advanced technologies like neuroimaging and electroencephalogram (EEG). Nonetheless, neurologic prognostication remains fraught with uncertainty and significant inaccuracies and is impacted by several forms of prognostication biases, including self-fulfilling prophecy bias, affective forecasting, and clinician treatment biases, among others. However, neurologic prognostication in patients with disorders of consciousness impacts life-altering decisions including continuation of treatment interventions vs withdrawal of life-sustaining therapies (WLST), which have a direct influence on survival and recovery after severe acute brain injury. In recent years, advancements in neuro-monitoring technologies, artificial intelligence (AI), and machine learning (ML) have transformed the field of prognostication. These technologies have the potential to process vast amounts of clinical data and identify reliable prognostic markers, enhancing prediction accuracy in conditions such as cardiac arrest, intracerebral hemorrhage, and traumatic brain injury (TBI). For example, AI/ML modeling has led to the identification of new states of consciousness such as covert consciousness and cognitive motor dissociation, which may have important prognostic significance after severe brain injury. This chapter reviews the evolving landscape of neurologic prognostication in coma and DoC, highlights current pitfalls and biases, and summarizes the integration of clinical examination, neuroimaging, biomarkers, and neurophysiologic tools for prognostication in specific disease states. We will further discuss the future of neurologic prognostication, focusing on the integration of AI and ML techniques to deliver more individualized and accurate prognostication, ultimately improving patient outcomes and decision-making process in neurocritical care.
Collapse
Affiliation(s)
- Shubham Biyani
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Henry Chang
- Department of Neurology, TriHealth Hospital, Cincinnati, OH, United States
| | - Vishank A Shah
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Mangiardi M, Pezzella FR, Cruciani A, Alessiani M, Anticoli S. Long-Term Safety and Efficacy of Lacosamide Combined with NOACs in Post-Stroke Epilepsy and Atrial Fibrillation: A Prospective Longitudinal Study. J Pers Med 2024; 14:1125. [PMID: 39728038 DOI: 10.3390/jpm14121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background and Aims: Stroke is the leading cause of seizures and epilepsy in adults; however, current guidelines lack robust recommendations for treating post-stroke seizures (PSSs) and epilepsy (PSE). This study aims to demonstrate the long-term safety and efficacy of lacosamide combined with non-vitamin K antagonist oral anticoagulants (NOACs) in patients with PSE and atrial fibrillation (AF). Methods: In this prospective longitudinal single-center study, 53 patients with concomitant PSE and AF, admitted between 2022 and 2023, received NOACs for AF management and lacosamide for seizure control. A control group of 53 patients with cardioembolic stroke, receiving NOACs (but without PSE), was matched by age, sex, and NIHSS scores to ensure comparability. Results: Over 24 months, 16 patients in the study group and 15 in the control group experienced new embolic events, with no significant difference between groups (p = 0.82). Seizure control improved significantly in the study group, with reduced frequency and severity. No severe adverse events from lacosamide were observed. Conclusions: The combination of NOACs and lacosamide is a safe and effective treatment for patients with AF and PSE and does not increase the risk of recurrent ischemic or hemorrhagic events. Further studies with larger sample sizes and longer follow-ups are needed to confirm these findings and optimize treatment protocols.
Collapse
Affiliation(s)
- Marilena Mangiardi
- Department of Stroke Unit, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| | | | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy
| | | | - Sabrina Anticoli
- Department of Stroke Unit, San Camillo-Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
10
|
Nonaka M, Neshige S, Ono N, Yamada H, Takebayashi Y, Ishibashi H, Aoki S, Yamazaki Y, Shishido T, Agari D, Ochi K, Iida K, Maruyama H. Clinical manifestations and outcomes associated with a high 2HELPS2B score in patients with acute impaired consciousness. J Neurol Sci 2024; 465:123174. [PMID: 39241543 DOI: 10.1016/j.jns.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE The 2HELPS2B score is an invaluable tool for assessing seizure risk in critically ill patients with unconsciousness. However, this can be challenging for non-epileptologists to use owing to its reliance on electroencephalogram (EEG) analysis. Thus, identifying clinical manifestations associated with high 2HELPS2B scores is crucial. METHODS We examined patients who underwent EEG for acute impaired consciousness in the emergency department between 2020 and 2022. We evaluated the clinical manifestations immediately prior to the EEG tests and identified those associated with a 2HELPS2B score ≥ 2. Additionally, we investigated clinical outcomes in accordance with these manifestations and the 2HELPS2B score. RESULTS A total of 78 patients were included in this study. While the median 2HELPS2B score was 1 (range: 0-6), 13 patients (16.6%) showed electrographic/electroclinical seizures or status epilepticus and 16 patients (20.5%) showed ictal-interictal continuum in their EEGs. Abnormal muscle tonus (p = 0.034) and eye deviation (p = 0.021) were Significantly associated with a 2HELPS2B score ≥ 2. The presence of these manifestations (p < 0.001) and a 2HELPS2B score ≥ 2 (p < 0.001) were both significantly associated with a favorable response to anti-seizure medication. Conversely, patients with a 2HELPS2B score ≥ 2 who exhibited these clinical manifestations were more likely to be non-dischargeable (p = 0.053), have prolonged intensive care unit stays (p = 0.002), or require extended ventilator use (p = 0.082). CONCLUSION Abnormal muscle tonus and eye deviation were significant manifestations compatible with a 2HELPS2B score ≥ 2 and may indicate an increased risk of seizures or the severity of the epileptic condition.
Collapse
Affiliation(s)
- Megumi Nonaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan; Epilepsy Center, Hiroshima University Hospital, Japan.
| | - Narumi Ono
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Hidetada Yamada
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Yoshiko Takebayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Haruka Ishibashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan
| | - Takeo Shishido
- Department of Neurology, Hiroshima City North Medical Center Asa Citizens Hospital, Japan
| | - Dai Agari
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Kazuhide Ochi
- Department of Neurology, Hiroshima Prefectural Hospital, Japan
| | - Koji Iida
- Epilepsy Center, Hiroshima University Hospital, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Japan; Epilepsy Center, Hiroshima University Hospital, Japan
| |
Collapse
|
11
|
Lekoubou A, Cohrs A, Dejuk M, Hong J, Sen S, Bonilha L, Chinchilli VM. Acute seizures after spontaneous intracerebral hemorrhage in young individuals: 11-year trends and association with mortality. Epilepsy Res 2024; 205:107408. [PMID: 39002389 DOI: 10.1016/j.eplepsyres.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The rate of spontaneous Intracerebral Hemorrhage (sICH) is rising among young Americans. Trends in acute seizure (AS) incidence in this age group is largely unknown. Further, the association of AS with mortality has not been reported in this age group. The aim of this study is to determine trends in AS among young individuals with sICH. METHODS The Merative MarketScan® Commercial Claims and Encounters database, for the years 2005 through 2015, served as the data source for this retrospective in-hospital population study. This period was chosen as spontaneous ICH incidence increased among young individuals between 2005 and 2015. Our study population included patients aged 18-64 years with ICH identified using the International Classification of Diseases, Ninth and Tenth Revision (ICD-9/10) codes 430, 431, 432.0, 432.1, 432.9, I61, I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, and I61.9, excluding those with a prior diagnosis of seizures (ICD-9/10 codes 345.x,780.3x, G40, G41, and R56.8). We computed yearly AS incidence, mortality (in patients with and without seizures), and analyzed trends. We applied a logistic regression model to determine the independent association of AS with mortality accounting for demographic and clinical variables. RESULTS AS incidence increased linearly between 2005 (incidence rate: 8.1 %) and 2015 (incidence rate: 11.0 %), which represents a 26 % relative increase (P for trends <0.0001). In-hospital mortality rate was 14.3 % among those who developed AS and 11.5 % among those who did not have AS. Overall, between 2005 and 2015, in-hospital mortality decreased from 13.0 % to 9.7 % among patients without AS but remained unchanged among those with AS. Patients who developed AS were 10 % more likely to die than those who did not (OR: 1.10, 95 % confidence interval: 1.02-1.18). CONCLUSIONS Between 2005 and 2015, the incidence of AS increased by nearly 26 % among young Americans with sICH. In-patient mortality remained unchanged among those who developed seizures but declined among those who did not. The occurrence of AS was independently associated with a 10 % higher risk of in-hospital death.
Collapse
Affiliation(s)
- Alain Lekoubou
- Department of Neurology, Milton S. Hershey Medical Center, Pennsylvania State University, USA; Department of Public Health Sciences, Pennsylvania State University, USA.
| | - Austin Cohrs
- Department of Public Health Sciences, Pennsylvania State University, USA.
| | - Mariana Dejuk
- College of Medicine, Penn State University, Hershey, PA, USA.
| | - Jinpyo Hong
- College of Medicine, Penn State University, Hershey, PA, USA.
| | - Souvik Sen
- University of South Carolina, Department of Neurology, USA.
| | | | | |
Collapse
|
12
|
Yeager CE, Garg RK. Advances and Future Trends in the Diagnosis and Management of Intracerebral Hemorrhage. Neurol Clin 2024; 42:689-703. [PMID: 38937036 DOI: 10.1016/j.ncl.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Spontaneous intracerebral hemorrhage accounts for approximately 10% to 15% of all strokes in the United States and remains one of the deadliest. Of concern is the increasing prevalence, especially in younger populations. This article reviews the following: epidemiology, risk factors, outcomes, imaging findings, medical management, and updates to surgical management.
Collapse
Affiliation(s)
- Christine E Yeager
- Division of Critical Care Neurology, Rush University Medical Center, 1725 W Harrison Street, Suite 1106, Chicago, IL, USA.
| | - Rajeev K Garg
- Division of Critical Care Neurology, Section of Cognitive Neurosciences, Rush University Medical Center, 1725 W Harrison Street, Suite 1106, Chicago, IL, USA
| |
Collapse
|
13
|
Jun HS, Yang K, Kim J, Jeon JP, Kim SJ, Ahn JH, Lee SJ, Choi HJ, Chang IB, Park JJ, Rhim JK, Jin SC, Cho SM, Joo SP, Sheen SH, Lee SH. Telemedicine Protocols for the Management of Patients with Acute Spontaneous Intracerebral Hemorrhage in Rural and Medically Underserved Areas in Gangwon State : Recommendations for Doctors with Less Expertise at Local Emergency Rooms. J Korean Neurosurg Soc 2024; 67:385-396. [PMID: 37901932 PMCID: PMC11220410 DOI: 10.3340/jkns.2023.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
Previously, we reported the concept of a cloud-based telemedicine platform for patients with intracerebral hemorrhage (ICH) at local emergency rooms in rural and medically underserved areas in Gangwon state by combining artificial intelligence and remote consultation with a neurosurgeon. Developing a telemedicine ICH treatment protocol exclusively for doctors with less ICH expertise working in emergency rooms should be part of establishing this system. Difficulties arise in providing appropriate early treatment for ICH in rural and underserved areas before the patient is transferred to a nearby hub hospital with stroke specialists. This has been an unmet medical need for decade. The available reporting ICH guidelines are realistically possible in university hospitals with a well-equipped infrastructure. However, it is very difficult for doctors inexperienced with ICH treatment to appropriately select and deliver ICH treatment based on the guidelines. To address these issues, we developed an ICH telemedicine protocol. Neurosurgeons from four university hospitals in Gangwon state first wrote the guidelines, and professors with extensive ICH expertise across the country revised them. Guidelines and recommendations for ICH management were described as simply as possible to allow more doctors to use them easily. We hope that our effort in developing the telemedicine protocols will ultimately improve the quality of ICH treatment in local emergency rooms in rural and underserved areas in Gangwon state.
Collapse
Affiliation(s)
- Hyo Sub Jun
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Kuhyun Yang
- Department of Neurosurgery, Gangneung Asan Hospital, Gangneung, Korea
| | - Jongyeon Kim
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Sun Jeong Kim
- Department of Convergence Software, Hallym University, Chuncheon, Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Seung Jin Lee
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Sung-Chul Jin
- Department of Neurosurgery, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung-Pil Joo
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sang Hyung Lee
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - on behalf of the Gangwon State Neurosurgery Consortium
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
- Department of Neurosurgery, Gangneung Asan Hospital, Gangneung, Korea
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
- Department of Convergence Software, Hallym University, Chuncheon, Korea
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
- Department of Neurosurgery, Inje University Haeundae Paik Hospital, Busan, Korea
- Department of Neurosurgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Misirocchi F, De Stefano P, Zilioli A, Mannini E, Lazzari S, Mutti C, Zinno L, Parrino L, Florindo I. Periodic discharges and status epilepticus: A critical reappraisal. Clin Neurophysiol 2024; 163:124-131. [PMID: 38733702 DOI: 10.1016/j.clinph.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVE Periodic Discharges (PDs) in Status Epilepticus (SE) are historically related to negative outcome, and the Epidemiology-based Mortality Score in SE (EMSE) identifies PDs as an EEG feature associated with unfavorable prognosis. However, supportive evidence is conflicting. This study aims to evaluate the prognostic significance of interictal PDs during and following SE. METHODS All 2020-2023 non-hypoxic-ischemic SE patients with available EEG during SE were retrospectively assessed. Interictal PDs during SE (SE-PDs) and PDs occurring 24-72 h after SE resolution (post-SE-PDs) were examined. In-hospital death was defined as the primary outcome. RESULTS 189 SE patients were finally included. SE-PDs were not related to outcome, while post-SE-PDs were related to poor prognosis confirmed after multiple regression analysis. EMSE global AUC was 0.751 (95%CI:0.680-0.823) and for EMSE-64 cutoff sensitivity was 0.85, specificity 0.52, accuracy 63%. We recalculated EMSE score including only post-SE-PDs. Modified EMSE (mEMSE) global AUC was 0.803 (95%CI:0.734-0.872) and for mEMSE-64 cutoff sensitivity was 0.84, specificity 0.68, accuracy 73%. CONCLUSION Interictal PDs during SE were not related to outcome whereas PDs persisting or appearing > 24 h after SE resolution were strongly associated to unfavorable prognosis. EMSE performed well in our cohort but considering only post-SE-PDs raised specificity and accuracy for mEMSE64 cutoff. SIGNIFICANCE This study supports the utility of differentiating between interictal PDs during and after SE for prognostic assessment.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland; Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Alessandro Zilioli
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Elisa Mannini
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefania Lazzari
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Unit of Neurology, University Hospital of Parma, Parma, Italy; Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucia Zinno
- Unit of Neurology, University Hospital of Parma, Parma, Italy
| | - Liborio Parrino
- Unit of Neurology, Department of Medicine and Surgery, University of Parma, Parma, Italy; Sleep Disorders Center, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Irene Florindo
- Unit of Neurology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
15
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How many patients do you need? Investigating trial designs for anti-seizure treatment in acute brain injury patients. Ann Clin Transl Neurol 2024; 11:1681-1690. [PMID: 38867375 PMCID: PMC11251465 DOI: 10.1002/acn3.52059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND/OBJECTIVES Epileptiform activity (EA), including seizures and periodic patterns, worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized control trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, and complex physiology of acute brain injury, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine the feasibility of RCTs evaluating EA treatment. METHODS In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework, we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. RESULTS Sample sizes ranged from 500 for levetiracetam 7 mg/kg versus placebo, to >4000 for levetiracetam 15 versus 7 mg/kg to achieve 80% power (5% type I error). For propofol 1 mg/kg/h versus placebo, 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. CONCLUSIONS Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and propose use of this simulation-based RCT paradigm to assess the feasibility of future trials of anti-seizure treatment in acute brain injury.
Collapse
Affiliation(s)
- Harsh Parikh
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Haoqi Sun
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Rajesh Amerineni
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Eric S. Rosenthal
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Cynthia Rudin
- Department of Computer ScienceDuke UniversityDukeNorth CarolinaUSA
| | - M. Brandon Westover
- Department of NeurologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Sahar F. Zafar
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
16
|
Rubinos C. Emergent Management of Status Epilepticus. Continuum (Minneap Minn) 2024; 30:682-720. [PMID: 38830068 DOI: 10.1212/con.0000000000001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Status epilepticus is a neurologic emergency that can be life- threatening. The key to effective management is recognition and prompt initiation of treatment. Management of status epilepticus requires a patient-specific-approach framework, consisting of four axes: (1) semiology, (2) etiology, (3) EEG correlate, and (4) age. This article provides a comprehensive overview of status epilepticus, highlighting the current treatment approaches and strategies for management and control. LATEST DEVELOPMENTS Administering appropriate doses of antiseizure medication in a timely manner is vital for halting seizure activity. Benzodiazepines are the first-line treatment, as demonstrated by three randomized controlled trials in the hospital and prehospital settings. Benzodiazepines can be administered through IV, intramuscular, rectal, or intranasal routes. If seizures persist, second-line treatments such as phenytoin and fosphenytoin, valproate, or levetiracetam are warranted. The recently published Established Status Epilepticus Treatment Trial found that all three of these drugs are similarly effective in achieving seizure cessation in approximately half of patients. For cases of refractory and super-refractory status epilepticus, IV anesthetics, including ketamine and γ-aminobutyric acid-mediated (GABA-ergic) medications, are necessary. There is an increasing body of evidence supporting the use of ketamine, not only in the early phases of stage 3 status epilepticus but also as a second-line treatment option. ESSENTIAL POINTS As with other neurologic emergencies, "time is brain" when treating status epilepticus. Antiseizure medication should be initiated quickly to achieve seizure cessation. There is a need to explore newer generations of antiseizure medications and nonpharmacologic modalities to treat status epilepticus.
Collapse
|
17
|
Mintz NB, Andrews N, Pan K, Bessette E, Asaad WF, Sherif M, Rubinos C, Mahta A, Girard TD, Reznik ME. Prevalence of clinical electroencephalography findings in stroke patients with delirium. Clin Neurophysiol 2024; 162:229-234. [PMID: 38548493 PMCID: PMC11185045 DOI: 10.1016/j.clinph.2024.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Delirium is an acute cognitive disorder associated with multiple electroencephalographic (EEG) abnormalities in non-neurological patients, though specific EEG characteristics in patients with stroke remain unclear. We aimed to compare the prevalence of EEG abnormalities in stroke patients during delirium episodes with periods that did not correspond to delirium. METHODS We retrospectively analyzed clinical EEG reports for stroke patients who received daily delirium assessments as part of a prospective study. We compared the prevalence of EEG features corresponding to patient-days with vs. without delirium, including focal and generalized slowing, and focal and generalized epileptiform abnormalities (EAs). RESULTS Among 58 patients who received EEGs, there were 192 days of both EEG and delirium monitoring (88% [n = 169] corresponding to delirium). Generalized slowing was significantly more prevalent on days with vs. without delirium (96% vs. 57%, p = 0.03), as were bilateral or generalized EAs (38% vs. 13%, p = 0.03). In contrast, focal slowing (53% vs. 74%, p = 0.11) and focal EAs were less prevalent on days with delirium (38% vs. 48%, p = 0.37), though these differences were not statistically significant. CONCLUSIONS We found a higher prevalence of generalized but not focal EEG abnormalities in stroke patients with delirium. SIGNIFICANCE These findings may reinforce the diffuse nature of delirium-associated encephalopathy, even in patients with discrete structural lesions.
Collapse
Affiliation(s)
- Noa B Mintz
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Nicholas Andrews
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Kelly Pan
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Eric Bessette
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Wael F Asaad
- Department of Neurosurgery, Brown University, Alpert Medical School, United States; Department of Neuroscience, Brown University, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Mohamed Sherif
- Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Psychiatry and Human Behavior, Brown University, Alpert Medical School, United States
| | - Clio Rubinos
- Department of Neurology, University of North Carolina School of Medicine, United States
| | - Ali Mahta
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Timothy D Girard
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States
| | - Michael E Reznik
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
18
|
Ali M, van Etten ES, Akoudad S, Schaafsma JD, Visser MC, Ali M, Cordonnier C, Sandset EC, Klijn CJM, Ruigrok YM, Wermer MJH. Haemorrhagic stroke and brain vascular malformations in women: risk factors and clinical features. Lancet Neurol 2024; 23:625-635. [PMID: 38760100 DOI: 10.1016/s1474-4422(24)00122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 03/14/2024] [Indexed: 05/19/2024]
Abstract
Haemorrhagic stroke is a severe condition with poor prognosis. Biological sex influences the risk factors, presentations, treatment, and patient outcomes of intracerebral haemorrhage, aneurysmal subarachnoid haemorrhage, and vascular malformations. Women are usually older at onset of intracerebral haemorrhage compared with men but have an increased risk of aneurysmal subarachnoid haemorrhage as they age. Female-specific factors such as pregnancy, eclampsia or pre-eclampsia, postmenopausal status, and hormone therapy influence a woman's long-term risk of haemorrhagic stroke. The presence of intracranial aneurysms, arteriovenous malformations, or cavernous malformations poses unique clinical dilemmas during pregnancy and delivery. In the absence of evidence-based guidelines for managing the low yet uncertain risk of haemorrhagic stroke during pregnancy and delivery in women with vascular malformations, multidisciplinary teams should carefully assess the risks and benefits of delivery methods for these patients. Health-care providers should recognise and address the challenges that women might have to confront when recovering from haemorrhagic stroke.
Collapse
Affiliation(s)
- Mariam Ali
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands.
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Saloua Akoudad
- Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Joanna D Schaafsma
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marieke C Visser
- Department of Neurology, Amsterdam University Medical Centre, Location AMC, Amsterdam, Netherlands
| | - Mahsoem Ali
- Department of Surgery, Amsterdam University Medical Centre, Location VUmc, Amsterdam, Netherlands
| | - Charlotte Cordonnier
- University Lille, Inserm, CHU Lille, UMR-S1172, Lille Neuroscience and Cognition, Lille, France
| | - Else Charlotte Sandset
- Department of Neurology, Stroke Unit, Oslo University Hospital, Oslo, Norway; The Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Marieke J H Wermer
- Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Benghanem S, Kubis N, Gayat E, Loiodice A, Pruvost-Robieux E, Sharshar T, Foucrier A, Figueiredo S, Bouilleret V, De Montmollin E, Bagate F, Lefaucheur JP, Guidet B, Appartis E, Cariou A, Varnet O, Jost PH, Megarbane B, Degos V, Le Guennec L, Naccache L, Legriel S, Woimant F, Gregoire C, Cortier D, Crassard I, Timsit JF, Mazighi M, Sonneville R. Prognostic value of early EEG abnormalities in severe stroke patients requiring mechanical ventilation: a pre-planned analysis of the SPICE prospective multicenter study. Crit Care 2024; 28:173. [PMID: 38783313 PMCID: PMC11119574 DOI: 10.1186/s13054-024-04957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Prognostication of outcome in severe stroke patients necessitating invasive mechanical ventilation poses significant challenges. The objective of this study was to assess the prognostic significance and prevalence of early electroencephalogram (EEG) abnormalities in adult stroke patients receiving mechanical ventilation. METHODS This study is a pre-planned ancillary investigation within the prospective multicenter SPICE cohort study (2017-2019), conducted in 33 intensive care units (ICUs) in the Paris area, France. We included adult stroke patients requiring invasive mechanical ventilation, who underwent at least one intermittent EEG examination during their ICU stay. The primary endpoint was the functional neurological outcome at one year, determined using the modified Rankin scale (mRS), and dichotomized as unfavorable (mRS 4-6, indicating severe disability or death) or favorable (mRS 0-3). Multivariable regression analyses were employed to identify EEG abnormalities associated with functional outcomes. RESULTS Of the 364 patients enrolled in the SPICE study, 153 patients (49 ischemic strokes, 52 intracranial hemorrhages, and 52 subarachnoid hemorrhages) underwent at least one EEG at a median time of 4 (interquartile range 2-7) days post-stroke. Rates of diffuse slowing (70% vs. 63%, p = 0.37), focal slowing (38% vs. 32%, p = 0.15), periodic discharges (2.3% vs. 3.7%, p = 0.9), and electrographic seizures (4.5% vs. 3.7%, p = 0.4) were comparable between patients with unfavorable and favorable outcomes. Following adjustment for potential confounders, an unreactive EEG background to auditory and pain stimulations (OR 6.02, 95% CI 2.27-15.99) was independently associated with unfavorable outcomes. An unreactive EEG predicted unfavorable outcome with a specificity of 48% (95% CI 40-56), sensitivity of 79% (95% CI 72-85), and positive predictive value (PPV) of 74% (95% CI 67-81). Conversely, a benign EEG (defined as continuous and reactive background activity without seizure, periodic discharges, triphasic waves, or burst suppression) predicted favorable outcome with a specificity of 89% (95% CI 84-94), and a sensitivity of 37% (95% CI 30-45). CONCLUSION The absence of EEG reactivity independently predicts unfavorable outcomes at one year in severe stroke patients requiring mechanical ventilation in the ICU, although its prognostic value remains limited. Conversely, a benign EEG pattern was associated with a favorable outcome.
Collapse
Affiliation(s)
- Sarah Benghanem
- AP-HP.Centre, Medical ICU, Cochin Hospital, Paris, France
- University Paris Cité, Medical School, Paris, France
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris-IPNP, Paris, France
| | - Nathalie Kubis
- University Paris Cité, Medical School, Paris, France
- APHP.Nord, Clinical Physiology Department, UMRS_1144, Université Paris Cite, Paris, France
| | - Etienne Gayat
- University Paris Cité, Medical School, Paris, France
- APHP.Nord, Department of Anesthesiology and Critical Care, DMU Parabol, Université Paris Cite, Paris, France
| | | | - Estelle Pruvost-Robieux
- University Paris Cité, Medical School, Paris, France
- INSERM UMR 1266, Institut de Psychiatrie et Neurosciences de Paris-IPNP, Paris, France
- Neurophysiology and Epileptology Department, GHU Psychiatry & Neurosciences, Sainte Anne, Paris, France
| | - Tarek Sharshar
- University Paris Cité, Medical School, Paris, France
- Department of Neuroanesthesiology and Intensive Care, Sainte Anne Hospital, Paris, France
| | - Arnaud Foucrier
- APHP, Department of Anesthesiology and Critical Care, Beaujon University Hospital, Clichy, France
| | - Samy Figueiredo
- APHP, Department of Anesthesiology and Critical Care, Bicêtre University Hospitals, Le Kremlin Bicêtre, France
| | - Viviane Bouilleret
- Neurophysiology and Epileptology Department, Bicêtre University Hospitals, Le Kremlin Bicêtre, France
| | | | - François Bagate
- APHP, Department of Intensive Care Medicine, Henri Mondor University Hospital and Université de Paris Est Créteil, Créteil, France
| | | | - Bertrand Guidet
- APHP, Department of Intensive Care Medicine, Saint Antoine University Hospital, Paris, France
| | - Emmanuelle Appartis
- Neurophysiology Department, Saint Antoine University Hospital, Paris, France
| | - Alain Cariou
- AP-HP.Centre, Medical ICU, Cochin Hospital, Paris, France
- University Paris Cité, Medical School, Paris, France
| | - Olivier Varnet
- APHP, Department of Physiology, Bichat-Claude Bernard University Hospital, 75018, Paris, France
| | - Paul Henri Jost
- APHP, Department of Anesthesiology and Intensive Care, Henri Mondor Hospital, Creteil, France
| | | | - Vincent Degos
- APHP, Department of Anesthesiology and Neurointensive Care, Pitié Salpétrière Hospital, Paris, France
| | - Loic Le Guennec
- APHP, Medical ICU, Pitié Salpétrière Hospital, Paris, France
| | - Lionel Naccache
- APHP, Department of Physiology, Pitié Salpétrière Hospital, Paris, France
| | | | | | - Charles Gregoire
- Department of Intensive Care, Rothschild Hospital Foundation, Paris, France
| | - David Cortier
- Department of Intensive Care, Foch Hospital, Paris, France
| | | | - Jean-François Timsit
- APHP, Department of Intensive Care Medicine, Bichat-Claude Bernard University Hospital, 46 rue Henri Huchard, 75018, Paris, France
- Université Paris Cité, INSERM UMR 1137, IAME, Paris, France
| | - Mikael Mazighi
- APHP Nord, Department of Neurology, Lariboisière University Hospital, Department of Interventional Neuroradiology, Fondation Rothschild Hospital, FHU Neurovasc, Paris, France
- Université Paris Cité, INSERM UMR 1144, Paris, France
| | - Romain Sonneville
- APHP, Department of Intensive Care Medicine, Bichat-Claude Bernard University Hospital, 46 rue Henri Huchard, 75018, Paris, France.
- Université Paris Cité, INSERM UMR 1137, IAME, Paris, France.
| |
Collapse
|
20
|
Chandan P, Byrnes ME, Newey C, Hantus S, Punia V. Outpatient EEG in Routine Clinical Care of Patients With Stroke-Related Acute Symptomatic Seizure Concerns. J Clin Neurophysiol 2024; 41:312-316. [PMID: 36893378 DOI: 10.1097/wnp.0000000000000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023] Open
Abstract
PURPOSE Acute symptomatic seizures (ASyS) after stroke contribute the highest risk to poststroke epilepsy (PSE) development. We investigated the use of outpatient EEG (oEEG) among stroke patients with ASyS concerns. METHODS Adults with acute stroke, ASyS concerns (underwent cEEG), and outpatient clinical follow-up were included (study population). Patients with oEEG (oEEG cohort) were analyzed for electrographic findings. Univariable and multivariable analyses helped identify predictors of oEEG use in routine clinical care. RESULTS Among 507 patients, 83 (16.4%) underwent oEEG. The independent predictors of oEEG utilization included age (OR = 1.03 [1.01 to 1.05, P = 0.01]), electrographic ASyS on cEEG (OR 3.9 [1.77 to 8.9], P < 0.001), ASMs at discharge (OR 3.6 [1.9 to 6.6], P < 0.001), PSE development (OR 6.6 [3.5 to 12.6], P < 0.001), and follow-up duration (OR = 1.01 [1.002 to 1.02], P = 0.016). Almost 40% of oEEG cohort developed PSE, but only 12% had epileptiform abnormalities. Close to a quarter (23%) of oEEGs were within normal limits. CONCLUSIONS One in six patients with ASyS concern after stroke undergoes oEEG. Electrographic ASyS, PSE development, and ASM at discharge are primary drivers of oEEG use. While PSE drives oEEG use, we need systematic, prospective investigation of outpatient EEG's role as prognostic tool for PSE development.
Collapse
Affiliation(s)
- Pradeep Chandan
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| | | | | | | | | |
Collapse
|
21
|
Yuan F, Damien C, Schuind S, Salvagno M, Taccone FS, Legros B, Gaspard N. Combined depth and scalp electroencephalographic monitoring in acute brain injury: Yield and prognostic value. Eur J Neurol 2024; 31:e16208. [PMID: 38270448 PMCID: PMC11235592 DOI: 10.1111/ene.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND PURPOSE Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.
Collapse
Affiliation(s)
- Fang Yuan
- Neurology DepartmentSecond Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
- State Key Laboratory of Traditional Chinese Medicine SyndromeGuangzhouChina
| | - Charlotte Damien
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Sophie Schuind
- Service de Neurochirurgie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Michele Salvagno
- Service des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Fabio Silvio Taccone
- Service des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Benjamin Legros
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
- Neurology DepartmentYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
22
|
Garrido E, Adeli A, Echeverria-Villalobos M, Fiorda J, Hannawi Y. Prevalence of Electrographic Seizures in Hospitalized Patients With Altered Mental Status With No Significant Seizure Risk Factors Who Underwent Continuous EEG Monitoring: A Retrospective Study. Cureus 2024; 16:e55903. [PMID: 38595868 PMCID: PMC11003702 DOI: 10.7759/cureus.55903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVES The objective of this study is to evaluate the prevalence of electrographic seizures in hospitalized patients with altered mental status and no significant risk factors for seizures. METHODS We retrospectively reviewed over a six-year period (2013-2019) the medical records of all adults admitted at Ohio State University Wexner Medical Center (OSUWMC), who underwent continuous electroencephalography (cEEG) monitoring for > 48 hours. Our primary objective was to identify the prevalence of electrographic seizures in patients with altered mental status and no significant acute or remote risk factors for seizures. RESULTS A total of 1966 patients were screened for the study, 1892 were excluded (96.2%) and 74 patients met inclusion criteria. Electrographic seizures were identified in seven of 74 patients (9.45%). We found a significant correlation between electrographic seizures and a history of hepatic cirrhosis, n= 4 (57%), (p=0.035), acute chronic hepatic failure during admission, 71% (n=5), (p=0.027), and hyperammonemia (p =0.009). CONCLUSION In this retrospective study of patients with altered mental status and no significant acute or remote risk factors for seizures who underwent cEEG monitoring for > 48 hours, electrographic seizures were identified in 9.45%. Electrographic seizures were associated with hepatic dysfunction and hyperammonemia. Based on our results, cEEG monitoring should be considered in patients with altered mental status and hepatic dysfunction even in the absence of other seizure risk factors.
Collapse
Affiliation(s)
- Elena Garrido
- Department of Anesthesiology, The University of Iowa Carver College of Medicine, Iowa City, USA
| | - Amir Adeli
- Department of Neurology, Division of Epilepsy, The Ohio State University Wexner Medical Center, Columbus, USA
| | | | - Juan Fiorda
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, USA
| | - Yousef Hannawi
- Department of Neurology, Division of Cerebrovascular Diseases and Neurocritical Care, The Ohio State University Wexner Medical Center, Columbus, USA
| |
Collapse
|
23
|
San-Juan D, Ángeles EB, González-Aragón MDCF, Torres JEG, Lorenzana ÁL, Trenado C, Anschel DJ. Nonconvulsive Status Epilepticus: Clinical Findings, EEG Features, and Prognosis in a Developing Country, Mexico. J Clin Neurophysiol 2024; 41:221-229. [PMID: 38436389 DOI: 10.1097/wnp.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE There is a lack of clinical and epidemiological knowledge about nonconvulsive status epilepticus (NCSE) in developing countries including Mexico, which has the highest prevalence of epilepsy in the Americas. Our aim was to describe the clinical findings, EEG features, and outcomes of NCSE in a tertiary center in Mexico. METHODS We conducted a retrospective case series study (2010-2020) including patients (≥15 years old) with NCSE according to the modified Salzburg NCSE criteria 2015 with at least 6 months of follow-up. We extracted the clinical data (age, sex, history of epilepsy, antiseizure medications, clinical manifestations, triggers, and etiology), EEG patterns of NCSE, and outcome. Descriptive statistics and multinomial logistic regression were used. RESULTS One hundred thirty-four patients were analyzed; 74 (54.8%) women, the total mean age was 39.5 (15-85) years, and 71% had a history of epilepsy. Altered state of consciousness was found in 82% (including 27.7% in coma). A generalized NCSE pattern was the most common (32.1%). The NCSE etiology was mainly idiopathic (56%), and previous uncontrolled epilepsy was the trigger in 48% of patients. The clinical outcome was remission with clinical improvement in 54.5%. Multinomial logistic regression showed that the patient's age (P = 0.04), absence of comorbidities (P = 0.04), history of perinatal hypoxia (P = 0.04), absence of clinical manifestations (P = 0.01), and coma (P = 0.03) were negatively correlated with the outcome and only the absence of generalized slowing in the EEG (P = 0.001) had a significant positive effect on the prognosis. CONCLUSIONS Age, history of perinatal hypoxia, coma, and focal ictal EEG pattern influence negatively the prognosis of NCSE.
Collapse
Affiliation(s)
- Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Erick B Ángeles
- Clinical Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | | | - Jacob Eli G Torres
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Ángel L Lorenzana
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Carlos Trenado
- Düsseldorf and Systems Neuroscience and Neurotechnology Unit, Faculty of Medicine, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Saarland University and HTW Saarland, Homburg, Germany ; and
| | - David J Anschel
- St. Charles Epilepsy, New York University Comprehensive Epilepsy Center, St. Charles Hospital, Port Jefferson, New York, U.S.A
| |
Collapse
|
24
|
Valdes E, Fang T, Boffa M, Frontera JA. Optimal Dosing of Levetiracetam for Seizure Prophylaxis in Critically Ill Patients: A Prospective Observational Study. Crit Care Med 2024; 52:e1-e10. [PMID: 37734033 DOI: 10.1097/ccm.0000000000006065] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
OBJECTIVES Critically ill patients eliminate levetiracetam (LEV) more rapidly than healthy controls, yet low doses are commonly used for seizure prophylaxis in the ICU setting. We compared the rates of achievement of target serum levels and new onset seizure (clinical and/or electrographic) among patients who received low (500 mg bid) versus high (750-1,000 mg bid) dose LEV. DESIGN Prospective, observational study. SETTING Tertiary care, academic center. PATIENTS We included patients who received prophylactic LEV following traumatic brain injury, intracerebral hemorrhage, spontaneous subarachnoid hemorrhage, or supratentorial neurosurgery between 2019 and 2021. Patients with a history of seizure, antiseizure medication use, or renal failure requiring dialysis were excluded. INTERVENTIONS None. MEASUREMENTS LEV levels were obtained at steady state. The impact of low-dose versus high-dose LEV on the primary outcome of target LEV levels (12-46 μg/mL), and the secondary outcome of clinical and/or electrographic seizure, were assessed using multivariable logistic regression analyses adjusting for age, LEV loading dose, BMI, primary diagnosis and creatinine clearance (CrCl). MAIN RESULTS Of the 205 subjects included in analyses, n = 106 (52%) received LEV 500 mg bid (median 13 mg/kg/d), and n = 99 (48%) received LEV 750-1,000 mg bid (median 25 mg/kg/d). Overall, 111 of 205 patients (54%) achieved target levels: 48 (45%) from the low-dose group versus 63 (64%) from the high-dose group (odds ratio [OR] 2.1; 95% CI, 1.1-3.7; p = 0.009). In multivariable analyses, high-dose LEV predicted target levels (adjusted OR [aOR] 2.23; 95% CI, 1.16-4.27; p = 0.016), and was associated with lower seizure odds (aOR 0.32; 95% CI, 0.13-0.82; p = 0.018) after adjusting for age, loading dose, BMI, diagnosis, and CrCl. CONCLUSIONS Underdosing of LEV was common, with only 54% of patients achieving target serum levels. Higher doses (750-1,000 mg bid) were more than twice as likely to lead to optimal drug levels and reduced the odds of seizure by 68% compared with low-dose regimens (500 mg bid).
Collapse
Affiliation(s)
- Eduard Valdes
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Taolin Fang
- Department of Neurology, New York University Grossman School of Medicine, New York, NY
| | - Michael Boffa
- Department of Neurology, New York University Grossman School of Medicine, New York, NY
| | - Jennifer A Frontera
- Department of Neurology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
25
|
Zafar A, Aljaafari D. EEG criteria for diagnosing nonconvulsive status epilepticus in comatose - An unsolved puzzle: A narrative review. Heliyon 2023; 9:e22393. [PMID: 38045184 PMCID: PMC10689954 DOI: 10.1016/j.heliyon.2023.e22393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Nonconvulsive status epilepticus (NCSE) is an important and often unrecognized cause of impaired awareness especially in critically ill patients, which can easily be missed. Electroencephalography (EEG) findings in clinically suspected cases are the mainstay of diagnosis. Review summary The EEG diagnostic criteria for NCSE have evolved over the past three decades. Furthermore, recent advancements in EEG technologies such as continuous EEG monitoring, and emergency department EEG, along with development of different diagnostic criteria, have increased the detection rate for NCSE in suspected cases. However, treating physicians should have a higher index of clinical suspicion and a lower threshold for recommending this valuable investigation. The introduction of different diagnostic criteria has made it easier for electroencephalographers to report NCSE; nevertheless, diagnosis is not always straightforward. This narrative review aimed to define and discuss the available literature on different EEG diagnostic criteria for NCSE. Conclusion There is a need for further prospective research to strengthen the diagnostic accuracy of the available diagnostic criteria, the modified Salzburg Consensus Criteria for NCSE (mSCNC) and updated American Clinical Neurophysiology Society (ACNS) 21 criteria, to verify their accuracy to detect NCSE in comatose patients.
Collapse
Affiliation(s)
- Azra Zafar
- The Department of Neurology, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Kingdom of Saudi Arabia
| | - Danah Aljaafari
- The Department of Neurology, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Long B, Koyfman A. Nonconvulsive Status Epilepticus: A Review for Emergency Clinicians. J Emerg Med 2023; 65:e259-e271. [PMID: 37661524 DOI: 10.1016/j.jemermed.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/01/2023] [Accepted: 05/26/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Status epilepticus is associated with significant morbidity and mortality and is divided into convulsive status epilepticus and nonconvulsive status epilepticus (NCSE). OBJECTIVE This review provides a focused evaluation of NCSE for emergency clinicians. DISCUSSION NCSE is a form of status epilepticus presenting with prolonged seizure activity. This disease is underdiagnosed, as it presents with nonspecific signs and symptoms, most commonly change in mental status without overt convulsive motor activity. Causes include epilepsy, cerebral pathology or injury, any systemic insult such as infection, and drugs or toxins. Mortality is primarily related to the underlying condition. Patients most commonly present with altered mental status, but other signs and symptoms include abnormal ocular movements and automatisms such as lip smacking or subtle motor twitches in the face or extremities. The diagnosis is divided into electrographic and electroclinical, and although electroencephalogram (EEG) is recommended for definitive diagnosis, emergency clinicians should consider this disease in patients with prolonged postictal state after a seizure with no improvement in mental status, altered mental status with acute cerebral pathology (e.g., stroke, hypoxic brain injury), and unexplained altered mental status. Assessment includes laboratory evaluation and neuroimaging with EEG. Management includes treating life-threatening conditions, including compromise of the airway, hypoglycemia, hyponatremia, and hypo- or hyperthermia, followed by rapid cessation of the seizure activity with benzodiazepines and other antiseizure medications. CONCLUSIONS An understanding of the presentation and management of NCSE can assist emergency clinicians in the care of these patients.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas.
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
Rubinos C, Bruzzone MJ, Viswanathan V, Figueredo L, Maciel CB, LaRoche S. Electroencephalography as a Biomarker of Prognosis in Acute Brain Injury. Semin Neurol 2023; 43:675-688. [PMID: 37832589 DOI: 10.1055/s-0043-1775816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Electroencephalography (EEG) is a noninvasive tool that allows the monitoring of cerebral brain function in critically ill patients, aiding with diagnosis, management, and prognostication. Specific EEG features have shown utility in the prediction of outcomes in critically ill patients with status epilepticus, acute brain injury (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, and traumatic brain injury), anoxic brain injury, and toxic-metabolic encephalopathy. Studies have also found an association between particular EEG patterns and long-term functional and cognitive outcomes as well as prediction of recovery of consciousness following acute brain injury. This review summarizes these findings and demonstrates the value of utilizing EEG findings in the determination of prognosis.
Collapse
Affiliation(s)
- Clio Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Vyas Viswanathan
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Lorena Figueredo
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Carolina B Maciel
- Department of Neurology, University of Florida, Gainesville, Florida
| | - Suzette LaRoche
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Parikh H, Sun H, Amerineni R, Rosenthal ES, Volfovsky A, Rudin C, Westover MB, Zafar SF. How Many Patients Do You Need? Investigating Trial Designs for Anti-Seizure Treatment in Acute Brain Injury Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.21.23294339. [PMID: 37662339 PMCID: PMC10473786 DOI: 10.1101/2023.08.21.23294339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Objectives Epileptiform activity (EA) worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized trials (RCTs) assessing anti-seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, RCTs are lacking or hindered by design constraints. We used a pharmacological model-guided simulator to design and determine feasibility of RCTs evaluating EA treatment. Methods In a single-center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic-pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. Results Sample sizes ranged from 500 for levetiracetam 7 mg/kg vs placebo, to >4000 for levetiracetam 15 vs. 7 mg/kg to achieve 80% power (5% type I error). For propofol 1mg/kg/hr vs. placebo 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. Interpretation Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo-control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and assess feasibility of future trials of EA treatment.
Collapse
Affiliation(s)
| | - Haoqi Sun
- Beth Israel Deaconess Medical Center, Department of Neurology
| | | | | | | | | | | | | |
Collapse
|
29
|
Mota Telles JP, Rocha RB, Cenci GI, Nager GB, Silva GD, Figueiredo EG. Prophylactic antiseizure drugs for spontaneous intracerebral hemorrhage: An updated systematic review and meta-analysis. Int J Stroke 2023; 18:773-782. [PMID: 36337029 DOI: 10.1177/17474930221140071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND There is concern that recommendations on prophylactic antiseizure drugs (PASDs) for patients with spontaneous intracerebral hemorrhage (sICH) are biased by studies using older drugs and no electrographic monitoring. AIMS We performed a systematic review and meta-analysis to determine whether PASDs in patients with sICH reduced seizure occurrence and improved functional outcomes. We included analyses of newer trials, newer antiseizure drugs, and effectiveness in patients with consistent electrographic monitoring. METHODS Medline, Embase, and Cochrane were searched from inception until 12 August 2022, to identify studies with patients with sICH treated with PASDs, regardless of study design. The studied outcomes were functional status and occurrence of seizures. RESULTS Fourteen studies were included, including 6742 patients. Risk of bias was low overall. There was no effect of PASD on seizure occurrence overall (odds ratio (OR) 0.73, 95% confidence interval (CI) 0.47-1.15), but they were associated with reduced occurrence in studies with electrographic monitoring (OR 0.36, 95% CI 0.18-0.70). There was no effect of PASDs on functional outcomes (OR 1.15; 95% CI 0.91-1.47) or mortality (OR 0.85, 95% CI 0.65-1.11). CONCLUSION Prophylactic antiseizure medications after sICH reduce seizures in studies with electroencephalogram monitoring in high-risk patients. However, this benefit did not reflect in the improvement of functional outcomes, even in studies with newer, less toxic, antiseizure drugs.
Collapse
Affiliation(s)
| | | | | | - Gabriela Borges Nager
- School of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
30
|
Cervenka MC. Be a PEACH and Hand Me That Levetiracetam: Seizure Prophylaxis for Spontaneous Intracerebral Hemorrhage. Epilepsy Curr 2023; 23:241-243. [PMID: 37662466 PMCID: PMC10470104 DOI: 10.1177/15357597231174112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Safety and Efficacy of Prophylactic Levetiracetam for Prevention of Epileptic Seizures in the Acute Phase of Intracerebral Haemorrhage (PEACH): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial Peter-Derex L, Philippeau F, Garnier P, André-Obadia N, Boulogne S, Catenoix H, Convers P, Mazzola L, Gouttard M, Esteban M, Fontaine J, Mechtouff L, Ong E, Cho T-H, Nighoghossian N, Perreton N, Termoz A, Haesebaert J, Schott A-M, Rabilloud M, Pivot C, Dhelens C, Filip A, Berthezène Y, Rheims S, Boutitie F, Derex L. Lancet Neurol . 2022;21(9):781-791. doi:10.1016/S1474-4422(22)00235-6 Background: The incidence of early seizures (occurring within 7 days of stroke onset) after intracerebral haemorrhage reaches 30% when subclinical seizures are diagnosed by continuous EEG. Early seizures might be associated with haematoma expansion and worse neurological outcomes. Current guidelines do not recommend prophylactic antiseizure treatment in this setting. We aimed to assess whether prophylactic levetiracetam would reduce the risk of acute seizures in patients with intracerebral haemorrhage. Methods: The double-blind, randomised, placebo-controlled, phase 3 PEACH trial was conducted at three stroke units in France. Patients (aged 18 years or older) who presented with a non-traumatic intracerebral haemorrhage within 24 h after onset were randomly assigned (1:1) to levetiracetam (intravenous 500 mg every 12 h) or matching placebo. Randomisation was done with a web-based system and stratified by centre and National Institutes of Health Stroke Scale (NIHSS) score at baseline. Treatment was continued for 6 weeks. Continuous EEG was started within 24 h after inclusion and recorded over 48 h. The primary endpoint was the occurrence of at least one clinical seizure within 72 h of inclusion or at least one electrographic seizure recorded on continuous EEG, analysed in the modified intention-to-treat population, which comprised all patients who were randomly assigned to treatment and who had a continuous EEG performed. This trial was registered at ClinicalTrials.gov , NCT02631759, and is now closed. Recruitment was prematurely stopped after 48% of the recruitment target was reached due to a low recruitment rate and cessation of funding. Findings Between June 1, 2017, and April 14, 2020, 50 patients with mild-to-moderate severity intracerebral haemorrhage were included: 24 were assigned to levetiracetam and 26 to placebo. During the first 72 h, a clinical or electrographic seizure was observed in three (16%) of 19 patients in the levetiracetam group versus ten (43%) of 23 patients in the placebo group (odds ratio 0.16, 95% CI 0.03–0.94, p = 0.043). All seizures in the first 72 h were electrographic seizures only. No difference in depression or anxiety reporting was observed between the groups at 1 month or 3 months. Depression was recorded in three (13%) patients who received levetiracetam versus four (15%) patients who received placebo, and anxiety was reported for two (8%) patients versus one (4%) patient. The most common treatment-emergent adverse events in the levetiracetam group versus the placebo group were headache (nine [39%] vs six [24%]), pain (three [13%] vs ten [40%]), and falls (seven [30%] vs four [16%]). The most frequent serious adverse events were neurological deterioration due to the intracerebral haemorrhage (one [4%] vs four [16%]) and severe pneumonia (two [9%] vs two [8%]). No treatment-related death was reported in either group. Interpretation: Levetiracetam might be effective in preventing acute seizures in intracerebral haemorrhage. Larger studies are needed to determine whether seizure prophylaxis improves functional outcome in patients with intracerebral haemorrhage.
Collapse
|
31
|
Jing J, Ge W, Hong S, Fernandes MB, Lin Z, Yang C, An S, Struck AF, Herlopian A, Karakis I, Halford JJ, Ng MC, Johnson EL, Appavu BL, Sarkis RA, Osman G, Kaplan PW, Dhakar MB, Arcot Jayagopal L, Sheikh Z, Taraschenko O, Schmitt S, Haider HA, Kim JA, Swisher CB, Gaspard N, Cervenka MC, Rodriguez Ruiz AA, Lee JW, Tabaeizadeh M, Gilmore EJ, Nordstrom K, Yoo JY, Holmes MG, Herman ST, Williams JA, Pathmanathan J, Nascimento FA, Fan Z, Nasiri S, Shafi MM, Cash SS, Hoch DB, Cole AJ, Rosenthal ES, Zafar SF, Sun J, Westover MB. Development of Expert-Level Classification of Seizures and Rhythmic and Periodic Patterns During EEG Interpretation. Neurology 2023; 100:e1750-e1762. [PMID: 36878708 PMCID: PMC10136013 DOI: 10.1212/wnl.0000000000207127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/12/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures (SZs) and other SZ-like patterns of brain activity can harm the brain and contribute to in-hospital death, particularly when prolonged. However, experts qualified to interpret EEG data are scarce. Prior attempts to automate this task have been limited by small or inadequately labeled samples and have not convincingly demonstrated generalizable expert-level performance. There exists a critical unmet need for an automated method to classify SZs and other SZ-like events with expert-level reliability. This study was conducted to develop and validate a computer algorithm that matches the reliability and accuracy of experts in identifying SZs and SZ-like events, known as "ictal-interictal-injury continuum" (IIIC) patterns on EEG, including SZs, lateralized and generalized periodic discharges (LPD, GPD), and lateralized and generalized rhythmic delta activity (LRDA, GRDA), and in differentiating these patterns from non-IIIC patterns. METHODS We used 6,095 scalp EEGs from 2,711 patients with and without IIIC events to train a deep neural network, SPaRCNet, to perform IIIC event classification. Independent training and test data sets were generated from 50,697 EEG segments, independently annotated by 20 fellowship-trained neurophysiologists. We assessed whether SPaRCNet performs at or above the sensitivity, specificity, precision, and calibration of fellowship-trained neurophysiologists for identifying IIIC events. Statistical performance was assessed by the calibration index and by the percentage of experts whose operating points were below the model's receiver operating characteristic curves (ROCs) and precision recall curves (PRCs) for the 6 pattern classes. RESULTS SPaRCNet matches or exceeds most experts in classifying IIIC events based on both calibration and discrimination metrics. For SZ, LPD, GPD, LRDA, GRDA, and "other" classes, SPaRCNet exceeds the following percentages of 20 experts-ROC: 45%, 20%, 50%, 75%, 55%, and 40%; PRC: 50%, 35%, 50%, 90%, 70%, and 45%; and calibration: 95%, 100%, 95%, 100%, 100%, and 80%, respectively. DISCUSSION SPaRCNet is the first algorithm to match expert performance in detecting SZs and other SZ-like events in a representative sample of EEGs. With further development, SPaRCNet may thus be a valuable tool for an expedited review of EEGs. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that among patients with epilepsy or critical illness undergoing EEG monitoring, SPaRCNet can differentiate (IIIC) patterns from non-IIIC events and expert neurophysiologists.
Collapse
Affiliation(s)
- Jin Jing
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Wendong Ge
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Shenda Hong
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Marta Bento Fernandes
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Zhen Lin
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Chaoqi Yang
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sungtae An
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Aaron F Struck
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Aline Herlopian
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ioannis Karakis
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jonathan J Halford
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Marcus C Ng
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Emily L Johnson
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Brian L Appavu
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Gamaleldin Osman
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Peter W Kaplan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Monica B Dhakar
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Lakshman Arcot Jayagopal
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Zubeda Sheikh
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Olga Taraschenko
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sarah Schmitt
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Hiba A Haider
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jennifer A Kim
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Christa B Swisher
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Nicolas Gaspard
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mackenzie C Cervenka
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Andres A Rodriguez Ruiz
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jong Woo Lee
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mohammad Tabaeizadeh
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Emily J Gilmore
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Kristy Nordstrom
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ji Yeoun Yoo
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Manisha G Holmes
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Susan T Herman
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jennifer A Williams
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jay Pathmanathan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Fábio A Nascimento
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Ziwei Fan
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Samaneh Nasiri
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Mouhsin M Shafi
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sydney S Cash
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Daniel B Hoch
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Andrew J Cole
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Eric S Rosenthal
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Sahar F Zafar
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - Jimeng Sun
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA
| | - M Brandon Westover
- From the Department of Neurology (J.J., W.G., M.B.F., M.T., K.N., F.A.N., Z.F., S.N., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), Massachusetts General Hospital, Harvard Medical School, Boston; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., M.T., F.A.N., Z.F., S.N., S.S.C., D.B.H., S.F.Z., M.B.W.), Boston; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; College of Computing (Z.L., C.Y., J.S.), University of Illinois at Urbana-Champaign; College of Computing (S.A.), Georgia Institute of Technology, Atlanta; Department of Neurology (A.F.S.), University of Wisconsin-Madison; William S. Middleton Memorial Veterans Hospital (A.F.S.), Madison, WI; Yale New Haven Hospital (A.H., J.A.K., E.J.G.), Yale University, CT; Emory University School of Medicine (I.K., A.A.R.R.), Atlanta, GA; Medical University of South Carolina (J.J.H., S.S.), Charleston; University of Manitoba (M.C.N.), Winnipeg, Canada; Johns Hopkins School of Medicine (E.L.J., P.W.K., M.C.C.), Baltimore, MD; University of Arizona College of Medicine (B.L.A.), Phoenix; Brigham and Women's Hospital (R.A.S., J.W.L.), Boston, MA; Mayo Clinic (G.O.), Rochester, MN; Warren Alpert School of Medicine (M.B.D.), Brown University, Providence, RI; University of Nebraska Medical Center (L.A.J., O.T.), Omaha; West Virginia University Hospitals (Z.S.), Morgantown; University of Chicago (H.A.H.), IL; Atrium Health (C.B.S.), Charlotte, NC; Hôpital Erasme (N.G.), Université Libre de Bruxelles, Belgium; Icahn School of Medicine (J.Y.Y.), Mount Sinai, NY; NYU Grossman School of Medicine (M.G.H.), New York; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), Philadelphia; and Beth Israel Deaconess Medical Center (M.M.S.), Harvard Medical School, Boston, MA.
| |
Collapse
|
32
|
Jing J, Ge W, Struck AF, Fernandes MB, Hong S, An S, Fatima S, Herlopian A, Karakis I, Halford JJ, Ng MC, Johnson EL, Appavu BL, Sarkis RA, Osman G, Kaplan PW, Dhakar MB, Jayagopal LA, Sheikh Z, Taraschenko O, Schmitt S, Haider HA, Kim JA, Swisher CB, Gaspard N, Cervenka MC, Rodriguez Ruiz AA, Lee JW, Tabaeizadeh M, Gilmore EJ, Nordstrom K, Yoo JY, Holmes MG, Herman ST, Williams JA, Pathmanathan J, Nascimento FA, Fan Z, Nasiri S, Shafi MM, Cash SS, Hoch DB, Cole AJ, Rosenthal ES, Zafar SF, Sun J, Westover MB. Interrater Reliability of Expert Electroencephalographers Identifying Seizures and Rhythmic and Periodic Patterns in EEGs. Neurology 2023; 100:e1737-e1749. [PMID: 36460472 PMCID: PMC10136018 DOI: 10.1212/wnl.0000000000201670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The validity of brain monitoring using electroencephalography (EEG), particularly to guide care in patients with acute or critical illness, requires that experts can reliably identify seizures and other potentially harmful rhythmic and periodic brain activity, collectively referred to as "ictal-interictal-injury continuum" (IIIC). Previous interrater reliability (IRR) studies are limited by small samples and selection bias. This study was conducted to assess the reliability of experts in identifying IIIC. METHODS This prospective analysis included 30 experts with subspecialty clinical neurophysiology training from 18 institutions. Experts independently scored varying numbers of ten-second EEG segments as "seizure (SZ)," "lateralized periodic discharges (LPDs)," "generalized periodic discharges (GPDs)," "lateralized rhythmic delta activity (LRDA)," "generalized rhythmic delta activity (GRDA)," or "other." EEGs were performed for clinical indications at Massachusetts General Hospital between 2006 and 2020. Primary outcome measures were pairwise IRR (average percent agreement [PA] between pairs of experts) and majority IRR (average PA with group consensus) for each class and beyond chance agreement (κ). Secondary outcomes were calibration of expert scoring to group consensus, and latent trait analysis to investigate contributions of bias and noise to scoring variability. RESULTS Among 2,711 EEGs, 49% were from women, and the median (IQR) age was 55 (41) years. In total, experts scored 50,697 EEG segments; the median [range] number scored by each expert was 6,287.5 [1,002, 45,267]. Overall pairwise IRR was moderate (PA 52%, κ 42%), and majority IRR was substantial (PA 65%, κ 61%). Noise-bias analysis demonstrated that a single underlying receiver operating curve can account for most variation in experts' false-positive vs true-positive characteristics (median [range] of variance explained ([Formula: see text]): 95 [93, 98]%) and for most variation in experts' precision vs sensitivity characteristics ([Formula: see text]: 75 [59, 89]%). Thus, variation between experts is mostly attributable not to differences in expertise but rather to variation in decision thresholds. DISCUSSION Our results provide precise estimates of expert reliability from a large and diverse sample and a parsimonious theory to explain the origin of disagreements between experts. The results also establish a standard for how well an automated IIIC classifier must perform to match experts. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that an independent expert review reliably identifies ictal-interictal injury continuum patterns on EEG compared with expert consensus.
Collapse
Affiliation(s)
- Jin Jing
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Wendong Ge
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Aaron F Struck
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Marta Bento Fernandes
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Shenda Hong
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sungtae An
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Safoora Fatima
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Aline Herlopian
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ioannis Karakis
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jonathan J Halford
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Marcus C Ng
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Emily L Johnson
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Brian L Appavu
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Rani A Sarkis
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Gamaleldin Osman
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Peter W Kaplan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Monica B Dhakar
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Lakshman Arcot Jayagopal
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Zubeda Sheikh
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Olga Taraschenko
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sarah Schmitt
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Hiba A Haider
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jennifer A Kim
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Christa B Swisher
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Nicolas Gaspard
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mackenzie C Cervenka
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Andres A Rodriguez Ruiz
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jong Woo Lee
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mohammad Tabaeizadeh
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Emily J Gilmore
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Kristy Nordstrom
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ji Yeoun Yoo
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Manisha G Holmes
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Susan T Herman
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jennifer A Williams
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jay Pathmanathan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Fábio A Nascimento
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Ziwei Fan
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Samaneh Nasiri
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Mouhsin M Shafi
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sydney S Cash
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Daniel B Hoch
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Andrew J Cole
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Eric S Rosenthal
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Sahar F Zafar
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - Jimeng Sun
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL
| | - M Brandon Westover
- From the Massachusetts General Hospital/Harvard Medical School Department of Neurology (J.J., W.G., M.B.F., S.S.C., A.J.C., D.B.H., E.S.R., S.F.Z., M.B.W.), MA; Massachusetts General Hospital Clinical Data Animation Center (CDAC) (J.J., W.G., M.B.F., S.S.C., D.B.H., A.J.C., E.S.R., S.F.Z., M.B.W.), MA; University of Wisconsin-Madison Department of Neurology (A.F.S., S.F.); William S. Middleton Memorial Veterans Hospital Madison (A.F.S.), WI; National Institute of Health Data Science (S.H.), Peking University, Beijing, China; Georgia Institute of Technology (S.A.), College of Computing, Atlanta, GA; Yale University-Yale New Haven Hospital (A.H.), CT; Emory University School of Medicine (I.K.), GA; Medical University of South Carolina (J.J.H.), SC; University of Manitoba (M.C.N.), Canada; Johns Hopkins School of Medicine (E.L.J.), MD; University of Arizona College of Medicine (B.L.A.), AZ; Brigham and Women's Hospital (R.A.S.), MA; Mayo Clinic-Rochester (G.O.), MN; Warren Alpert School of Medicine of Brown University (M.B.D.), Providence, RI; University of Nebraska Medical Center (L.A.J.), NE; West Virginia University Hospitals (Z.S.), WV; University of Chicago (H.A.H.), Chicago, IL; Atrium Health (C.B.S.), NC; Université Libre de Bruxelles - Hôpital Erasme (N.G.), Belgium; Icahn School of Medicine, Mount Sinai (J.Y.Y.), NY; New York University (NYU) Grossman School of Medicine (M.G.H.), NY; Barrow Neurological Institute (S.T.H.), Phoenix, AZ; Mater Misericordiae University Hospital (J.A.W.), Dublin, Ireland; University of Pennsylvania (J.P.), PA; Beth Israel Deaconess Medical Center/Harvard Medical School (M.M.S.), MA; and University of Illinois at Urbana-Champaign (J.S.), College of Computing, Champaign, IL.
| |
Collapse
|
33
|
Punia V, Galovic M, Chen Z, Bentes C. Editorial: Acute symptomatic seizures and epileptiform abnormalities: Management and outcomes. Front Neurol 2023; 14:1185710. [PMID: 37064190 PMCID: PMC10090676 DOI: 10.3389/fneur.2023.1185710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Affiliation(s)
- Vineet Punia
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Vineet Punia
| | - Marian Galovic
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zürich, Zürich, Switzerland
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine – Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Carla Bentes
- Reference Centre for Refractory Epilepsies (Member of EpiCARE), Hospital de Santa Maria-CHULN, Lisbon, Portugal
- Department of Neuroscience and Mental Health (Neurology), Hospital de Santa Maria-CHULN, Lisbon, Portugal
- Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Lasek-Bal A, Dewerenda-Sikora M, Binek Ł, Student S, Łabuz-Roszak B, Krzystanek E, Kaczmarczyk A, Krzan A, Żak A, Cieślik A, Bosak M. Epileptiform activity in the acute phase of stroke predicts the outcomes in patients without seizures. Front Neurol 2023; 14:1096876. [PMID: 36994378 PMCID: PMC10040780 DOI: 10.3389/fneur.2023.1096876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background and purposeThe abnormalities in EEG of stroke-patients increase the risk of epilepsy but their significancy for poststroke outcome is unclear. This presented study was aimed at determining the prevalence and nature of changes in EEG recordings from the stroke hemisphere and from the contralateral hemisphere. Another objective was to determine the significance of abnormalities in EEG in the first days of stroke for the post-stroke functional status on the acute and chronic phase of disease.MethodsIn all qualified stroke-patients, EEG was performed during the first 3 days of hospitalization and at discharge. The correlation between EEG abnormalities both in the stroke hemisphere and in the collateral hemisphere with the neurological and functional state in various time points was performed.ResultsOne hundred thirty-one patients were enrolled to this study. Fifty-eight patients (44.27%) had abnormal EEG. The sporadic discharges and generalized rhythmic delta activity were the most common abnormalities in the EEG. The neurological status on the first day and the absence of changes in the EEG in the hemisphere without stroke were the independent factors for good neurological state (0–2 mRS) at discharge. The age-based analysis model (OR 0.981 CI 95% 0.959–1.001, p = 0.047), neurological status on day 1 (OR 0.884 CI 95% 0.82–0.942, p < 0.0001) and EEG recording above the healthy hemisphere (OR 0.607 CI 95% 0.37–0.917, p = 0.028) had the highest prognostic value in terms of achieving good status 90 days after stroke.ConclusionsAbnormalities in EEG without clinical manifestation are present in 40% of patients with acute stroke. Changes in EEG in acute stroke are associated with a poor neurological status in the first days and poor functional status in the chronic period of stroke.
Collapse
Affiliation(s)
- Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
- *Correspondence: Anetta Lasek-Bal
| | - Milena Dewerenda-Sikora
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Łukasz Binek
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Sebastian Student
- Faculty of Automatic Control Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
| | - Beata Łabuz-Roszak
- Department of Neurology, Institute of Medical Sciences University of Opole, Opole, Poland
| | - Ewa Krzystanek
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Kaczmarczyk
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Amadeusz Żak
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Aleksandra Cieślik
- Department of Neurology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Centre of the Silesian Medical University, Katowice, Poland
| | - Magdalena Bosak
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
35
|
Gavaret M, Iftimovici A, Pruvost-Robieux E. EEG: Current relevance and promising quantitative analyses. Rev Neurol (Paris) 2023; 179:352-360. [PMID: 36907708 DOI: 10.1016/j.neurol.2022.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 03/12/2023]
Abstract
Electroencephalography (EEG) remains an essential tool, characterized by an excellent temporal resolution and offering a real window on cerebral functions. Surface EEG signals are mainly generated by the postsynaptic activities of synchronously activated neural assemblies. EEG is also a low-cost tool, easy to use at bed-side, allowing to record brain electrical activities with a low number or up to 256 surface electrodes. For clinical purpose, EEG remains a critical investigation for epilepsies, sleep disorders, disorders of consciousness. Its temporal resolution and practicability also make EEG a necessary tool for cognitive neurosciences and brain-computer interfaces. EEG visual analysis is essential in clinical practice and the subject of recent progresses. Several EEG-based quantitative analyses may complete the visual analysis, such as event-related potentials, source localizations, brain connectivity and microstates analyses. Some developments in surface EEG electrodes appear also, potentially promising for long term continuous EEGs. We overview in this article some recent progresses in visual EEG analysis and promising quantitative analyses.
Collapse
Affiliation(s)
- M Gavaret
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; Service de Neurophysiologie Clinique et Epileptologie, GHU Paris Psychiatrie et Neurosciences, Paris, France; FHU NeuroVasc, Paris, France.
| | - A Iftimovici
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France; Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - E Pruvost-Robieux
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; Service de Neurophysiologie Clinique et Epileptologie, GHU Paris Psychiatrie et Neurosciences, Paris, France; FHU NeuroVasc, Paris, France
| |
Collapse
|
36
|
Hsiao SC, Lai WH, Chen IL, Shih FY. Clinical impact of carbapenems in critically ill patients with valproic acid therapy: A propensity-matched analysis. Front Neurol 2023; 14:1069742. [PMID: 37034060 PMCID: PMC10074422 DOI: 10.3389/fneur.2023.1069742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/30/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundValproic acid (VPA) is one of the most widely used broad-spectrum antiepileptic drugs, and carbapenems (CBPs) remain the drug of choice for severe infection caused by multidrug-resistant bacteria in critically ill patients. The interaction between VPA and CBPs can lead to a rapid depletion of serum VPA level. This may then cause status epilepticus (SE), which is associated with significant mortality. However, the prognostic impact of drug interactions in critically ill patients remains an under-investigated issue.ObjectiveThe aim of this study was to compare the prognosis of critically ill patients treated with VPA and concomitant CBPs or other broad-spectrum antibiotics.MethodsAdult patients admitted to a medical center intensive care unit between January 2007 and December 2017 who concomitantly received VPA and antibiotics were enrolled. The risk of reduced VPA serum concentration, seizures and SE, mortality rate, length of hospital stay (LOS), and healthcare expenditure after concomitant administration were analyzed after propensity score matching.ResultsA total of 1,277 patients were included in the study, of whom 264 (20.7%) concomitantly received VPA and CBPs. After matching, the patients who received CBPs were associated with lower VPA serum concentration (15.8 vs. 60.8 mg/L; p < 0.0001), a higher risk of seizures (51.2 vs. 32.4%; adjusted odds ratio [aOR], 2.19; 95% CI, 1.48–3.24; p < 0.0001), higher risk of SE (13.6 vs. 4.7%; aOR, 3.20; 95% CI, 1.51–6.74; p = 0.0014), higher in-hospital mortality rate (33.8 vs. 24.9%; aOR, 1.57; 95% CI, 1.03–2.20; p = 0.036), longer LOS after concomitant therapy (41 vs. 30 days; p < 0.001), and increased healthcare expenditure (US$20,970 vs. US$12,848; p < 0.0001) than those who received other broad-spectrum antibiotics.ConclusionThe administration of CBPs in epileptic patients under VPA therapy was associated with lower VAP serum concentration, a higher risk of seizures and SE, mortality, longer LOS, and significant utilization of healthcare resources. Healthcare professionals should pay attention to the concomitant use of VPA and CBPs when treating patients with epilepsy. Further studies are warranted to investigate the reason for the poor outcomes and whether avoiding the co-administration of VPA and CBP can improve the outcomes of epileptic patients.
Collapse
Affiliation(s)
- Shu-Chen Hsiao
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Hung Lai
- Department of Trauma Surgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Ling Chen
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- I-Ling Chen
| | - Fu-Yuan Shih
- Department of Neurosurgery, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- *Correspondence: Fu-Yuan Shih
| |
Collapse
|
37
|
Punia V, Li Y, Lapin B, Chandan P, Newey C, Hantus S, Dhakar M, Rubinos C, Zafar S, Sivaraju A, Katzan IL. Impact of acute symptomatic seizures and their management on patient-reported outcomes after stroke. Epilepsy Behav 2023; 140:109115. [PMID: 36804847 DOI: 10.1016/j.yebeh.2023.109115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVE Acute symptomatic seizures (ASyS) after stroke are not uncommon. However, the impact of ASyS and its management with anti-seizure medications (ASMs) on patient-reported outcome measures (PROMs) remains poorly investigated. The objective of our study is to evaluate the association between PROMs and ASyS and ASMs following stroke. METHODS We performed a retrospective cohort study of all stroke patients who underwent inpatient continuous EEG (cEEG) monitoring performed due to suspected ASyS, including the ones with observed convulsive ASyS, from 04/01/2012 to 03/31/2018, who completed PROMs within 6 months of hospital discharge. Patient-reported outcome measures, including one Neuro-QoL and six PROMIS v1.0 domain scales, were completed by patients as the standard of care in ambulatory stroke clinics. Since ASMs are sometimes used without clearly diagnosed ASyS, we performed group comparisons based on ASM status at discharge, irrespective of their ASyS status. T-tests or Wilcoxon rank sum tests compared continuous variables across groups and chi-square tests or Fisher's exact tests were used for categorical variables. RESULTS A total of 508 patients were included in the study [mean age 62.0 ± 14.1 years, 51.6% female; 244 (48.0%) ischemic stroke, 165 (32.5%) intracerebral hemorrhage, and 99 (19.5%) subarachnoid hemorrhage]. A total of 190 (37.4%) patients were discharged on ASMs. At the time of the first PROM, conducted a median of 47 (IQR = 33-78) days after the suspected ASyS, and 162 (31.9%) were on ASMs. ASM use was significantly higher in patients diagnosed with ASyS. Physical Function and Satisfaction with Social Roles and Activities were the most affected health domains. Patient-reported outcome measures were not significantly different between groups based on ASyS (electrographic and/or convulsive), ASM use at hospital discharge, or ASM status on the day of PROM completion. SIGNIFICANCE There were no differences in multiple domain-specific PROMs in patients with recent stroke according to ASyS status or ASM use suggesting the possible lack of the former's sensitivity to detect their impact. Additional research is necessary to determine if there is a need for developing ASyS-specific PROMs.
Collapse
Affiliation(s)
- Vineet Punia
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Yadi Li
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Center for Outcomes Research and Evaluation, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Brittany Lapin
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Center for Outcomes Research and Evaluation, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Pradeep Chandan
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Christopher Newey
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States; Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Stephen Hantus
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Monika Dhakar
- Rhode Island Hospital, Brown University, United States
| | - Clio Rubinos
- University of North Carolina, Chapel Hill, United States
| | - Sahar Zafar
- Massachusetts General Hospital, Harvard University, United States
| | | | - Irene L Katzan
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | | |
Collapse
|
38
|
Waak M, Laing J, Nagarajan L, Lawn N, Harvey AS. Continuous electroencephalography in the intensive care unit: A critical review and position statement from an Australian and New Zealand perspective. CRIT CARE RESUSC 2023; 25:9-19. [PMID: 37876987 PMCID: PMC10581281 DOI: 10.1016/j.ccrj.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objectives This article aims to critically review the literature on continuous electroencephalography (cEEG) monitoring in the intensive care unit (ICU) from an Australian and New Zealand perspective and provide recommendations for clinicians. Design and review methods A taskforce of adult and paediatric neurologists, selected by the Epilepsy Society of Australia, reviewed the literature on cEEG for seizure detection in critically ill neonates, children, and adults in the ICU. The literature on routine EEG and cEEG for other indications was not reviewed. Following an evaluation of the evidence and discussion of controversial issues, consensus was reached, and a document that highlighted important clinical, practical, and economic considerations regarding cEEG in Australia and New Zealand was drafted. Results This review represents a summary of the literature and consensus opinion regarding the use of cEEG in the ICU for detection of seizures, highlighting gaps in evidence, practical problems with implementation, funding shortfalls, and areas for future research. Conclusion While cEEG detects electrographic seizures in a significant proportion of at-risk neonates, children, and adults in the ICU, conferring poorer neurological outcomes and guiding treatment in many settings, the health economic benefits of treating such seizures remain to be proven. Presently, cEEG in Australian and New Zealand ICUs is a largely unfunded clinical resource that is subsequently reserved for the highest-impact patient groups. Wider adoption of cEEG requires further research into impact on functional and health economic outcomes, education and training of the neurology and ICU teams involved, and securement of the necessary resources and funding to support the service.
Collapse
Affiliation(s)
- Michaela Waak
- Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, Australia
| | - Joshua Laing
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
- Comprehensive Epilepsy Program, Alfred Health, Melbourne, Australia
- Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Nagarajan
- Department of Neurology, Perth Children's Hospital, Perth, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| | - Nicholas Lawn
- Western Australian Adult Epilepsy Service, Sir Charles Gardiner Hospital, Perth, Australia
| | - A. Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
- Neurosciences Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
39
|
Mahizhnan MM, Gillinder L, Craig D, Wensley I, Coyle S, Ferguson S, Papacostas J, McGonigal A. Electroencephalographic evolution of SEEG-associated intracerebral haemorrhage. Neurophysiol Clin 2022; 52:486-488. [PMID: 36283913 DOI: 10.1016/j.neucli.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Marai Mozhy Mahizhnan
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Lisa Gillinder
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia
| | - Donald Craig
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Isaac Wensley
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Stephen Coyle
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Stuart Ferguson
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
| | - Jason Papacostas
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Aileen McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia; Mater Research Institute, Faculty of Medicine, University of Queensland, Australia.
| |
Collapse
|
40
|
Holla SK, Krishnamurthy PV, Subramaniam T, Dhakar MB, Struck AF. Electrographic Seizures in the Critically Ill. Neurol Clin 2022; 40:907-925. [PMID: 36270698 PMCID: PMC10508310 DOI: 10.1016/j.ncl.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identifying and treating critically ill patients with seizures can be challenging. In this article, the authors review the available data on patient populations at risk, seizure prognostication with tools such as 2HELPS2B, electrographic seizures and the various ictal-interictal continuum patterns with their latest definitions and associated risks, ancillary testing such as imaging studies, serum biomarkers, and invasive multimodal monitoring. They also illustrate 5 different patient scenarios, their treatment and outcomes, and propose recommendations for targeted treatment of electrographic seizures in critically ill patients.
Collapse
Affiliation(s)
- Smitha K Holla
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA.
| | | | - Thanujaa Subramaniam
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Yale School of Medicine, 15 York Street, Building LLCI, 10th Floor, Suite 1003 New Haven, CT 06520, USA
| | - Monica B Dhakar
- Department of Neurology, The Warren Alpert Medical School of Brown University, 593 Eddy St, APC 5, Providence, RI 02903, USA
| | - Aaron F Struck
- Department of Neurology, UW Medical Foundation Centennial building, 1685 Highland Avenue, Madison, WI 53705, USA; William S Middleton Veterans Hospital, Madison WI, USA
| |
Collapse
|
41
|
Wang X, Yang F, Chen B, Jiang W. Non‐convulsive seizures and non‐convulsive status epilepticus in neuro‐intensive care unit. Acta Neurol Scand 2022; 146:752-760. [DOI: 10.1111/ane.13718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Wang
- Department of Neurology, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Fang Yang
- Department of Neurology, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Beibei Chen
- Department of Neurology, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
42
|
The Role of Electroencephalography in the Prognostication of Clinical Outcomes in Critically Ill Children: A Review. CHILDREN 2022; 9:children9091368. [PMID: 36138677 PMCID: PMC9497701 DOI: 10.3390/children9091368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
Electroencephalography (EEG) is a neurologic monitoring modality that allows for the identification of seizures and the understanding of cerebral function. Not only can EEG data provide real-time information about a patient’s clinical status, but providers are increasingly using these results to understand short and long-term prognosis in critical illnesses. Adult studies have explored these associations for many years, and now the focus has turned to applying these concepts to the pediatric literature. The aim of this review is to characterize how EEG can be utilized clinically in pediatric intensive care settings and to highlight the current data available to understand EEG features in association with functional outcomes in children after critical illness. In the evaluation of seizures and seizure burden in children, there is abundant data to suggest that the presence of status epilepticus during illness is associated with poorer outcomes and a higher risk of mortality. There is also emerging evidence indicating that poorly organized EEG backgrounds, lack of normal sleep features and lack of electrographic reactivity to clinical exams portend worse outcomes in this population. Prognostication in pediatric critical illness must be informed by the comprehensive evaluation of a patient’s clinical status but the utilization of EEG may help contribute to this assessment in a meaningful way.
Collapse
|
43
|
Peter-Derex L, Philippeau F, Garnier P, André-Obadia N, Boulogne S, Catenoix H, Convers P, Mazzola L, Gouttard M, Esteban M, Fontaine J, Mechtouff L, Ong E, Cho TH, Nighoghossian N, Perreton N, Termoz A, Haesebaert J, Schott AM, Rabilloud M, Pivot C, Dhelens C, Filip A, Berthezène Y, Rheims S, Boutitie F, Derex L. Safety and efficacy of prophylactic levetiracetam for prevention of epileptic seizures in the acute phase of intracerebral haemorrhage (PEACH): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2022; 21:781-791. [PMID: 35963261 DOI: 10.1016/s1474-4422(22)00235-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND The incidence of early seizures (occurring within 7 days of stroke onset) after intracerebral haemorrhage reaches 30% when subclinical seizures are diagnosed by continuous EEG. Early seizures might be associated with haematoma expansion and worse neurological outcomes. Current guidelines do not recommend prophylactic antiseizure treatment in this setting. We aimed to assess whether prophylactic levetiracetam would reduce the risk of acute seizures in patients with intracerebral haemorrhage. METHODS The double-blind, randomised, placebo-controlled, phase 3 PEACH trial was conducted at three stroke units in France. Patients (aged 18 years or older) who presented with a non-traumatic intracerebral haemorrhage within 24 h after onset were randomly assigned (1:1) to levetiracetam (intravenous 500 mg every 12 h) or matching placebo. Randomisation was done with a web-based system and stratified by centre and National Institutes of Health Stroke Scale (NIHSS) score at baseline. Treatment was continued for 6 weeks. Continuous EEG was started within 24 h after inclusion and recorded over 48 h. The primary endpoint was the occurrence of at least one clinical seizure within 72 h of inclusion or at least one electrographic seizure recorded on continuous EEG, analysed in the modified intention-to-treat population, which comprised all patients who were randomly assigned to treatment and who had a continuous EEG performed. This trial was registered at ClinicalTrials.gov, NCT02631759, and is now closed. Recruitment was prematurely stopped after 48% of the recruitment target was reached due to a low recruitment rate and cessation of funding. FINDINGS Between June 1, 2017, and April 14, 2020, 50 patients with mild-to-moderate severity intracerebral haemorrhage were included: 24 were assigned to levetiracetam and 26 to placebo. During the first 72 h, a clinical or electrographic seizure was observed in three (16%) of 19 patients in the levetiracetam group versus ten (43%) of 23 patients in the placebo group (odds ratio 0·16, 95% CI 0·03-0·94, p=0·043). All seizures in the first 72 h were electrographic seizures only. No difference in depression or anxiety reporting was observed between the groups at 1 month or 3 months. Depression was recorded in three (13%) patients who received levetiracetam versus four (15%) patients who received placebo, and anxiety was reported for two (8%) patients versus one (4%) patient. The most common treatment-emergent adverse events in the levetiracetam group versus the placebo group were headache (nine [39%] vs six [24%]), pain (three [13%] vs ten [40%]), and falls (seven [30%] vs four [16%]). The most frequent serious adverse events were neurological deterioration due to the intracerebral haemorrhage (one [4%] vs four [16%]) and severe pneumonia (two [9%] vs two [8%]). No treatment-related death was reported in either group. INTERPRETATION Levetiracetam might be effective in preventing acute seizures in intracerebral haemorrhage. Larger studies are needed to determine whether seizure prophylaxis improves functional outcome in patients with intracerebral haemorrhage. FUNDING French Ministry of Health.
Collapse
Affiliation(s)
- Laure Peter-Derex
- Centre for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France.
| | - Frédéric Philippeau
- Stroke Unit, Department of Neurology, Fleyriat Hospital, Bourg en Bresse, France
| | - Pierre Garnier
- Stroke Centre, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Nathalie André-Obadia
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Sébastien Boulogne
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Hélène Catenoix
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Philippe Convers
- Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France; Clinical Neurophysiology Unit, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Laure Mazzola
- Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France; Clinical Neurophysiology Unit, Department of Neurology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Michel Gouttard
- Stroke Unit, Department of Neurology, Fleyriat Hospital, Bourg en Bresse, France
| | - Maud Esteban
- Stroke Centre, Lyon University Hospital, Lyon, France
| | | | | | - Elodie Ong
- Stroke Centre, Lyon University Hospital, Lyon, France
| | - Tae-Hee Cho
- Stroke Centre, Lyon University Hospital, Lyon, France
| | | | - Nathalie Perreton
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Anne Termoz
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Julie Haesebaert
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Anne-Marie Schott
- Public Health Unit, Clinical Research and Epidemiology Department, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| | - Muriel Rabilloud
- Department of Biostatistics, Lyon University Hospital, Lyon, France; Biometry and Evolutionary Biology Laboratory, CNRS UMR 5558, Biostatistics Health Team, Villeurbanne, France
| | - Christine Pivot
- Pharmacy, FRIPHARM, Edouard Herriot Hospital, Lyon University Hospital, Lyon, France
| | - Carole Dhelens
- Pharmacy, FRIPHARM, Edouard Herriot Hospital, Lyon University Hospital, Lyon, France
| | - Andrea Filip
- Department of Neuroradiology, Neurological Hospital, Lyon University Hospital, Lyon, France
| | - Yves Berthezène
- Department of Neuroradiology, Neurological Hospital, Lyon University Hospital, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Lyon University Hospital, Lyon, France; Lyon Neuroscience Research Centre, CNRS UMR 5292, INSERM U1028, Lyon, France
| | - Florent Boutitie
- Department of Biostatistics, Lyon University Hospital, Lyon, France; Biometry and Evolutionary Biology Laboratory, CNRS UMR 5558, Biostatistics Health Team, Villeurbanne, France
| | - Laurent Derex
- Stroke Centre, Lyon University Hospital, Lyon, France; University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, Lyon, France
| |
Collapse
|
44
|
Dhakar MB, Sheikh Z, Kumari P, Lawson EC, Jeanneret V, Desai D, Ruiz AR, Haider HA. Epileptiform Abnormalities in Acute Ischemic Stroke: Impact on Clinical Management and Outcomes. J Clin Neurophysiol 2022; 39:446-452. [PMID: 33298681 PMCID: PMC8371977 DOI: 10.1097/wnp.0000000000000801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Studies examining seizures (Szs) and epileptiform abnormalities (EAs) using continuous EEG in acute ischemic stroke (AIS) are limited. Therefore, we aimed to describe the prevalence of Sz and EA in AIS, its impact on anti-Sz drug management, and association with discharge outcomes. METHODS The study included 132 patients with AIS who underwent continuous EEG monitoring >6 hours. Continuous EEG was reviewed for background, Sz and EA (lateralized periodic discharges [LPD], generalized periodic discharges, lateralized rhythmic delta activity, and sporadic epileptiform discharges). Relevant clinical, demographic, and imaging factors were abstracted to identify risk factors for Sz and EA. Outcomes included all-cause mortality, functional outcome at discharge (good outcome as modified Rankin scale of 0-2 and poor outcome as modified Rankin scale of 3-6) and changes to anti-Sz drugs (escalation or de-escalation). RESULTS The frequency of Sz was 7.6%, and EA was 37.9%. Patients with Sz or EA were more likely to have cortical involvement (84.6% vs. 67.5% P = 0.028). Among the EAs, the presence of LPD was associated with an increased risk of Sz (25.9% in LPD vs. 2.9% without LPD, P = 0.001). Overall, 21.2% patients had anti-Sz drug changes because of continuous EEG findings, 16.7% escalation and 4.5% de-escalation. The presence of EA or Sz was not associated with in-hospital mortality or discharge functional outcomes. CONCLUSIONS Despite the high incidence of EA, the rate of Sz in AIS is relatively lower and is associated with the presence of LPDs. These continuous EEG findings resulted in anti-Sz drug changes in one-fifth of the cohort. Epileptiform abnormality and Sz did not affect mortality or discharge functional outcomes.
Collapse
Affiliation(s)
- Monica B. Dhakar
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Zubeda Sheikh
- Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A
| | - Polly Kumari
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Eric C. Lawson
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Valerie Jeanneret
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Dhaval Desai
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Andres Rodriguez Ruiz
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Hiba A. Haider
- Epilepsy Section, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, U.S.A
| |
Collapse
|
45
|
Seizure prevention in patients with intracerebral haemorrhage. Lancet Neurol 2022; 21:760-761. [DOI: 10.1016/s1474-4422(22)00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
|
46
|
Bunney G, Murphy J, Colton K, Wang H, Shin HJ, Faigle R, Naidech AM. Predicting Early Seizures After Intracerebral Hemorrhage with Machine Learning. Neurocrit Care 2022; 37:322-327. [PMID: 35288860 PMCID: PMC10084721 DOI: 10.1007/s12028-022-01470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Seizures are a harmful complication of acute intracerebral hemorrhage (ICH). "Early" seizures in the first week after ICH are a risk factor for deterioration, later seizures, and herniation. Ideally, seizure medications after ICH would only be administered to patients with a high likelihood to have seizures. We developed and validated machine learning (ML) models to predict early seizures after ICH. METHODS We used two large datasets to train and then validate our models in an entirely independent test set. The first model ("CAV") predicted early seizures from a subset of variables of the CAVE score (a prediction rule for later seizures)-cortical hematoma location, age less than 65 years, and hematoma volume greater than 10 mL-whereas early seizure was the dependent variable. We attempted to improve on the "CAV" model by adding anticoagulant use, antiplatelet use, Glasgow Coma Scale, international normalized ratio, and systolic blood pressure ("CAV + "). For each model we used logistic regression, lasso regression, support vector machines, boosted trees (Xgboost), and random forest models. Final model performance was reported as the area under the receiver operating characteristic curve (AUC) using receiver operating characteristic models for the test data. The setting of the study was two large academic institutions: institution 1, 634 patients; institution 2, 230 patients. There were no interventions. RESULTS Early seizures were predicted across the ML models by the CAV score in test data, (AUC 0.72, 95% confidence interval 0.62-0.82). The ML model that predicted early seizure better in the test data was Xgboost (AUC 0.79, 95% confidence interval 0.71-0.87, p = 0.04) compared with the CAV model AUC. CONCLUSIONS Early seizures after ICH are predictable. Models using cortical hematoma location, age less than 65 years, and hematoma volume greater than 10 mL had a good accuracy rate, and performance improved with more independent variables. Additional methods to predict seizures could improve patient selection for monitoring and prophylactic seizure medications.
Collapse
Affiliation(s)
- Gabrielle Bunney
- Department of Emergency Medicine, Northwestern University, 625 N Michigan Ave Suite 1150, Chicago, IL, 60611, USA.
| | - Julianne Murphy
- Center for Education in Health Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katharine Colton
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Hanyin Wang
- Driskill Graduate School of Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hye Jung Shin
- Institute for Public Health and Medicine, Northwestern University, Chicago, IL, USA
| | - Roland Faigle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew M Naidech
- Department of Neurology, Northwestern University, Chicago, IL, USA
- Institute for Public Health and Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
47
|
Vychopen M, Hamed M, Bahna M, Racz A, Ilic I, Salemdawod A, Schneider M, Lehmann F, Eichhorn L, Bode C, Jacobs AH, Behning C, Schuss P, Güresir E, Vatter H, Borger V. A Validation Study for SHE Score for Acute Subdural Hematoma in the Elderly. Brain Sci 2022; 12:981. [PMID: 35892422 PMCID: PMC9330492 DOI: 10.3390/brainsci12080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The aim of this study was the verification of the Subdural Hematoma in the Elderly (SHE) score proposed by Alford et al. as a mortality predictor in patients older than 65 years with nontraumatic/minor trauma acute subdural hematoma (aSDH). Additionally, we evaluated further predictors associated with poor outcome. METHODS Patients were scored according to age (1 point is given if patients were older than 80 years), GCS by admission (1 point for GCS 5-12, 2 points for GCS 3-4), and SDH volume (1 point for volume 50 mL). The sum of points determines the SHE score. Multivariate logistic regression analysis was performed to identify additional independent risk factors associated with 30-day mortality. RESULTS We evaluated 131 patients with aSDH who were treated at our institution between 2008 and 2020. We observed the same 30-day mortality rates published by Alford et al.: SHE 0: 4.3% vs. 3.2%, p = 1.0; SHE 1: 12.2% vs. 13.1%, p = 1.0; SHE 2: 36.6% vs. 32.7%, p = 0.8; SHE 3: 97.1% vs. 95.7%, p = 1.0 and SHE 4: 100% vs. 100%, p = 1.0. Additionally, 18 patients who developed status epilepticus (SE) had a mortality of 100 percent regardless of the SHE score. The distribution of SE among the groups was: 1 for SHE 1, 6 for SHE 2, 9 for SHE 3, and 2 for SHE 4. The logistic regression showed the surgical evacuation to be the only significant risk factor for developing the seizure. All patients who developed SE underwent surgery (p = 0.0065). Furthermore, SHE 3 and 4 showed no difference regarding the outcome between surgical and conservative treatment. CONCLUSIONS SHE score is a reliable mortality predictor for minor trauma acute subdural hematoma in elderly patients. In addition, we identified status epilepticus as a strong life-expectancy-limiting factor in patients undergoing surgical evacuation.
Collapse
Affiliation(s)
- Martin Vychopen
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Majd Bahna
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Inja Ilic
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Abdallah Salemdawod
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Felix Lehmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127 Bonn, Germany; (F.L.); (L.E.); (C.B.)
| | - Andreas H. Jacobs
- Department of Geriatric Medicine and Neurology, Johanniter Hospital Bonn, 53113 Bonn, Germany;
| | - Charlotte Behning
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (M.H.); (M.B.); (I.I.); (A.S.); (M.S.); (P.S.); (E.G.); (H.V.); (V.B.)
| |
Collapse
|
48
|
Guillaumet G, Shotar E, Clarençon F, Sourour NA, Premat K, Lenck S, Dupont S, Jacquens A, Degos V, Boeken T, Nouet A, Carpentier A, Mathon B. Incidence and risk factors of epilepsy following brain arteriovenous malformation rupture in adult patients. J Neurol 2022; 269:6342-6353. [PMID: 35867151 DOI: 10.1007/s00415-022-11286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Little is known about incidence, time of onset, clinical presentation, and risk factors of epileptic seizure following brain arteriovenous malformation (bAVM) rupture. METHODS We performed a monocentric retrospective cohort study from January 2003 to March 2021. The main objective of this study was to determine the incidence of seizures after spontaneous bAVM rupture in nonepileptic adult patients and describe the corresponding clinical features. The secondary objective was to identify clinical, radiological, or biological predictors for the occurrence of de novo seizures after bAVM rupture. RESULTS Of the 296 cases of bAVM rupture registered during the study period, 247 nonepileptic patients (male 53%, median age 40) were included in the study. Fifty-nine patients (23.9%) had at least one seizure after bAVM rupture. The use of preventive antiepileptic drugs (10.3 [1.5-74.1]; P = 0.02) and decompressive craniectomy (15.4 [2.0-125]; P < 0.009) were independently associated with the occurrence of epilepsy after the bAVM rupture. The factors independently associated with the absence of any seizure after the rupture were isolated intraventricular hemorrhage (0.3 [0.1-0.99]; P = 0.04) and infratentorial location of the bAVM (0.2 [0.1-0.5]; P = 0.09). The first seizure occurred within the first year or within 5 years in, respectively, 83.1% and 98.3% of the patients. CONCLUSIONS Epilepsy affects nearly a quarter of patients after bAVM rupture. Decompressive craniectomy represents an independent risk factor significantly associated with the occurrence of epilepsy after bAVM rupture. The introduction of preventive AEDs after rupture could be considered in these most severe patients who have a decompressive craniectomy.
Collapse
Affiliation(s)
- Gonzague Guillaumet
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, 75013, France
| | - Eimad Shotar
- Department of Neuroradiology, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Frédéric Clarençon
- Department of Neuroradiology, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Nader-Antoine Sourour
- Department of Neuroradiology, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Kevin Premat
- Department of Neuroradiology, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Stéphanie Lenck
- Department of Neuroradiology, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sophie Dupont
- Epileptology Unit, Department of Rehabilitation, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Alice Jacquens
- Department of Neurosurgical Anesthesiology and Critical Care, AP-HP, La Pitié Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Vincent Degos
- Department of Neurosurgical Anesthesiology and Critical Care, AP-HP, La Pitié Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Tom Boeken
- Department of Vascular and Oncological Interventional Radiology, AP-HP, Centre, Hôpital Européen Georges-Pompidou, 75015, Paris, France.,Université de Paris, 75006, Paris, France
| | - Aurélien Nouet
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, 75013, France
| | - Alexandre Carpentier
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, 75013, France
| | - Bertrand Mathon
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, 75013, France. .,ICM, INSERM U 1127, CNRS UMR 7225, UMRS 1127, Paris Brain Institute, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
49
|
Sharma S, Nunes M, Alkhachroum A. Adult Critical Care Electroencephalography Monitoring for Seizures: A Narrative Review. Front Neurol 2022; 13:951286. [PMID: 35911927 PMCID: PMC9334872 DOI: 10.3389/fneur.2022.951286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) is an important and relatively inexpensive tool that allows intensivists to monitor cerebral activity of critically ill patients in real time. Seizure detection in patients with and without acute brain injury is the primary reason to obtain an EEG in the Intensive Care Unit (ICU). In response to the increased demand of EEG, advances in quantitative EEG (qEEG) created an approach to review large amounts of data instantly. Finally, rapid response EEG is now available to reduce the time to detect electrographic seizures in limited-resource settings. This review article provides a concise overview of the technical aspects of EEG monitoring for seizures, clinical indications for EEG, the various available modalities of EEG, common and challenging EEG patterns, and barriers to EEG monitoring in the ICU.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Michelle Nunes
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
- *Correspondence: Ayham Alkhachroum
| |
Collapse
|
50
|
Zheng LL, Chen JZ, Zhuang XR, Miao JY. Comparison of Electroencephalography in Patients With Seizures Caused by Neurosyphilis and Viral Encephalitis. Front Neurol 2022; 13:879643. [PMID: 35711258 PMCID: PMC9195503 DOI: 10.3389/fneur.2022.879643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Neurosyphilis (NS) lacks specificity in clinical and imaging features, and patients are frequently misdiagnosed as viral encephalitis when they present with seizures. This study aimed to compare electroencephalography (EEG) in patients with seizures resulting from the two diseases and provide guidance for differential diagnosis. Methods A retrospective study on patients diagnosed with neurosyphilis and viral encephalitis with seizures in the Department of Neurology, Zhongshan Hospital, Xiamen University from 2012 to 2020. Results A total of 39 patients with seizures caused by neurosyphilis and 40 patients with seizures caused by viral encephalitis were included. Chi-square test analysis showed that compared with patients with viral encephalitis, patients with neurosyphilis mainly developed in middle-aged and elderly people (p < 0.001), were more likely to have temporal epileptiform discharges (p < 0.001), and less likely to have status epilepticus (SE) (p = 0.029). There was difference between two groups in the EEG performance of lateralized periodic discharges (LPDs) (p = 0.085). The two groups were matched for age and sex by case-control matching, and 25 cases in each group were successfully matched. Patients with neurosyphilis were more likely to have temporal epileptiform discharges than those with viral encephalitis (p = 0.002), and there were no significant differences in LPDs (p = 0.077) and SE (p = 0.088) between two groups. Conclusion When EEG shows temporal epileptiform discharges, especially in the form of LPDs, we should consider the possibility of neurosyphilis.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jing-Zhen Chen
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xiao-Rong Zhuang
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Jia-Yin Miao
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|