1
|
Dong L, Zhou R, Zhou J, Liu K, Jin C, Wang J, Xue C, Tian M, Zhang H, Zhong Y. Positron emission tomography molecular imaging for pathological visualization in multiple system atrophy. Neurobiol Dis 2025; 206:106828. [PMID: 39900304 DOI: 10.1016/j.nbd.2025.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025] Open
Abstract
Multiple system atrophy (MSA) is a complex, heterogeneous neurodegenerative disorder characterized by a multifaceted pathogenesis. Its key pathological hallmark is the abnormal aggregation of α-synuclein, which triggers neuroinflammation, disrupts both dopaminergic and non-dopaminergic systems, and results in metabolic abnormalities in the brain. Positron emission tomography (PET) is a non-invasive technique that enables the visualization, characterization, and quantification of these pathological processes from diverse perspectives using radiolabeled agents. PET imaging of molecular events provides valuable insights into the underlying pathomechanisms of MSA and holds significant promise for the development of imaging biomarkers, which could greatly improve disease assessment and management. In this review, we focused on the pathological mechanisms of MSA, summarized relevant targets and radiopharmaceuticals, and discussed the clinical applications and future perspectives of PET molecular imaging in MSA.
Collapse
Affiliation(s)
- La Dong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Ke Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China
| | - Chenxi Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Human Phenome Institute, Fudan University, Shanghai 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 31009, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 31009, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 31009, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Jalles C, Guerreiro D, Pona-Ferreira F, Simões RM, Reimão S, Ferreira JJ. Hypokinetic-rigid gait disorders with balance impairment - A walk through clinical and pathophysiological definitions. Parkinsonism Relat Disord 2025:107339. [PMID: 39971644 DOI: 10.1016/j.parkreldis.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Hypokinetic-rigid gait disorders with balance impairment are a common clinical phenotype of different syndromes and diseases. However, multiple designations are used across the literature with unclear definitions, which brings heterogeneity and subjectivity to the discussion of such gait disorders. Therefore, there is a need for clear concepts to increase accuracy in clinical diagnosis and allow consistent comparisons and reasoning within research data. We performed a review of concepts, including lower body parkinsonism (LBP), higher level gait disorders, frontal gait disorders, gait apraxia, senile gait and cautious gait. Additionally, we reviewed the basic pathophysiological mechanisms underlying these gait disorders. LBP was found to be mainly associated with dysfunction of the motor thalamocortical circuit and of the mesencephalic locomotor region. We propose that for research purposes, concepts with greater specificity, such as LBP, should be preferentially used to improve the accuracy of studies involving this population. Considering the significant phenotypic and pathophysiological overlap between hypokinetic-rigid gait disorders, a multi-modal approach would be more pertinent to optimize the differential diagnosis in both clinical and research settings.
Collapse
Affiliation(s)
- Constança Jalles
- Clinical Pharmacology Unit, Unidade Local de Saúde de Santa Maria, Portugal; Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Rita M Simões
- CNS, Campus Neurológico, Torres Vedras, Portugal; Neurology Department, Unidade Local de Saúde Loures-Odivelas, Portugal
| | - Sofia Reimão
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Imaging University Clinic, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Neurological Imaging Department, Unidade Local de Saúde de Santa Maria, Portugal
| | - Joaquim J Ferreira
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; CNS, Campus Neurológico, Torres Vedras, Portugal.
| |
Collapse
|
3
|
Spiegel C, Marotta C, Bertram K, Vivash L, Harding IH. Brainstem and cerebellar radiological findings in progressive supranuclear palsy. Brain Commun 2025; 7:fcaf051. [PMID: 39958262 PMCID: PMC11829206 DOI: 10.1093/braincomms/fcaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Progressive supranuclear palsy is a sporadic neurodegenerative 4-repeat tauopathy associated with significant morbidity. Heterogeneity of symptom expression among this group is increasingly recognized, reflecting variable tau spread and neurodegeneration. Clinical manifestations consist of debilitating and rapidly progressive motor, oculomotor, speech, cognitive and affective impairments. Core pathological changes are noted with a predominance in the midbrain and basal ganglia; however, spread to the more caudal brainstem and cerebellar regions is reported at various stages. Accordingly, whilst midbrain atrophy is the best recognized supportive imaging finding, quantitative neuroimaging studies using MRI and PET approaches have revealed a wider profile of brain abnormalities in cohorts of individuals with progressive supranuclear palsy. This expanded neurobiological scope of disease may account for individual heterogeneity and may highlight additional biological markers that are relevant to diagnosing and tracking the illness. Additionally, there is increasing understanding of the diverse cognitive, affective and speech functions of the cerebellum, which may be implicated in progressive supranuclear palsy beyond current recognition. In this review, we undertake a systematic literature search and summary of in vivo structural and functional neuroimaging findings in the brainstem and cerebellum in progressive supranuclear palsy to date. Novel and multimodal imaging techniques have emerged over recent years, which reveal several infratentorial alterations beyond midbrain atrophy in progressive supranuclear palsy. Most saliently, there is evidence for volume loss and microstructural damage in the pons, middle cerebellar peduncles and cerebellar cortex and deep nuclei, reported alongside recognized midbrain and superior cerebellar peduncle changes. Whilst the literature supporting the presence of these features is not unanimous, the evidence base is compelling, including correlations with disease progression, severity or variant differences. A smaller number of studies report on abnormalities in MRI measures of iron deposition, neuromelanin, viscoelasticity and the glymphatic system involving the infratentorial regions. Molecular imaging studies have also shown increased uptake of tau tracer in the midbrain and cerebellar dentate nucleus, although concern remains regarding possible off-target binding. Imaging of other molecular targets has been sparse, but reports of neurotransmitter, inflammatory and synaptic density alterations in cerebellar and brainstem regions are available. Taken together, there is an established evidence base of in vivo imaging alterations in the brainstem and cerebellum which highlights that midbrain atrophy is often accompanied by other infratentorial alterations in people with progressive supranuclear palsy. Further research examining the contribution of these features to clinical morbidity and inter-individual variability in symptom expression is warranted.
Collapse
Affiliation(s)
- Chloe Spiegel
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Cassandra Marotta
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Kelly Bertram
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Ian H Harding
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
4
|
d'Angremont E, Renken R, van der Zee S, de Vries EFJ, van Laar T, Sommer IEC. Cholinergic Denervation Patterns in Parkinson's Disease Associated With Cognitive Impairment Across Domains. Hum Brain Mapp 2025; 46:e70047. [PMID: 39846322 PMCID: PMC11755113 DOI: 10.1002/hbm.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 01/30/2025] Open
Abstract
Cognitive impairment is considered to be one of the key features of Parkinson's disease (PD), ultimately resulting in PD-related dementia in approximately 80% of patients over the course of the disease. Several distinct cognitive syndromes of PD have been suggested, driven by different neurotransmitter deficiencies and thus requiring different treatment regimes. In this study, we aimed to identify characteristic brain covariance patterns that reveal how cholinergic denervation is related to PD and to cognitive impairment, focusing on four domains, including attention, executive functioning, memory, and visuospatial cognition. We applied scaled sub-profile model principal component analysis to reveal cholinergic-specific disease-related and cognition-related covariance patterns using [18F]fluoroethoxybenzovesamicol PET imaging. Stepwise logistic regression was applied to predict disease state (PD vs. healthy control). Linear regression models were applied to predict cognitive functioning within the PD group, for each cognitive domain separately. We assessed the performance of the identified patterns with leave-one-out cross validation and performed bootstrapping to assess pattern stability. We included 34 PD patients with various levels of cognitive dysfunction and 10 healthy controls, with similar age, sex, and educational level. The disease-related cholinergic pattern was strongly discriminative (AUC 0.91), and was most prominent in posterior brain regions, with lower tracer uptake in patients compared to controls. We found largely overlapping cholinergic-specific patterns across cognitive domains, with positive correlations between tracer uptake in the opercular cortex, left dorsolateral prefrontal cortex and posterior cingulate gyrus, among other regions, and attention, executive, and visuospatial functioning. Cross validation showed significant correlations between predicted and measured cognition scores, with the exception of memory. We identified a robust structural covariance pattern for the assessment of cholinergic dysfunction related to PD, as well as overlapping cholinergic patterns related to attentional, executive- and visuospatial impairment in PD patients.
Collapse
Affiliation(s)
- Emile d'Angremont
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Remco Renken
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sygrid van der Zee
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular ImagingUniversity Medical Center GroningenGroningenThe Netherlands
| | - Teus van Laar
- Department of NeurologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
5
|
Kim Y, Gut NK, Shiflett MW, Mena-Segovia J. Inhibition of midbrain cholinergic neurons impairs decision-making strategies during reversal learning. Front Mol Neurosci 2024; 17:1481956. [PMID: 39640944 PMCID: PMC11617536 DOI: 10.3389/fnmol.2024.1481956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The pedunculopontine nucleus (PPN) plays a role in coordinating complex behaviors and adapting to changing environmental conditions. The specific role of cholinergic neurons in PPN function is not well understood, but their ascending connectivity with basal ganglia and thalamus suggests involvement in adaptive functions. Methods We used a chemogenetic approach in ChAT::Cre rats to explore the specific contribution of PPN cholinergic neurons to behavioral flexibility, focusing on the adaptation to shifting reward contingencies in a Reversal Learning Task. Rats were first trained in a non-probabilistic reversal learning task, followed by a probabilistic phase to challenge their adaptive strategies under varying reward conditions. Results Motor functions were evaluated to confirm that behavioral observations were not confounded by motor deficits. We found that inhibition of PPN cholinergic neurons did not affect performance in the non-probabilistic condition but significantly altered the rats' ability to adapt to the probabilistic condition. Under chemogenetic inhibition, the rats showed a marked deficiency in utilizing previous trial outcomes for decision-making and an increased sensitivity to negative outcomes. Logistic regression and Q-learning models revealed that suppression of PPN cholinergic activity impaired the adaptation of decision-making strategies. Discussion Our results highlight the role of PPN cholinergic neurons in dynamically updating action-outcome expectations and adapting to new contingencies. The observed impairments in decision-making under PPN cholinergic inhibition align with cognitive deficits associated with cholinergic dysfunction in neurodegenerative disorders. These findings suggest that cholinergic neurons in the PPN are essential for maximizing rewards through the flexible updating of behavioral strategies.
Collapse
Affiliation(s)
- Yuwoong Kim
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Nadine K. Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | | | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
6
|
Qiu T, Liu M, Qiu X, Li T, Le W. Cerebellar involvement in Parkinson's disease: Pathophysiology and neuroimaging. Chin Med J (Engl) 2024; 137:2395-2403. [PMID: 39227357 PMCID: PMC11479504 DOI: 10.1097/cm9.0000000000003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Indexed: 09/05/2024] Open
Abstract
ABSTRACT Parkinson's disease (PD) is a neurodegenerative disease characterized by various motor and non-motor symptoms. The complexity of its symptoms suggests that PD is a heterogeneous neurological disorder. Its pathological changes are not limited to the substantia nigra-striatal system, but gradually extending to other regions including the cerebellum. The cerebellum is connected to a wide range of central nervous system regions that form essential neural circuits affected by PD. In addition, altered dopaminergic activity and α-synuclein pathology are found in the cerebellum, further suggesting its role in the PD progression. Furthermore, an increasing evidence obtained from imaging studies has demonstrated that cerebellar structure, functional connectivity, and neural metabolism are altered in PD when compared to healthy controls, as well as among different PD subtypes. This review provides a comprehensive summary of the cerebellar pathophysiology and results from neuroimaging studies related to both motor and non-motor symptoms of PD, highlighting the potential significance of cerebellar assessment in PD diagnosis, differential diagnosis, and disease monitoring.
Collapse
Affiliation(s)
- Tao Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Meichen Liu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Xinhui Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Tianbai Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, China
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 200000, China
| |
Collapse
|
7
|
Yan S, Lu J, Duan B, Zhu H, Liu D, Li L, Qin Y, Li Y, Zhu W. Quantitative susceptibility mapping of multiple system atrophy and Parkinson's disease correlates with neurotransmitter reference maps. Neurobiol Dis 2024; 198:106549. [PMID: 38830476 DOI: 10.1016/j.nbd.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Bingfang Duan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Yin L, Zhu Z, Fu J, Zhou C, Liu Z, Li Y, Luo Z, Zhu Y, Xu Z, Yang X. Differences in gray matter atrophy and functional connectivity between motor subtypes of Parkinson's disease. Acta Neurol Belg 2024:10.1007/s13760-024-02610-0. [PMID: 39066885 DOI: 10.1007/s13760-024-02610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Parkinson's disease (PD) patients with postural gait abnormalities exhibit poorer motor function scores, more severe non-motor symptoms, faster cognitive function deterioration, and a less favorable response to drugs and surgery compared to PD patients with tremor. This discrepancy is believed to be associated with more pronounced gray matter atrophy and abnormal functional connectivity. To investigate the distinctive pathological mechanisms between PD subtypes, we examined gray matter volume (GMV) and functional connectivity in patients with Parkinson's disease presenting with postural instability/gait difficulty (PD-PIGD), patients with tremor-dominant Parkinson's disease (PD-TD), and healthy controls. Voxel-based morphometry (VBM) of T1-weighted images was conducted to compare GMV among 64 PD-PIGD patients, 44 PD-TD patients, and 32 controls. Subsequently, functional connectivity within regions showing reduced GMV was compared across the groups. We analyzed whether differences among the groups were associated with clinical characteristics and neuroimaging biomarkers using partial correlation and binary logistic regression. Our comparison between PD-PIGD and PD-TD patients revealed a link between PD-PIGD and more extensive frontotemporal atrophy, potentially indicating increased basal ganglia activity accompanied by decreased cerebellum activity. Furthermore, in addition to the smaller GMV in the left middle temporal gyrus, the increased functional connectivity between this brain region and the right caudate was also the independent risk factor for PD-PIGD. In addition, we compared brain network connectivity between the PIGD and TD subtypes, using an independent component analysis (ICA). We found that Compared to PD-TD, PD-PIGD patients showed an enhanced sensorimotor network (SMN) around the left supplementary motor area. These findings suggest that severe gray matter atrophy and abnormal functional connectivity and brain networks may serve as pathophysiological mechanisms distinguishing PD-PIGD patients from other subtypes.
Collapse
Affiliation(s)
- Lei Yin
- The First People's Hospital of Honghe Prefecture, Honghe, 661100, China
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhigang Zhu
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jialong Fu
- The First People's Hospital of Honghe Prefecture, Honghe, 661100, China
| | - Chuanbin Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhaochao Liu
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yuxia Li
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhenglong Luo
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yongyun Zhu
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Zhong Xu
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Xinglong Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
9
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
10
|
Niu J, Zhong Y, Jin C, Cen P, Wang J, Cui C, Xue L, Cui X, Tian M, Zhang H. Positron Emission Tomography Imaging of Synaptic Dysfunction in Parkinson's Disease. Neurosci Bull 2024; 40:743-758. [PMID: 38483697 PMCID: PMC11178751 DOI: 10.1007/s12264-024-01188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2023] [Accepted: 12/09/2023] [Indexed: 06/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases with a complex pathogenesis. Aggregations formed by abnormal deposition of alpha-synuclein (αSyn) lead to synapse dysfunction of the dopamine and non-dopamine systems. The loss of dopaminergic neurons and concomitant alterations in non-dopaminergic function in PD constitute its primary pathological manifestation. Positron emission tomography (PET), as a representative molecular imaging technique, enables the non-invasive visualization, characterization, and quantification of biological processes at cellular and molecular levels. Imaging synaptic function with PET would provide insights into the mechanisms underlying PD and facilitate the optimization of clinical management. In this review, we focus on the synaptic dysfunction associated with the αSyn pathology of PD, summarize various related targets and radiopharmaceuticals, and discuss applications and perspectives of PET imaging of synaptic dysfunction in PD.
Collapse
Affiliation(s)
- Jiaqi Niu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Xingyue Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, 200040, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, China.
| |
Collapse
|
11
|
Pickford J, Iosif CI, Bashir ZI, Apps R. Inhibiting cholinergic signalling in the cerebellar interpositus nucleus impairs motor behaviour. Eur J Neurosci 2024; 59:2208-2224. [PMID: 37455360 PMCID: PMC7616440 DOI: 10.1111/ejn.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2022] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
The role of neuromodulators in the cerebellum is not well understood. In particular, the behavioural significance of the cholinergic system in the cerebellum is unknown. To investigate the importance of cerebellar cholinergic signalling in behaviour, we infused acetylcholine receptor antagonists, scopolamine and mecamylamine, bilaterally into the rat cerebellum (centred on interpositus nucleus) and observed the motor effects through a battery of behavioural tests. These tests included unrewarded behaviour during open field exploration and a horizontal ladder walking task and reward-based beam walking and pellet reaching tasks. Infusion of a mix of the antagonists did not impair motor learning in the horizontal ladder walking or the reaching task but reduced spontaneous movement during open field exploration, impaired coordination during beam walking and ladder walking, led to fewer reaches in the pellet reaching task, slowed goal-directed reaching behaviour and reduced reward pellet consumption in a free access to food task. Infusion of the muscarinic antagonist scopolamine on its own resulted in deficits in motor performance and a reduction in the number of reward pellets consumed in the free access to food task. By contrast, infusion of the nicotinic antagonist mecamylamine on its own had no significant effect on any task, except beam walking traversal time, which was reduced. Together, these data suggest that acetylcholine in the cerebellar interpositus nucleus is important for the execution and coordination of voluntary movements mainly via muscarinic receptor signalling, especially in relation to reward-related behaviour.
Collapse
Affiliation(s)
- Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Ye Z, Zeng Q, Ning L, Huang W, Su Q. Systolic blood pressure is associated with abnormal alterations in brain cortical structure: Evidence from a Mendelian randomization study. Eur J Intern Med 2024; 120:92-98. [PMID: 37852841 DOI: 10.1016/j.ejim.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/13/2023] [Revised: 09/09/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Hypertension has been recognized as a significant risk factor for cerebrovascular diseases and cognitive decline. However, the specific impact of hypertension, systolic/diastolic blood pressure, pulse pressure (PP) and mean arterial pressure (MAP) on brain cortical structure remains unclear. Mendelian randomization (MR) provides a robust approach to investigate the causal relationship between blood pressure components and brain cortical changes. METHODS In this MR study, data from large-scale genome-wide association studies for blood pressure components and neuroimaging were utilized to conduct our analyses. We leveraged genetic variants associated specifically with hypertension (122,620 cases and 332,683 controls), systolic (469,767 individuals), diastolic (490,469 individuals) blood pressure, PP (810,865 individuals) and MAP (over 1 million individuals) to evaluate their effects on brain cortex surficial area (51,665 individuals) and cortex thickness (51,665 individuals). RESULTS Our findings revealed a significant correlation between systolic blood pressure and abnormal reduction in brain cortex surficial area (β=-1330.69, 95% confident interval [CI]: -2655.35 to -6.02, p = 0.0489); however, no significant relationship was found between systolic blood pressure and brain cortex thickness (β=-0.0078, 95% CI: -0.0178 to 0.0022, p = 0.1287). Additionally, no significant associations were observed between hypertension (β=-200.05, p = 0.6884; β=-0.0051, p = 0.1179, respectively), diastolic blood pressure (β=-460.63, p = 0.5160; β=0.0047, p = 0.2448, respectively), PP (β=1041.84, p = 0.3725; β=-0.0112, p = 0.2212, respectively), MAP (β=-18.84, p = 0.8841; β=0.0002, p = 0.7654, respectively) and both brain cortex surficial area and brain cortex thickness. CONCLUSION Our MR study provides evidence supporting the hypothesis that systolic blood pressure, rather than diastolic blood pressure, PP or MAP, is associated with abnormal changes in brain cortical structure.
Collapse
Affiliation(s)
- Ziliang Ye
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi 530021, China
| | - Qing Zeng
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi 530021, China
| | - Limeng Ning
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi 530021, China
| | - Wanzhong Huang
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi 530021, China
| | - Qiang Su
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No. 85 Hedi Road, Nanning, Guangxi 530021, China.
| |
Collapse
|
13
|
Wickens RH, Postuma RB, de Villers-Sidani É, Pelletier A, Blinder S, Gagnon JF, Soucy JP, Montplaisir J, Bedard MA. Increased brain cholinergic innervation in isolated REM sleep behaviour disorder from prodromal multiple system atrophy. Parkinsonism Relat Disord 2023; 117:105923. [PMID: 37939636 DOI: 10.1016/j.parkreldis.2023.105923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Rebekah H Wickens
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Montreal, QC, Canada.
| | - Ronald B Postuma
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | | | - Amélie Pelletier
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Stephan Blinder
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Montreal, QC, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Jean-François Gagnon
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Montreal, QC, Canada; PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Marc-André Bedard
- NeuroQAM Research Center, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
15
|
Wang M, Wang Y, Yang Y, Luan M, Zhong M, Xu L, Zheng X. A case report and literature review of possible multiple system atrophy-parkinsonian type with cholinergic deficiency. CNS Neurosci Ther 2023. [PMID: 37122149 DOI: 10.1111/cns.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Meng Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajuan Wang
- Department of Geriatric Medicine, The Qingdao Eighth People's Hospital, Qingdao, China
| | - Yuyuan Yang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Moxin Luan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixiang Zhong
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Horsager J, Okkels N, Hansen AK, Damholdt MF, Andersen KH, Fedorova TD, Munk OL, Danielsen EH, Pavese N, Brooks DJ, Borghammer P. Mapping Cholinergic Synaptic Loss in Parkinson's Disease: An [18F]FEOBV PET Case-Control Study. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2493-2506. [PMID: 36336941 DOI: 10.3233/jpd-223489] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cholinergic degeneration is strongly associated with cognitive decline in patients with Parkinson's disease (PD) but may also cause motor symptoms and olfactory dysfunction. Regional differences are striking and may reflect different PD related symptoms and disease progression patterns. OBJECTIVE To map and quantify the regional cerebral cholinergic alterations in non-demented PD patients. METHODS We included 15 non-demented PD patients in early-moderate disease stage and 15 age- and sex-matched healthy controls for [18F]FEOBV positron emission tomography imaging. We quantitated regional variations using VOI-based analyses which were supported by a vertex-wise cluster analysis. Correlations between imaging data and clinical and neuropsychological data were explored. RESULTS We found significantly decreased [18F]FEOBV uptake in global neocortex (38%, p = 0.0002). The most severe reductions were seen in occipital and posterior temporo-parietal regions (p < 0.0001). The vertex-wise cluster analysis corroborated these findings. All subcortical structures showed modest non-significant reductions. Motor symptoms (postural instability and gait difficulty) and cognition (executive function and composite z-score) correlated with regional [18F]FEOBV uptake (thalamus and cingulate cortex/insula/hippocampus, respectively), but the correlations were not statistically significant after multiple comparison correction. A strong correlation was found between interhemispheric [18F]FEOBV asymmetry, and motor symptom asymmetry of the extremities (r = 0.84, p = 0.0001). CONCLUSION Cortical cholinergic degeneration is prominent in non-demented PD patients, but more subtle in subcortical structures. Regional differences suggest uneven involvement of cholinergic nuclei in the brain and may represent a window to follow disease progression. The correlation between asymmetric motor symptoms and neocortical [18F]FEOBV asymmetry indicates that unilateral cholinergic degeneration parallels ipsilateral dopaminergic degeneration.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Okkels
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Allan K Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Katrine H Andersen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, UK
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Differential cholinergic systems' changes in progressive supranuclear palsy versus Parkinson's disease: an exploratory analysis. J Neural Transm (Vienna) 2022; 129:1469-1479. [PMID: 36222971 PMCID: PMC10017092 DOI: 10.1007/s00702-022-02547-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Accepted: 10/05/2022] [Indexed: 01/20/2023]
Abstract
Prior studies indicate more severe brainstem cholinergic deficits in Progressive Supranuclear Palsy (PSP) compared to Parkinson's disease (PD), but the extent and topography of subcortical deficits remains poorly understood. The objective of this study is to investigate differential cholinergic systems changes in progressive supranuclear palsy (PSP, n = 8) versus Parkinson's disease (PD, n = 107) and older controls (n = 19) using vesicular acetylcholine transporter [18F]-fluoroethoxybenzovesamicol (FEOBV) positron emission tomography (PET). A whole-brain voxel-based PET analysis using Statistical Parametric Mapping (SPM) software (SPM12) for inter-group comparisons using parametric [18F]-FEOBV DVR images. Voxel-based analyses showed lower FEOBV binding in the tectum, metathalamus, epithalamus, pulvinar, bilateral frontal opercula, anterior insulae, superior temporal pole, anterior cingulum, some striatal subregions, lower brainstem, and cerebellum in PSP versus PD (p < 0.05; false discovery rate-corrected). More severe and diffuse reductions were present in PSP vs controls. Higher frequency of midbrain cholinergic losses was seen in PSP compared to the PD participants using 5th percentile normative cut-off values (χ2 = 4.12, p < 0.05). When compared to PD, these findings suggested disease-specific cholinergic vulnerability in the tectum, striatal cholinergic interneurons, and projections from the pedunculopontine nucleus, medial vestibular nucleus, and the cholinergic forebrain in PSP.
Collapse
|
18
|
Cheng Y, Yang H, Liu WV, Wen Z, Chen J. Alterations of brain activity in multiple system atrophy patients with freezing of gait: A resting-state fMRI study. Front Neurosci 2022; 16:954332. [PMID: 36051644 PMCID: PMC9425908 DOI: 10.3389/fnins.2022.954332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Freezing of gait (FOG) in multiple system atrophy (MSA) is characterized by a higher risk of falls and a reduced quality of life; however, the mechanisms underlying these effects have yet to be identified by neuroimaging. The aim of this study was to investigate the differences in functional network when compared between MSA patients with and without freezing. Methods Degree centrality (DC) based on the resting-state functional magnetic resonance imaging was computed in 65 patients with MSA and 36 healthy controls. Brain regions with statistically different DC values between groups were selected as seed points for a second seed-based functional connectivity (FC) analysis. The relationships between brain activity (DC and FC alterations) and the severity of freezing symptoms were then investigated in the two groups of patients with MSA. Results Compared to MSA patients without FOG symptoms (MSA-nFOG), patients with MSA-FOG showed an increased DC in the left middle temporal gyrus but a reduced DC in the right superior pole temporal gyrus, left anterior cingulum cortex, left thalamus, and right middle frontal gyrus. Furthermore, in patients with MSA-FOG, the DC in the left thalamus was negatively correlated with FOG scores. Using the left thalamus as a seed, secondary seed-based functional connectivity analysis revealed that patients with MSA-FOG commonly showed the left thalamus-based FC abnormalities in regions related to cognition and emotion. In contrast to the patients with MSA-nFOG, patients with MSA-FOG showed an increased FC between the left thalamus and the left middle temporal gyrus (MTG), right inferior parietal lobule (IPL), bilateral cerebellum_8, and left precuneus. Conclusion Freezing of gait is associated with centrality of the impaired thalamus network. Abnormal FC between the thalamus and left MTG, right IPL, bilateral cerebellum_8, and left precuneus was involved in FOG. These results provide new insight into the pathophysiological mechanism of FOG in MSA.
Collapse
Affiliation(s)
- Yilin Cheng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jun Chen,
| |
Collapse
|
19
|
Zhou J, Chen Y, Gin T, Bao D, Zhou J. The effects of repetitive transcranial magnetic stimulation on standing balance and walking in older adults with age-related neurological disorders: a systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 2022; 78:842-852. [PMID: 35921153 PMCID: PMC10172986 DOI: 10.1093/gerona/glac158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Considerable evidence showed that repetitive transcranial magnetic stimulation (rTMS) can improve standing balance and walking performance in older adults with age-related neurological disorders. We here thus completed a systematic review and meta-analysis to quantitatively examine such benefits of rTMS. METHODS A search strategy based on the PICOS principle was used to obtain the literature in four databases. The screening and assessments of quality and risk of bias in the included studies were independently completed by two researchers. Outcomes included scales related to standing balance, Timed Up and Go (TUG) time, and walking speed/time/distance. RESULTS Twenty-three studies consisting of 532 participants were included, and the meta-analysis was completed on 21 of these studies. The study quality was good. Compared to control, rTMS induced both short-term (≤3 days after last intervention session) and long-term (≥1 month following last intervention session) significant improvements in balance scales (e.g., Berg Balance Scale), TUG time, and walking speed/time/distance (short-term: standardized mean difference [SMD]=0.26~0.34, 95% confidence interval [CI]=0.05~0.62; long-term: SMD=0.40~0.44, 95% CI=0.04~0.79) for both PD and stroke cohorts. Subgroup analyses suggested that greater than nine sessions of high-frequency rTMS targeting primary motor cortex with greater than 3000 pulses per week can maximize such benefits. Only few mild-to-moderate adverse events/side effects were reported, which were similar between rTMS and control group. CONCLUSION The results suggest that rTMS holds promise to improve balance and walking performance in older adults with age-related neurological disorders. Future studies with more rigorous design are needed to confirm the observations in this work.
Collapse
Affiliation(s)
- Jun Zhou
- China Athletics College, Beijing Sport University, Beijing, China
| | - Yan Chen
- Sports Coaching College, Beijing Sport University, Beijing, China
| | - Trenton Gin
- Cornell University, Ithaca, New York, NY, United States
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Dos Santos AB, Skaanning LK, Thaneshwaran S, Mikkelsen E, Romero-Leguizamón CR, Skamris T, Kristensen MP, Langkilde AE, Kohlmeier KA. Sleep-controlling neurons are sensitive and vulnerable to multiple forms of α-synuclein: implications for the early appearance of sleeping disorders in α-synucleinopathies. Cell Mol Life Sci 2022; 79:450. [PMID: 35882665 PMCID: PMC11072003 DOI: 10.1007/s00018-022-04467-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
Parkinson's disease, Multiple System Atrophy, and Lewy Body Dementia are incurable diseases called α-synucleinopathies as they are mechanistically linked to the protein, α-synuclein (α-syn). α-syn exists in different structural forms which have been linked to clinical disease distinctions. However, sleeping disorders (SDs) are common in the prodromal phase of all three α-synucleinopathies, which suggests that sleep-controlling neurons are affected by multiple forms of α-syn. To determine whether a structure-independent neuronal impact of α-syn exists, we compared and contrasted the cellular effect of three different α-syn forms on neurotransmitter-defined cells of two sleep-controlling nuclei located in the brainstem: the laterodorsal tegmental nucleus and the pedunculopontine tegmental nucleus. We utilized size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy and transmission electron microscopy to precisely characterize timepoints in the α-syn aggregation process with three different dominating forms of this protein (monomeric, oligomeric and fibril) and we conducted an in-depth investigation of the underlying neuronal mechanism behind cellular effects of the different forms of the protein using electrophysiology, multiple-cell calcium imaging, single-cell calcium imaging and live-location tracking with fluorescently-tagged α-syn. Interestingly, α-syn altered membrane currents, enhanced firing, increased intracellular calcium and facilitated cell death in a structure-independent manner in sleep-controlling nuclei, and postsynaptic actions involved a G-protein-mediated mechanism. These data are novel as the sleep-controlling nuclei are the first brain regions reported to be affected by α-syn in this structure-independent manner. These regions may represent highly important targets for future neuroprotective therapy to modify or delay disease progression in α-synucleinopathies.
Collapse
Affiliation(s)
- Altair B Dos Santos
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Line K Skaanning
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Eyd Mikkelsen
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Cesar R Romero-Leguizamón
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Thomas Skamris
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Annette E Langkilde
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and PharmacologyFaculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
21
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
22
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
van der Zee S, Kanel P, Gerritsen MJJ, Boertien JM, Slomp AC, Müller MLTM, Bohnen NI, Spikman JM, van Laar T. Altered Cholinergic Innervation in De Novo Parkinson's Disease with and without Cognitive Impairment. Mov Disord 2022; 37:713-723. [PMID: 35037719 PMCID: PMC9306739 DOI: 10.1002/mds.28913] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Background Altered cholinergic innervation plays a putative role in cognitive impairment in Parkinson's disease (PD) at least in advanced stages. Identification of the relationship between cognitive impairment and cholinergic innervation early in the disease will provide better insight into disease prognosis and possible early intervention. Objective The aim was to assess regional cholinergic innervation status in de novo patients with PD, with and without cognitive impairment. Methods Fifty‐seven newly diagnosed, treatment‐naive, PD patients (32 men, mean age 64.6 ± 8.2 years) and 10 healthy controls (5 men, mean age 54.6 ± 6.0 years) were included. All participants underwent cholinergic [18F]fluoroethoxybenzovesamicol positron emission tomography and detailed neuropsychological assessment. PD patients were classified as either cognitively normal (PD‐NC) or mild cognitive impairment (PD‐MCI). Whole brain voxel‐based group comparisons were performed. Results Results show bidirectional cholinergic innervation changes in PD. Both PD‐NC and PD‐MCI groups showed significant cortical cholinergic denervation compared to controls (P < 0.05, false discovery rate corrected), primarily in the posterior cortical regions. Higher‐than‐normal binding was most prominent in PD‐NC in both cortical and subcortical regions, including the cerebellum, cingulate cortex, putamen, gyrus rectus, hippocampus, and amygdala. Conclusion Altered cholinergic innervation is already present in de novo patients with PD. Posterior cortical cholinergic losses were present in all patients independent of cognitive status. Higher‐than‐normal binding in cerebellar, frontal, and subcortical regions in cognitively intact patients may reflect compensatory cholinergic upregulation in early‐stage PD. Limited or failing cholinergic upregulation may play an important role in early, clinically evident cognitive impairment in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Marleen J J Gerritsen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne C Slomp
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.,University of Michigan Parkinson's Foundation Center of Excellent, Ann Arbor, Michigan, USA
| | - Jacoba M Spikman
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Martín-Bastida A, Delgado-Alvarado M, Navalpotro-Gómez I, Rodríguez-Oroz MC. Imaging Cognitive Impairment and Impulse Control Disorders in Parkinson's Disease. Front Neurol 2021; 12:733570. [PMID: 34803882 PMCID: PMC8602579 DOI: 10.3389/fneur.2021.733570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Dementia and mild forms of cognitive impairment as well as neuropsychiatric symptoms (i. e., impulse control disorders) are frequent and disabling non-motor symptoms of Parkinson's disease (PD). The identification of changes in neuroimaging studies for the early diagnosis and monitoring of the cognitive and neuropsychiatric symptoms associated with Parkinson's disease, as well as their pathophysiological understanding, are critical for the development of an optimal therapeutic approach. In the current literature review, we present an update on the latest structural and functional neuroimaging findings, including high magnetic field resonance and radionuclide imaging, assessing cognitive dysfunction and impulse control disorders in PD.
Collapse
Affiliation(s)
- Antonio Martín-Bastida
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Impairment and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain.,Clinical and Biological Research in Neurodegenerative Diseases, Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.,Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - María Cruz Rodríguez-Oroz
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain.,CIMA, Center of Applied Medical Research, Universidad de Navarra, Neurosciences Program, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
25
|
King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021; 54:7688-7709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.
Collapse
Affiliation(s)
- Gabriella King
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Kaliana M Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | | | | | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
26
|
Koros C, Stefanis L, Scarmeas N. Parkinsonism and dementia. J Neurol Sci 2021; 433:120015. [PMID: 34642023 DOI: 10.1016/j.jns.2021.120015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The aim of the present review is to summarize literature data on dementia in parkinsonian disorders. Cognitive decline and the gradual development of dementia are considered to be key features in the majority of parkinsonian conditions. The burden of dementia in everyday life of parkinsonian patients and their caregivers is vast and can be even more challenging to handle than the motor component of the disease. Common pathogenetic mechanisms involve the aggregation and spreading of abnormal proteins like alpha-synuclein, tau or amyloid in cortical and subcortical regions with subsequent dysregulation of multiple neurotransmitter systems. The degree of cognitive deterioration in these disorders is variable and ranges from mild cognitive impairment to severe cognitive dysfunction. There is also variation in the number and type of affected cognitive domains which can involve either a single domain like executive or visuospatial function or multiple ones. Novel genetic, biological fluid or imaging biomarkers appear promising in facilitating the diagnosis and staging of dementia in parkinsonian conditions. A significant part of current research in Parkinson's disease and other parkinsonian syndromes is targeted towards the cognitive aspects of these disorders. Stabilization or amelioration of cognitive outcomes represents a primary endpoint in many ongoing clinical trials for novel disease modifying treatments in this field. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer's, Disease and the Aging Brain, Columbia University, New York, USA.
| |
Collapse
|
27
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Abstract
Two pathologically distinct neurodegenerative conditions, progressive supranuclear palsy and corticobasal degeneration, share in common deposits of tau proteins that differ both molecularly and ultrastructurally from the common tau deposits diagnostic of Alzheimer disease. The proteinopathy in these disorders is characterized by fibrillary aggregates of 4R tau proteins. The clinical presentations of progressive supranuclear palsy and of corticobasal degeneration are often confused with more common disorders such as Parkinson disease or subtypes of frontotemporal lobar degeneration. Neither of these 4R tau disorders has effective therapy, and while there are emerging molecular imaging approaches to identify patients earlier in the course of disease, there are as yet no reliably sensitive and specific approaches to diagnoses in life. In this review, aspects of the clinical syndromes, neuropathology, and molecular biomarker imaging studies applicable to progressive supranuclear palsy and to corticobasal degeneration will be presented. Future development of more accurate molecular imaging approaches is proposed.
Collapse
Affiliation(s)
- Kirk A Frey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The University of Michigan Health System, Ann Arbor, MI.
| |
Collapse
|
29
|
Tractography patterns of pedunculopontine nucleus deep brain stimulation. J Neural Transm (Vienna) 2021; 128:659-670. [PMID: 33779812 PMCID: PMC8105200 DOI: 10.1007/s00702-021-02327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 11/11/2022]
Abstract
Deep brain stimulation of the pedunculopontine nucleus is a promising surgical procedure for the treatment of Parkinsonian gait and balance dysfunction. It has, however, produced mixed clinical results that are poorly understood. We used tractography with the aim to rationalise this heterogeneity. A cohort of eight patients with postural instability and gait disturbance (Parkinson’s disease subtype) underwent pre-operative structural and diffusion MRI, then progressed to deep brain stimulation targeting the pedunculopontine nucleus. Pre-operative and follow-up assessments were carried out using the Gait and Falls Questionnaire, and Freezing of Gait Questionnaire. Probabilistic diffusion tensor tractography was carried out between the stimulating electrodes and both cortical and cerebellar regions of a priori interest. Cortical surface reconstructions were carried out to measure cortical thickness in relevant areas. Structural connectivity between stimulating electrode and precentral gyrus (r = 0.81, p = 0.01), Brodmann areas 1 (r = 0.78, p = 0.02) and 2 (r = 0.76, p = 0.03) were correlated with clinical improvement. A negative correlation was also observed for the superior cerebellar peduncle (r = −0.76, p = 0.03). Lower cortical thickness of the left parietal lobe and bilateral premotor cortices were associated with greater pre-operative severity of symptoms. Both motor and sensory structural connectivity of the stimulated surgical target characterises the clinical benefit, or lack thereof, from surgery. In what is a challenging region of brainstem to effectively target, these results provide insights into how this can be better achieved. The mechanisms of action are likely to have both motor and sensory components, commensurate with the probable nature of the underlying dysfunction.
Collapse
|
30
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
31
|
Tseng FS, Deng X, Ong YL, Li HH, Tan EK. Multiple System Atrophy (MSA) and smoking: a meta-analysis and mechanistic insights. Aging (Albany NY) 2020; 12:21959-21970. [PMID: 33161394 PMCID: PMC7695394 DOI: 10.18632/aging.104021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The association between cigarette smoking and multiple system atrophy (MSA) has been debated. We conducted a systematic review and a meta-analysis to investigate this link. RESULTS We identified 161 articles from database searching and bibliographic review. Five case-control studies satisfied the inclusion and exclusion criteria, and 435 and 352 healthy controls and MSA patients were examined. The prevalence of MSA amongst ever smokers was lower compared to never smokers (aOR=0.57; 95% CI, 0.29-1.14), although this result did not reach statistical significance. This was also observed for current and former smokers, with a stronger association for current smokers (aOR=0.63 vs aOR=0.96). CONCLUSIONS There is a suggestion that smoking protects against MSA. Prospective studies in larger patient cohorts are required to further evaluate the cause-effect relationship and functional studies in cellular and animal models will provide mechanistic insights on their potential etiologic links. METHODS PubMed and Cochrane Library were searched from inception to July 7, 2019 to identify case-control studies that analyzed smoking as an environmental risk or protective factor for MSA. Two authors independently extracted data and performed risk-of-bias and quality assessment. The random-effects model was assumed to account for between-study variance when pooling the crude and adjusted odds ratios.
Collapse
Affiliation(s)
- Fan-Shuen Tseng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Xiao Deng
- Department of Neurology, National Neuroscience Institute, Singapore 169856, Singapore
| | - Yi-Lin Ong
- Department of Neurology, National Neuroscience Institute, Singapore 169856, Singapore
| | - Hui-Hua Li
- Department of Clinical Research, Singapore General Hospital, Singapore 169856, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore 169856, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
32
|
Guo M, Ren Y, Yu H, Yang H, Cao C, Li Y, Fan G. Alterations in Degree Centrality and Functional Connectivity in Parkinson's Disease Patients With Freezing of Gait: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2020; 14:582079. [PMID: 33224024 PMCID: PMC7670067 DOI: 10.3389/fnins.2020.582079] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Objective Freezing of gait (FOG) is a common disabling motor symptom in Parkinson's disease (PD), but the potential pathogenic mechanisms are still unclear. Methods A total of 22 patients with PD with FOG (PD-FOG), 28 patients with PD without FOG (PD-nFOG), and 33 healthy controls (HCs) were recruited in this study. Degree centrality (DC)-a graph theory-based measurement of global connectivity at the voxel level by measuring the number of instantaneous functional connections between one region and the rest of the brain-can map brain hubs with high sensitivity, specificity, and reproducibility. DC was used to explore alterations in the centrality of PD-FOG correlated with brain node levels. PD-FOG cognitive network dysfunction was further revealed via a seed-based functional connectivity (FC) analysis. In addition, correlation analyses were carried out between clinical symptoms and acquired connectivity measurement. Results Compared to the PD-nFOG group, the PD-FOG group showed remarkably increased DC values in the right middle frontal gyrus (RMFG). There were no significant differences in other gray matter regions. Importantly, the clinical severity of FOG was related to the mean DC values in the RMFG. This brain region served as a seed in secondary seed-based FC analysis, and we further found FC changes in the right precuneus, right inferior frontal gyrus, right superior frontal gyrus (SFG), and cerebellum. Conclusion Increased RMFG activity and FC network alterations in the middle frontal cortex with the precuneus, inferior, and SFG, and the cerebellum may have great potential in brain dysfunction in PD with FOG.
Collapse
Affiliation(s)
- MiaoRan Guo
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Ren
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - HongMei Yu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - HuaGuang Yang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - ChengHao Cao
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - YingMei Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - GuoGuang Fan
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Cheng Q, Wu M, Wu Y, Hu Y, Kwapong WR, Shi X, Fan Y, Yu X, He J, Wang Z. Weaker Braking Force, A New Marker of Worse Gait Stability in Alzheimer Disease. Front Aging Neurosci 2020; 12:554168. [PMID: 33024432 PMCID: PMC7516124 DOI: 10.3389/fnagi.2020.554168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2020] [Accepted: 08/14/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Braking force is a gait marker associated with gait stability. This study aimed to determine the alteration of braking force and its correlation with gait stability in Alzheimer disease (AD). Methods: A total of 32 AD patients and 32 healthy controls (HCs) were enrolled in this study. Gait parameters (braking force, gait variability, and fall risk) in the walking tests of Free walk, Barrier, and Count backward were measured by JiBuEn® gait analysis system. Gait variability was calculated by the coefficient of variation (COV) of stride time, stance time, and swing time. Results: The braking force of AD was significantly weaker than HCs in three walking tests (P < 0.001, P < 0.001, P = 0.007). Gait variability of AD showed significant elevation than HCs in the walking of Count backward (COVstride: P = 0.013; COVswing: P = 0.006). Fall risk of AD was significantly higher than HCs in three walking tests (P = 0.001, P = 0.001, P = 0.001). Braking force was negatively associated with fall risks in three walking tests (P < 0.001, P < 0.001, P < 0.001). There were significant negative correlations between braking force and gait variability in the walking of Free walk (COVstride: P = 0.018; COVswing: P = 0.013) and Barrier (COVstride: P = 0.002; COVswing: P = 0.001), but not Count backward (COVstride: P = 0.888; COVswing: P = 0.555). Conclusion: Braking force was weaker in AD compared to HCs, reflecting the worse gait stability of AD. Our study suggests that weakening of braking force may be a new gait marker to indicate cognitive and motor impairment and predict fall risk in AD.
Collapse
Affiliation(s)
- Qianqian Cheng
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yuemin Wu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaoyao Hu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Xiang Shi
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yinying Fan
- Wenzhou Yining Geriatric Hospital, Wenzhou, China
| | - Xin Yu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Characterization of idiopathic Parkinson's disease subgroups using quantitative gait analysis and corresponding subregional striatal uptake visualized using 18F-FP-CIT positron emission tomography. Gait Posture 2020; 82:167-173. [PMID: 32932077 DOI: 10.1016/j.gaitpost.2020.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait disturbance is one of the most common symptoms among patients with idiopathic Parkinson's disease (IPD). Nevertheless, Parkinson's disease subtype clustering according to gait characteristics has not been thoroughly investigated. RESEARCH QUESTION The aim of this study was to identify subgroups according to gait pattern among patients with IPD. METHODS This study included 88 patients with IPD who underwent 18F-fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-3-β-4-iodophenyl-nortropane positron emission tomography (18F-FP-CIT PET) and three-dimensional gait analysis (3DGA) between January 1, 2014 and December 31, 2016. We performed cluster analysis using temporal-spatial gait variables (gait speed, stride length, cadence, and step width) and divided patients into four subgroups. The kinematic and kinetic gait variables in 3DGA were compared among the four subgroups. Furthermore, we compared the uptake patterns of striatum among the four subgroups using 18F-FP-CIT PET. RESULTS The patients were clustered into subgroups based on gait hypokinesia and cadence compensation. Group 1 had decreased stride length compensating with increased cadence. Group 2 had decreased stride length without cadence compensation and wider step width. Group 3 had relatively spared stride length with decreased cadence. Group 4 had spared stride length and cadence. The uptake of posterior putamen was significantly decreased in Group 3 compared with Group 4. SIGNIFICANCE Gait hypokinesia and cadence can help to classify gait patterns in IPD patients. Our subgroups may reflect the different gait patterns in IPD patients.
Collapse
|
35
|
Cerroni R, Liguori C, Stefani A, Conti M, Garasto E, Pierantozzi M, Mercuri NB, Bernardini S, Fucci G, Massoud R. Increased Noradrenaline as an Additional Cerebrospinal Fluid Biomarker in PSP-Like Parkinsonism. Front Aging Neurosci 2020; 12:126. [PMID: 32612521 PMCID: PMC7308889 DOI: 10.3389/fnagi.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Academic centers utilize sequential clinical and neuroimaging assessments, including morphometric ratios, to obtain an unequivocal diagnosis of the non-synucleinopathic forms of Parkinsonism, such as progressive supranuclear palsy (PSP), however, a 1-2 year follow-up is required. The on-going long-lasting trials using anti-tau antibodies for PSP patients might therefore be biased by the incorrect enrollment of Parkinson's disease (PD) patients manifesting early axial signs. This perspective study aimed at achieving two major goals: first, to summarize the established biomarker candidates found in cerebrospinal fluid (CSF) in probable PSP patients, including low p-tau and altered neurofilaments. Second, we share our recent data, from CSF samples of well-selected PSP subjects, attributable to both main variants (and revisited in light of MDS criteria), who were followed for 1 year before and 2 years after lumbar puncture. We found a significantly high level of noradrenaline (NE) in these patients, similar to controls, when compared to PD patients. In contrast, CSF samples, in PD, showed a significant reduction in CSF NE and its major metabolite, which confirmed that PD is a multi-system disease involving several endogenous pathways. The NE axis impairments were prominent in PSP featuring worse NPI. It might represent a counterpart to the early and peculiar psycho-pathological profiles that are observed in tauopathies. In conclusion, we highlight that CSF biomarkers, which are easy to collect, can provide rapid insights as diagnostic tools. Early alterations in endogenous NE machinery in atypical Parkinsonism may represent a specific risk trait in forms characterized by a worse prognosis.
Collapse
Affiliation(s)
- Rocco Cerroni
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | | | - Nicola B. Mercuri
- UOC Neurology, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Giorgio Fucci
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| |
Collapse
|
36
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
37
|
Cui X, Li L, Yu L, Xing H, Chang H, Zhao L, Qian J, Song Q, Zhou S, Dong C. Gray Matter Atrophy in Parkinson's Disease and the Parkinsonian Variant of Multiple System Atrophy: A Combined ROI- and Voxel-Based Morphometric Study. Clinics (Sao Paulo) 2020; 75:e1505. [PMID: 32555945 PMCID: PMC7279630 DOI: 10.6061/clinics/2020/e1505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/19/2019] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) and the parkinsonian variant of multiple system atrophy (MSA-P) are distinct neurodegenerative disorders that share similar clinical features of parkinsonism. The morphological alterations of these diseases have yet to be understood. The purpose of this study was to evaluate gray matter atrophy in PD and MSA-P using regions of interest (ROI)-based measurements and voxel-based morphometry (VBM). METHODS We studied 41 patients with PD, 20 patients with MSA-P, and 39 controls matched for age, sex, and handedness using an improved T1-weighted sequence that eased gray matter segmentation. The gray matter volumes were measured using ROI and VBM. RESULTS ROI volumetric measurements showed significantly reduced bilateral putamen volumes in MSA-P patients compared with those in PD patients and controls (p<0.05), and the volumes of the bilateral caudate nucleus were significantly reduced in both MSA-P and PD patients compared with those in the controls (p<0.05). VBM analysis revealed multifocal cortical and subcortical atrophy in both MSA-P and PD patients, and the volumes of the cerebellum and temporal lobes were remarkably reduced in MSA-P patients compared with the volumes in PD patients (p<0.05). CONCLUSIONS Both PD and MSA-P are associated with gray matter atrophy, which mainly involves the bilateral putamen, caudate nucleus, cerebellum, and temporal lobes. ROI and VBM can be used to identify these morphological alterations, and VBM is more sensitive and repeatable and less time-consuming, which may have potential diagnostic value.
Collapse
Affiliation(s)
- Xiaorui Cui
- Department of Neurology, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Lan Li
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Yu
- Department of Neurology, Dalian Friendship Hospital, Dalian, China
| | - Huijuan Xing
- Department of Neurology, The Third People’s Hospital of Dalian, Dalian, China
| | - Hong Chang
- Department of Neurology, The Third People’s Hospital of Dalian, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Qian
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyu Zhou
- Department of Psychology, Dalian Medical University, Dalian, China
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Corresponding author. E-mail:
| |
Collapse
|
38
|
Gersel Stokholm M, Iranzo A, Østergaard K, Serradell M, Otto M, Bacher Svendsen K, Garrido A, Vilas D, Fedorova T, Santamaria J, Møller A, Gaig C, Hiraoka K, Brooks D, Okamura N, Borghammer P, Tolosa E, Pavese N. Cholinergic denervation in patients with idiopathic rapid eye movement sleep behaviour disorder. Eur J Neurol 2019; 27:644-652. [DOI: 10.1111/ene.14127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
- M. Gersel Stokholm
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
| | - A. Iranzo
- Department of Neurology Hospital Clínic de Barcelona Barcelona
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Multidisciplinary Sleep Unit Hospital Clinic Barcelona Spain
| | - K. Østergaard
- Department of Neurology Aarhus University Hospital Aarhus
| | - M. Serradell
- Department of Neurology Hospital Clínic de Barcelona Barcelona
- Multidisciplinary Sleep Unit Hospital Clinic Barcelona Spain
| | - M. Otto
- Department of Clinical Neurophysiology Aarhus University Hospital Aarhus Denmark
| | | | - A. Garrido
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Movement Disorders Unit Neurology Service Hospital Clínic de Barcelona Catalonia Spain
| | - D. Vilas
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Movement Disorders Unit Neurology Service Hospital Clínic de Barcelona Catalonia Spain
| | - T.D. Fedorova
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
| | - J. Santamaria
- Department of Neurology Hospital Clínic de Barcelona Barcelona
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Multidisciplinary Sleep Unit Hospital Clinic Barcelona Spain
| | - A. Møller
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
| | - C. Gaig
- Department of Neurology Hospital Clínic de Barcelona Barcelona
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Multidisciplinary Sleep Unit Hospital Clinic Barcelona Spain
| | - K. Hiraoka
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center Tohoku University Sendai Japan
| | - D.J. Brooks
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
- Division of Neuroscience Newcastle University Newcastle upon Tyne UK
| | - N. Okamura
- Division of Pharmacology Faculty of Medicine Tohoku Medical and Pharmaceutical University Sendai Japan
| | - P. Borghammer
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
| | - E. Tolosa
- Centro de Investigación Biomédica en Red sobre Enfermedades eurodegenerativas (CIBERNED) Hospital Clínic IDIBAPS Universitat de Barcelona Catalonia
- Movement Disorders Unit Neurology Service Hospital Clínic de Barcelona Catalonia Spain
| | - N. Pavese
- Department of Nuclear Medicine & PET Centre Aarhus University Hospital Aarhus Denmark
- Division of Neuroscience Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
39
|
Bharti K, Suppa A, Tommasin S, Zampogna A, Pietracupa S, Berardelli A, Pantano P. Neuroimaging advances in Parkinson's disease with freezing of gait: A systematic review. Neuroimage Clin 2019; 24:102059. [PMID: 31795038 PMCID: PMC6864177 DOI: 10.1016/j.nicl.2019.102059] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Freezing of gait (FOG) is a paroxysmal gait disorder that often occurs at advanced stages of Parkinson's disease (PD). FOG consists of abrupt walking interruption and severe difficulty in locomotion with an increased risk of falling. Pathophysiological mechanisms underpinning FOG in PD are still unclear. However, advanced MRI and nuclear medicine studies have gained relevant insights into the pathophysiology of FOG in PD. Neuroimaging studies have demonstrated structural and functional abnormalities in a number of cortical and subcortical brain regions in PD patients with FOG. In this paper, we systematically review existing neuroimaging literature on the structural and functional brain changes described in PD patients with FOG, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluate previous studies using various MRI techniques to estimate grey matter loss and white matter degeneration. Moreover, we review functional brain changes by examining functional MRI and nuclear medicine imaging studies. The current review provides up-to-date knowledge in this field and summarizes the possible mechanisms responsible for FOG in PD.
Collapse
Affiliation(s)
- Komal Bharti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy
| | | | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
40
|
Gut NK, Mena-Segovia J. Dichotomy between motor and cognitive functions of midbrain cholinergic neurons. Neurobiol Dis 2019; 128:59-66. [PMID: 30213733 PMCID: PMC7176324 DOI: 10.1016/j.nbd.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2018] [Revised: 07/18/2018] [Accepted: 09/09/2018] [Indexed: 12/15/2022] Open
Abstract
Cholinergic neurons of the pedunculopontine nucleus (PPN) are interconnected with all the basal ganglia structures, as well as with motor centers in the brainstem and medulla. Recent theories put into question whether PPN cholinergic neurons form part of a locomotor region that directly regulates the motor output, and rather suggest a modulatory role in adaptive behavior involving both motor and cognitive functions. In support of this, experimental studies in animals suggest that cholinergic neurons reinforce actions by signaling reward prediction and shape adaptations in behavior during changes of environmental contingencies. This is further supported by clinical studies proposing that decreased cholinergic transmission originated in the PPN is associated with impaired sensorimotor integration and perseverant behavior, giving rise to some of the symptoms observed in Parkinson's disease and progressive supranuclear palsy. Altogether, the evidence suggests that cholinergic neurons of the PPN, mainly through their interactions with the basal ganglia, have a leading role in action control.
Collapse
Affiliation(s)
- Nadine K Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
41
|
Gilat M, Dijkstra BW, D'Cruz N, Nieuwboer A, Lewis SJG. Functional MRI to Study Gait Impairment in Parkinson's Disease: a Systematic Review and Exploratory ALE Meta-Analysis. Curr Neurol Neurosci Rep 2019; 19:49. [PMID: 31214901 DOI: 10.1007/s11910-019-0967-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Whilst gait impairment is a main cause for disability in Parkinson's disease (PD), its neural control remains poorly understood. We performed a systematic review and meta-analysis of neuroimaging studies of surrogate features of gait in PD. FINDINGS Assessing the results from PET or SPECT scans after a period of actual walking as well as fMRI during mental imagery or virtual reality (VR) gait paradigms, we found a varying pattern of gait-related brain activity. Overall, a decrease in activation of the SMA during gait was found in PD compared to elderly controls. In addition, the meta-analysis showed that the most consistent gait-related activation was situated in the cerebellar locomotor region (CLR) in PD. Despite methodological heterogeneity, the combined neuroimaging studies of gait provide new insights into its neural control in PD, suggesting that CLR activation likely serves a compensatory role in locomotion.
Collapse
Affiliation(s)
- Moran Gilat
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, PO Box1501, Leuven, Belgium.
| | - Bauke W Dijkstra
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, PO Box1501, Leuven, Belgium
| | - Nicholas D'Cruz
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, PO Box1501, Leuven, Belgium
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, PO Box1501, Leuven, Belgium
| | - Simon J G Lewis
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Bohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT, Albin RL, Müller MLTM. Cholinergic system changes of falls and freezing of gait in Parkinson's disease. Ann Neurol 2019; 85:538-549. [PMID: 30720884 PMCID: PMC6450746 DOI: 10.1002/ana.25430] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Objective Postural instability and gait difficulties (PIGDs) represent debilitating disturbances in Parkinson's disease (PD). Past acetylcholinesterase positron emission tomography (PET) imaging studies implicate cholinergic changes as significant contributors to PIGD features. These studies were limited in quantification of striatal cholinergic synapse integrity. Vesicular acetylcholine transporter (VAChT) PET ligands are better suited for evaluation of high binding areas. We examined associations between regional VAChT expression and freezing of gait (FoG) and falls. Methods Ninety‐four PD subjects underwent clinical assessment and VAChT ([18F]FEOBV) PET. Results Thirty‐five subjects (37.2%) reported a history of falls, and 15 (16%) had observed FoG. Univariate volume‐of‐interest analyses demonstrated significantly reduced thalamic (p = 0.0016) VAChT expression in fallers compared to nonfallers. VAChT expression was significantly reduced in the striatum (p = 0.0012) and limbic archicortex (p = 0.004) in freezers compared to nonfreezers. Whole‐brain voxel‐based analyses of FEOBV PET complemented these findings and showed more granular changes associated with falling history, including the right visual thalamus (especially the right lateral geniculate nucleus [LGN]), right caudate nucleus, and bilateral prefrontal regions. Freezers had prominent VAChT expression reductions in the bilateral striatum, temporal, and mesiofrontal limbic regions. Interpretation Our findings confirm and extend on previous PET findings of thalamic cholinergic deficits associated with falling history and now emphasize right visual thalamus complex changes, including the right LGN. FoG status is associated with reduced VAChT expression in striatal cholinergic interneurons and the limbic archicortex. These observations suggest different cholinergic systems changes underlying falls and FoG in PD. Ann Neurol 2019;85:538–549
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Radiology, University of Michigan, Ann Arbor, MI.,Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Prabesh Kanel
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Zhi Zhou
- Radiology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Kirk A Frey
- Radiology, University of Michigan, Ann Arbor, MI.,Neurology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Roger L Albin
- Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Martijn L T M Müller
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| |
Collapse
|
43
|
Abstract
BACKGROUND Primary Progressive Aphasia (PPA) is a syndrome characterized by an isolated impairment of language function at disease onset. The cholinergic system is implicated in language function and cholinergic deficits are seen in the brains of individuals with PPA. One major source of cholinergic innervation of the cerebral cortex is the nucleus basalis of Meynert (NBM) within which lies the nucleus subputaminalis (NSP). This nucleus is postulated to be involved in language function. We compared the abundance of cholinergic neurons in the NBM and NSP of controls and individuals with PPA. Also explored was whether the individuals presenting with PPA, who subsequently developed different clinical and neuropathological profiles, showed similar cholinergic deficits in the NSP. METHODS Cytoarchitecture of the basal forebrain was studied using Nissl staining in control (n = 5) and PPA (n = 5) brains. Choline acetyltransferase (ChAT) immunohistochemical staining labeled cholinergic neurons were quantified using Neurolucida software. RESULTS In comparison to matched controls, PPA showed reduction of cholinergic neurons in the NBM (t(8) = 4.04, p = 0.0037; Cohen's effect size value d = 2.62) and the NSP (t(6) = 4.62, p = 0.0042; Cohen's d effect size d = 2.92). The average percent of cholinergic neuronal loss was relatively higher in the NSP (64.7%) compared to the NBM (47.7%). CONCLUSION Regardless of underlying pathology, all cases presenting with PPA showed a marked loss of cholinergic neurons in the NSP, providing further evidence for the importance of this nucleus in language function.
Collapse
|
44
|
Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [ 18F]-FEOBV. Mol Psychiatry 2019; 24:322-327. [PMID: 30082840 PMCID: PMC6363916 DOI: 10.1038/s41380-018-0130-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/10/2018] [Revised: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 11/13/2022]
|
45
|
Wilson H, Pagano G, Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm (Vienna) 2019; 126:233-251. [PMID: 30762136 PMCID: PMC6449308 DOI: 10.1007/s00702-019-01975-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
The dementia spectrum encompasses a range of disorders with complex diagnosis, pathophysiology and limited treatment options. Positron emission tomography (PET) imaging provides insights into specific neurodegenerative processes underlying dementia disorders in vivo. Here we focus on some of the most common dementias: Alzheimer's disease, Parkinsonism dementias including Parkinson's disease with dementia, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal syndrome, and frontotemporal lobe degeneration. PET tracers have been developed to target specific proteinopathies (amyloid, tau and α-synuclein), glucose metabolism, cholinergic system and neuroinflammation. Studies have shown distinct imaging abnormalities can be detected early, in some cases prior to symptom onset, allowing disease progression to be monitored and providing the potential to predict symptom onset. Furthermore, advances in PET imaging have identified potential therapeutic targets and novel methods to accurately discriminate between different types of dementias in vivo. There are promising imaging markers with a clinical application on the horizon, however, further studies are required before they can be implantation into clinical practice.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
46
|
Fabbrini G, Fabbrini A, Suppa A. Progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration. ACTA ACUST UNITED AC 2019; 165:155-177. [DOI: 10.1016/b978-0-444-64012-3.00009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
|
47
|
MacLaren DAA, Ljungberg TL, Griffin ME, Clark SD. Pedunculopontine tegmentum cholinergic loss leads to a progressive decline in motor abilities and neuropathological changes resembling progressive supranuclear palsy. Eur J Neurosci 2018; 48:3477-3497. [PMID: 30339310 DOI: 10.1111/ejn.14212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
Progressive supranuclear palsy (PSP) is the most common atypical Parkinsonism. Although PSP shares some symptomology with Parkinson's disease (PD), PSP has a different underlying pathology characterized by tau aggregation. Furthermore, PSP sufferers respond poorly to PD medications and there are no effective alternative therapeutics. The development of both palliative and disease altering therapeutics has been hampered by the lack of an animal model that displays relevant PSP-like pathology and behavioral deficits. Previously, our lab found that in rats the selective removal of cholinergic pedunculopontine neurons (whose axonal projections overlap with areas of PSP pathology), mimics the extensive loss of cholinergic pedunculopontine neurons seen in PSP, and produces a unique PSP-like combination of deficits in: startle reflex, attention, and motor function. The present study extends those findings by allowing the lesion to incubate for over a year and compares behavioral and post-mortem pathology of pedunculopontine-cholinergic-lesioned and sham-lesioned rats. There was an early startle reflex deficit which did not improve over time. Progressive declines in motor function developed over the course of the year, including an increase in the number of "slips" while navigating various beams and poorly coordinated transitions from an elevated platform into homecages. Histological analysis discovered that the loss off cholinergic pedunculopontine neurons precipitated a significant loss of substantia nigra tyrosine hydroxylase-positive neurons and a significant enlargement of the lateral ventricles. The latter is a distinguishing feature between PSP and PD. This preclinical animal model of PSP has the potential to further our understanding of PSP and aid in the testing of potential therapeutic agents.
Collapse
Affiliation(s)
- Duncan A A MacLaren
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Trisha L Ljungberg
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Meghan E Griffin
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
48
|
Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA. Regional vesicular acetylcholine transporter distribution in human brain: A [ 18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526:2884-2897. [PMID: 30255936 DOI: 10.1002/cne.24541] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18 F]fluoroethoxybenzovesamicol ([18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18 F]FEOBV binding in some cortical regions and the striatum.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Michigan Alzheimer Disease Center, Ann Arbor, Michigan
| | - Nicolaas I Bohnen
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Martijn L T M Muller
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - William T Dauer
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Kirk A Frey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert A Koeppe
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
Yu H, Yuan X, Liu L, Wang T, Gong D. Treatment of multiple system atrophy - the past, present and future. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2018; 7:88-94. [PMID: 30498625 PMCID: PMC6261842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 08/08/2018] [Accepted: 08/12/2018] [Indexed: 06/09/2023]
Abstract
Multiple system atrophy is a sporadic progressive degenerative disease which is characterized by multiple central nervous systems involved. So far, there is no effective medicine to cure MSA. The main research direction of treatment includes immunization transplantation and cytotherapy. Human umbilical cord blood is the residue of blood in the placenta and umbilical cord after fetal delivery. It is the most abundant cell bank and its usage is not limited to treat hematological diseases. The researches about hUCB-MNC treatment on MSA are increasing gradually. The potential of other MSC is also discussed. Lateral atlanto-occipital space puncture is an ingenious way created by Professor Dianrong Gong. More than 30 cases of MSA have been treated by this method with fine clinical effect and without serious complications. It indicates that stem cells treatment is a valid method for refractory nerve system diseases.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Xiaoling Yuan
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Lifeng Liu
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| | - Tian Wang
- Taishan Medical UniversityLiaocheng, PR China
| | - Dianrong Gong
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng Clinical School, Taishan Medical UniversityLiaocheng, PR China
| |
Collapse
|
50
|
Molecular Imaging of the Cholinergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:211-250. [PMID: 30314597 DOI: 10.1016/bs.irn.2018.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
One of the first identified neurotransmitters in the brain, acetylcholine, is an important modulator that drives changes in neuronal and glial activity. For more than two decades, the main focus of molecular imaging of the cholinergic system in Parkinson's disease (PD) has been on cognitive changes. Imaging studies have confirmed that degeneration of the cholinergic system is a major determinant of dementia in PD. Within the last decade, the focus is expanding to studying cholinergic correlates of mobility impairments, dyskinesias, olfaction, sleep, visual hallucinations and risk taking behavior in this disorder. These studies increasingly recognize that the regional topography of cholinergic brain areas associates with specific functions. In parallel with this trend, more recent molecular cholinergic imaging approaches are investigating cholinergic modulatory functions and contributions to large-scale brain network functions. A novel area of research is imaging cholinergic innervation functions of peripheral autonomic organs that may have the potential of future prodromal diagnosis of PD. Finally, emerging evidence of hypercholinergic activity in prodromal and symptomatic leucine-rich repeat kinase 2 PD may reflect neuronal cholinergic compensation versus a response to neuro-inflammation. Molecular imaging of the cholinergic system has led to many new insights in the etiology of dopamine non-responsive symptoms of PD (more "malignant" hypocholinergic disease phenotype) and is poised to guide and evaluate future cholinergic drug development in this disorder.
Collapse
|