1
|
Reljic D, Zieseniss N, Herrmann HJ, Neurath MF, Zopf Y. Protein Supplementation Increases Adaptations to Low-Volume, Intra-Session Concurrent Training in Untrained Healthy Adults: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutrients 2024; 16:2713. [PMID: 39203849 PMCID: PMC11357491 DOI: 10.3390/nu16162713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Combined endurance and resistance training, also known as "concurrent training", is a common practice in exercise routines. While concurrent training offers the benefit of targeting both cardiovascular and muscular fitness, it imposes greater physiological demands on the body compared to performing each modality in isolation. Increased protein consumption has been suggested to support adaptations to concurrent training. However, the impact of protein supplementation on responses to low-volume concurrent training is still unclear. Forty-four untrained, healthy individuals (27 ± 6 years) performed two sessions/week of low-volume high-intensity interval training on cycle ergometers followed by five machine-based resistance training exercises for 8 weeks. Volunteers randomly received (double-blinded) 40 g of whey-based protein (PRO group) or an isocaloric placebo (maltodextrin, PLA group) after each session. Maximal oxygen consumption (VO2max) and overall fitness scores (computed from volunteers' VO2max and one-repetition maximum scores, 1-RM) significantly increased in both groups. The PRO group showed significantly improved 1-RM in all major muscle groups, while the PLA group only improved 1-RM in chest and upper back muscles. Improvements in 1-RM in leg muscles were significantly greater in the PRO group versus the PLA group. In conclusion, our results indicate that adaptations to low-volume concurrent training, particularly leg muscle strength, can be improved with targeted post-exercise protein supplementation in untrained healthy individuals.
Collapse
Affiliation(s)
- Dejan Reljic
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nilas Zieseniss
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans Joachim Herrmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus Friedrich Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides - a randomized controlled trial. Front Nutr 2024; 11:1384112. [PMID: 38590831 PMCID: PMC10999617 DOI: 10.3389/fnut.2024.1384112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Collagen peptide supplementation in conjunction with exercise has been shown to improve structural and functional adaptations of both muscles and the extracellular matrix. This study aimed to explore whether specific collagen peptide (SCP) supplementation combined with a concurrent training intervention can improve muscular stress after exercise-induced muscle damage, verified by reliable blood markers. Methods 55 sedentary to moderately active males participating in a concurrent training (CT) intervention (3x/week) for 12 weeks were administered either 15 g of SCP or placebo (PLA) daily. Before (T1) and after the intervention (T2), 150 muscle-damaging drop jumps were performed. Blood samples were collected to measure creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin (MYO) and high-sensitivity C-reactive protein (hsCRP) before, after, and at 2 h, 24 h and 48 h post exercise. Results A combination of concurrent training and SCP administration showed statistically significant interaction effects, implying a lower increase in the area under the curve (AUC) of MYO (p = 0.004, ηp2 = 0.184), CK (p = 0.01, ηp2 = 0.145) and LDH (p = 0.016, ηp2 = 0.133) in the SCP group. On closer examination, the absolute mean differences (ΔAUCs) showed statistical significance in MYO (p = 0.017, d = 0.771), CK (p = 0.039, d = 0.633) and LDH (p = 0.016, d = 0.764) by SCP supplementation. Conclusion In conclusion, 12 weeks of 15 g SCP supplementation combined with CT intervention reduced acute markers of exercise-induced muscle damage and improved post-exercise regenerative capacity, as evidenced by the altered post-exercise time course. The current findings indicate that SCP supplementation had a positive effect on the early phase of muscular recovery by either improving the structural integrity of the muscle and extracellular matrix during the training period or by accelerating membrane and cytoskeletal protein repair. Clinical trial registration https://www.clinicaltrials.gov/study/NCT05220371?cond=NCT05220371&rank=1, NCT05220371.
Collapse
Affiliation(s)
- Kevin Bischof
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Larissa Bundschuh
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| | | | - Arnold Baca
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Daniel König
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Faculty of Life Sciences, Department for Nutrition, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Trommelen J, van Lieshout GAA, Nyakayiru J, Holwerda AM, Smeets JSJ, Hendriks FK, van Kranenburg JMX, Zorenc AH, Senden JM, Goessens JPB, Gijsen AP, van Loon LJC. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. Cell Rep Med 2023; 4:101324. [PMID: 38118410 PMCID: PMC10772463 DOI: 10.1016/j.xcrm.2023.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
The belief that the anabolic response to feeding during postexercise recovery is transient and has an upper limit and that excess amino acids are being oxidized lacks scientific proof. Using a comprehensive quadruple isotope tracer feeding-infusion approach, we show that the ingestion of 100 g protein results in a greater and more prolonged (>12 h) anabolic response when compared to the ingestion of 25 g protein. We demonstrate a dose-response increase in dietary-protein-derived plasma amino acid availability and subsequent incorporation into muscle protein. Ingestion of a large bolus of protein further increases whole-body protein net balance, mixed-muscle, myofibrillar, muscle connective, and plasma protein synthesis rates. Protein ingestion has a negligible impact on whole-body protein breakdown rates or amino acid oxidation rates. These findings demonstrate that the magnitude and duration of the anabolic response to protein ingestion is not restricted and has previously been underestimated in vivo in humans.
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Glenn A A van Lieshout
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands; FrieslandCampina, 3818 LE Amersfoort, the Netherlands
| | - Jean Nyakayiru
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Godwin JS, Telles GD, Vechin FC, Conceição MS, Ugrinowitsch C, Roberts MD, Libardi CA. Time Course of Proteolysis Biomarker Responses to Resistance, High-Intensity Interval, and Concurrent Exercise Bouts. J Strength Cond Res 2023; 37:2326-2332. [PMID: 37506190 DOI: 10.1519/jsc.0000000000004550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ABSTRACT Godwin, JS, Telles, GD, Vechin, FC, Conceição, MS, Ugrinowitsch, C, Roberts, MD, and Libardi, CA. Time course of proteolysis biomarker responses to resistance, high-intensity interval, and concurrent exercise bouts. J Strength Cond Res 37(12): 2326-2332, 2023-Concurrent exercise (CE) combines resistance exercise (RE) and high-intensity interval exercise (HIIE) in the same training routine, eliciting hypertrophy, strength, and cardiovascular benefits over time. Some studies suggest that CE training may hamper muscle hypertrophy and strength adaptations compared with RE training alone. However, the underlying mechanisms related to protein breakdown are not well understood. The purpose of this study was to examine how a bout of RE, HIIE, or CE affected ubiquitin-proteasome and calpain activity and the expression of a few associated genes, markers of skeletal muscle proteolysis. Nine untrained male subjects completed 1 bout of RE (4 sets of 8-12 reps), HIIE (12 × 1 minute sprints at V̇ o2 peak minimum velocity), and CE (RE followed by HIIE), in a crossover design, separated by 1-week washout periods. Muscle biopsies were obtained from the vastus lateralis before (Pre), immediately post, 4 hours (4 hours), and 8 hours (8 hours) after exercise. FBXO32 mRNA expression increased immediately after exercise (main time effect; p < 0.05), and RE and CE presented significant overall values compared with HIIE ( p < 0.05). There was a marginal time effect for calpain-2 mRNA expression ( p < 0.05), with no differences between time points ( p > 0.05). No significant changes occurred in TRIM63/MuRF-1 and FOXO3 mRNA expression, or 20S proteasome or calpain activities ( p > 0.05). In conclusion, our findings suggest that 1 bout of CE does not promote greater changes in markers of skeletal muscle proteolysis compared with 1 bout of RE or HIIE.
Collapse
Affiliation(s)
| | - Guilherme D Telles
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Felipe C Vechin
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Miguel S Conceição
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | | | - Cleiton A Libardi
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of Sao Carlos, Sao Carlos, Brazil
| |
Collapse
|
5
|
Jerger S, Jendricke P, Centner C, Bischof K, Kohl J, Keller S, Gollhofer A, König D. Effects of Specific Bioactive Collagen Peptides in Combination with Concurrent Training on Running Performance and Indicators of Endurance Capacity in Men: A Randomized Controlled Trial. SPORTS MEDICINE - OPEN 2023; 9:103. [PMID: 37935999 PMCID: PMC10630299 DOI: 10.1186/s40798-023-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND First evidence indicates that the supplementation of specific collagen peptides (SCP) is associated with a significant improvement in running performance in physically active women; however, it is unclear if the same is true in males. The purpose of the present study was to investigate the effects of a concurrent training program including 60 min of continuous moderate intensity running training and 15 min of dynamic resistance training combined with supplementation of SCP on parameters of running performance in moderately trained males. METHODS In a double-blind, placebo-controlled, randomized trial, participants performed a 12 weeks concurrent training and ingested 15 g of SCP [treatment group (TG)] or placebo [control group (CG)] daily. Before and after the intervention, running endurance performance was measured by a 1-h time trial on a running track. Velocity at the lactate threshold (VLT) and at the individual anaerobic threshold (VIAT) were assessed on a treadmill ergometer. Body composition was evaluated by bioelectrical impedance analysis. RESULTS Thirty-two men (28.4 ± 5.2 years) completed the study and were included in the analysis. After 12 weeks, TG had a statistically significant (p ≤ 0.05) higher increase in running distance (1727 ± 705 m) compared to the CG (1018 ± 976 m) in the time trial. VLT increased in the TG by 0.680 ± 1.27 km h-1 and slightly decreased by - 0.135 ± 0.978 km h-1 in the CG, resulting in statistically significant group differences (p ≤ 0.05). A significantly higher improvement in VIAT (p ≤ 0.05) was shown in the TG compared with the CG only (1.660 ± 1.022 km h-1 vs 0.606 ± 0.974 km h-1; p ≤ 0.01). Fat mass decreased (TG - 1.7 ± 1.6 kg; CG - 1.2 ± 2.0 kg) and fat free mass increased (TG 0.2 ± 1.2 kg; CG 0.5 ± 1.3 kg) in both groups with no significant group differences. CONCLUSION In summary, supplementation with 15 g of SCP improved running performance in a 1-h time trial and enhanced indicators of endurance capacity at submaximal exercise intensities such as an increased velocity at the lactate as well as the anaerobic threshold more effectively than CT alone. TRIAL REGISTRATION ETK: 123/17; DRKS-ID: DRKS00015529 (Registered 07 November 2018-Retrospectively registered); https://drks.de/search/de/trial/DRKS00015529.
Collapse
Affiliation(s)
- Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany.
| | - Patrick Jendricke
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| | - Kevin Bischof
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Auf Der Schmelz 6, 1150, Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Simon Keller
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117, Freiburg, Germany
| | - Daniel König
- Department for Nutrition, Exercise and Health, Centre of Sports Science, University of Vienna, Auf Der Schmelz 6, 1150, Vienna, Austria
- Department for Nutrition, Exercise and Health, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
6
|
Ozdemir O, Erten F, Er B, Orhan C, Komorowski JR, Sylla S, Perez Ojalvo S, Sahin K. Evaluation of pea/rice and amylopectin/chromium as an alternative protein source to improve muscle protein synthesis in rats. Eur J Nutr 2023; 62:2293-2302. [PMID: 37186279 DOI: 10.1007/s00394-023-03150-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND A preclinical study reported that the combination of an amylopectin/chromium complex (ACr) of branched-chain amino acids (BCAA) significantly enhanced muscle protein synthesis (MPS). This study was conducted to determine the effects of the addition of ACr complex to a pea/rice (PR) protein on MPS, insulin, muslin levels, and the mTOR pathway in exercised rats. METHODS Twenty-four rats were divided into three groups: (i) exercise (Ex); (ii) Ex + PR 1:1 blend (0.465 g/kg BW); (iii) Ex + PR + ACr (0.155 g/kg BW). On the day of single-dose administration, after the animals were exercised at 26/m/min for 2 h, the supplement was given by oral gavage. The rats were injected with a bolus dose (250 mg/kg BW, 25 g/L) of deuterium-labeled phenylalanine to determine the protein fractional synthesis rate (FSR) one h after consuming the study product. RESULTS The combination of PR and ACr enhanced MPS by 42.55% compared to the Ex group, while Ex + PR alone increased MPS by 30.2% over the Ex group (p < 0.0001) in exercised rats. Ex + PR plus ACr significantly enhanced phosphorylation of mTOR and S6K1 (p < 0.0001), and 4E-BP1 (p < 0.001) compared to the Ex (p < 0.0001). PR to ACr also significantly increased insulin and musclin levels (p < 0.0001) in exercised rats. Additionally, compared to Ex + PR alone, Ex + PR + ACr enhanced mTOR (p < 0.0001) and S6K1 (p < 0.0001) levels. CONCLUSION These data suggested that PR + ACr may provide an alternative to animal proteins for remodeling and repairing muscle by stimulating MPS and mTOR signaling pathways in post-exercised rats. More preclinical and clinical human studies on combining pea/rice and amylopectin/chromium complex are required.
Collapse
Affiliation(s)
- Oguzhan Ozdemir
- Department of Veterinary Science, Technical Sciences Vocational School, Batman University, 72000, Batman, Turkey
| | - Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, 62500, Tunceli, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Turkish Academy of Sciences, Firat University, 23119, Elazig, Turkey
| | | | - Sarah Sylla
- Research and Development, Nutrition21 LLC, Harrison, NY, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Turkish Academy of Sciences, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
7
|
Trommelen J, van Lieshout GAA, Pabla P, Nyakayiru J, Hendriks FK, Senden JM, Goessens JPB, van Kranenburg JMX, Gijsen AP, Verdijk LB, de Groot LCPGM, van Loon LJC. Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial. Sports Med 2023; 53:1445-1455. [PMID: 36857005 PMCID: PMC10289916 DOI: 10.1007/s40279-023-01822-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. OBJECTIVE We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. METHODS Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous L-[ring-13C6]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. RESULTS Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h-1, p = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h-1, p = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h-1, p = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h-1, p = 0.440) protein synthesis rates. CONCLUSIONS Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. CLINICAL TRIAL REGISTRATION NTR7251 .
Collapse
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Glenn A A van Lieshout
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- FrieslandCampina, 3818 LE, Amersfoort, The Netherlands
| | - Pardeep Pabla
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Janneau M X van Kranenburg
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Franzke B, Bileck A, Unterberger S, Aschauer R, Zöhrer PA, Draxler A, Strasser EM, Wessner B, Gerner C, Wagner KH. The plasma proteome is favorably modified by a high protein diet but not by additional resistance training in older adults: A 17-week randomized controlled trial. Front Nutr 2022; 9:925450. [PMID: 35990326 PMCID: PMC9389340 DOI: 10.3389/fnut.2022.925450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe age-related loss of muscle mass significantly contributes to the development of chronic diseases, loss of mobility and dependency on others, yet could be improved by an optimized lifestyle.ObjectiveThe goal of this randomized controlled trial was to compare the influence of a habitual diet (CON) with either a diet containing the recommended protein intake (RP) or a high protein intake (HP), both with and without strength training, on the plasma proteome in older adults.MethodsOne hundred and thirty-six women and men (65–85 years) were randomly assigned to three intervention groups. CON continued their habitual diet; participants of the HP and RP group consumed either high protein or standard foods. After 6 weeks of dietary intervention, HP and RP groups additionally started a strength training intervention twice per week for 8 weeks. Twenty-four hours dietary recalls were performed every 7–10 days. Body composition was assessed and blood taken. Plasma proteomics were assessed with LC-MS.ResultsParticipants of the HP group doubled their baseline protein intake from 0.80 ± 0.31 to 1.63 ± 0.36 g/kg BW/d; RP increased protein intake from 0.89 ± 0.28 to 1.06 ± 0.26 g/kg BW/d. The CON group kept the protein intake stable throughout the study. Combined exercise and HP initiated notable changes, resulting in a reduction in bodyfat and increased muscle mass. Proteomics analyses revealed 14 significantly affected proteins by HP diet, regulating innate immune system, lipid transport and blood coagulation, yet the additional strength training did not elicit further changes.ConclusionsCombined HP and resistance exercise in healthy older adults seem to induce favorable changes in the body composition. Changes in the plasma proteome due to the high protein diet point to a beneficial impact for the innate immune system, lipid transport and blood coagulation system, all of which are involved in chronic disease development.Clinical trial registrationThe study was registered at ClinicalTrials.gov (NCT04023513).
Collapse
Affiliation(s)
- Bernhard Franzke
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- *Correspondence: Bernhard Franzke
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Sandra Unterberger
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Rudolf Aschauer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Patrick A. Zöhrer
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Agnes Draxler
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Center South, Vienna, Austria
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Wagner
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Centner C, Jerger S, Mallard A, Herrmann A, Varfolomeeva E, Gollhofer S, Oesser S, Sticht C, Gretz N, Aagaard P, Nielsen JL, Frandsen U, Suetta C, Gollhofer A, König D. Supplementation of Specific Collagen Peptides Following High-Load Resistance Exercise Upregulates Gene Expression in Pathways Involved in Skeletal Muscle Signal Transduction. Front Physiol 2022; 13:838004. [PMID: 35480041 PMCID: PMC9037237 DOI: 10.3389/fphys.2022.838004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/22/2022] [Indexed: 12/25/2022] Open
Abstract
Previous evidence suggests that resistance training in combination with specific collagen peptides (CP) improves adaptive responses of the muscular apparatus. Although beneficial effects have been repeatedly demonstrated, the underlying mechanisms are not well understood. Therefore, the primary objective of the present randomized trial was to elucidate differences in gene expression pathways related to skeletal muscle signal transduction following acute high-load resistance exercise with and without CP intake. Recreationally active male participants were equally randomized to high-load leg extension exercise in combination with 15 g CP or placebo (PLA) supplementation. Muscle biopsies from the vastus lateralis muscle were obtained at baseline as well as 1, 4 and 24 h post exercise to investigate gene expression using next generation sequencing analysis. Several important anabolic pathways including PI3K-Akt and MAPK pathways were significantly upregulated at 1 and 4 h post-exercise. Significant between-group differences for both pathways were identified at the 4 h time point demonstrating a more pronounced effect after CP intake. Gene expression related to the mTOR pathway demonstrated a higher visual increase in the CP group compared to PLA by trend, but failed to achieve statistically significant group differences. The current findings revealed a significantly higher upregulation of key anabolic pathways (PI3K-Akt, MAPK) in human skeletal muscle 4 h following an acute resistance training combined with intake of 15 g of specific collagen peptides compared to placebo. Further investigations should examine potential relationships between upregulated gene expression and changes in myofibrillar protein synthesis as well as potential long-term effects on anabolic pathways on the protein level.
Collapse
Affiliation(s)
- Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
- *Correspondence: Christoph Centner,
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Alistair Mallard
- Australasian Kidney Trials Network, Centre for Health Services Research, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Anna Herrmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Eugenia Varfolomeeva
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Sandra Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | | | - Carsten Sticht
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Jakob L. Nielsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Ulrik Frandsen
- Department of Sports Science and Clinical Biomechanics, Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Geriatric Research Unit, Department of Geriatric and Palliative Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Geriatric Research Unit, Department of Medicine, Copenhagen University Hospital Herlev and Gentofte, Copenhagen, Denmark
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department of Nutritional Science, Institute for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Centre for Sports Science and University Sports, Institute for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Anderson L, Drust B, Close GL, Morton JP. Physical loading in professional soccer players: Implications for contemporary guidelines to encompass carbohydrate periodization. J Sports Sci 2022; 40:1000-1019. [DOI: 10.1080/02640414.2022.2044135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liam Anderson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Graeme L. Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| | - James P. Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool John Moores University, Liverpool, L3 6AF, UK
| |
Collapse
|
11
|
Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 2022; 52:441-461. [PMID: 34822138 DOI: 10.1007/s40279-021-01585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.
Collapse
|
12
|
Hartono FA, Martin-Arrowsmith PW, Peeters WM, Churchward-Venne TA. The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic Review. Sports Med 2022; 52:1295-1328. [PMID: 35113389 DOI: 10.1007/s40279-021-01620-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Engaging in both resistance and endurance exercise within the same training program, termed 'concurrent exercise training,' is common practice in many athletic disciplines that require a combination of strength and endurance and is recommended by a number of organizations to improve muscular and cardiovascular health and reduce the risk of chronic metabolic disease. Dietary protein ingestion supports skeletal muscle remodeling after exercise by stimulating the synthesis of muscle proteins and can optimize resistance exercise-training mediated increases in skeletal muscle size and strength; however, the effects of protein supplementation on acute and longer-term adaptive responses to concurrent resistance and endurance exercise are unclear. OBJECTIVES The purpose of this systematic review is to evaluate the effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in responses to concurrent resistance and endurance exercise in healthy adults. METHODS A systematic search was conducted in five databases: Scopus, Embase, Medline, PubMed, and Web of Science. Acute and longer-term controlled trials involving concurrent exercise and protein supplementation in healthy adults (ages 18-65 years) were included in this systematic review. Main outcomes of interest were changes in skeletal muscle protein synthesis rates, muscle mass, muscle strength, and whole-body aerobic capacity (i.e., maximal/peak aerobic capacity [VO2max/peak]). The quality of studies was assessed using the National Institute of Health Quality Assessment for Controlled Intervention Studies. RESULTS Four acute studies including 84 trained young males and ten longer-term studies including 167 trained and 391 untrained participants fulfilled the eligibility criteria. All included acute studies demonstrated that protein ingestion enhanced myofibrillar protein synthesis rates, but not mitochondrial protein synthesis rates during post-exercise recovery after an acute bout of concurrent exercise. Of the included longer-term training studies, five out of nine reported that protein supplementation enhanced concurrent training-mediated increases in muscle mass, while five out of nine studies reported that protein supplementation enhanced concurrent training-mediated increases in muscle strength and/or power. In terms of aerobic adaptations, all six included studies reported no effect of protein supplementation on concurrent training-mediated increases in VO2max/peak. CONCLUSION Protein ingestion after an acute bout of concurrent exercise further increases myofibrillar, but not mitochondrial, protein synthesis rates during post-exercise recovery. There is some evidence that protein supplementation during longer-term training further enhances concurrent training-mediated increases in skeletal muscle mass and strength/power, but not whole-body aerobic capacity (i.e., VO2max/peak).
Collapse
Affiliation(s)
| | - Patrick W Martin-Arrowsmith
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada
| | - Wouter M Peeters
- School of Biomedical, Nutritional, and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada.
- Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
13
|
Davis JK, Oikawa SY, Halson S, Stephens J, O'Riordan S, Luhrs K, Sopena B, Baker LB. In-Season Nutrition Strategies and Recovery Modalities to Enhance Recovery for Basketball Players: A Narrative Review. Sports Med 2021; 52:971-993. [PMID: 34905181 PMCID: PMC9023401 DOI: 10.1007/s40279-021-01606-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/15/2023]
Abstract
Basketball players face multiple challenges to in-season recovery. The purpose of this article is to review the literature on recovery modalities and nutritional strategies for basketball players and practical applications that can be incorporated throughout the season at various levels of competition. Sleep, protein, carbohydrate, and fluids should be the foundational components emphasized throughout the season for home and away games to promote recovery. Travel, whether by air or bus, poses nutritional and sleep challenges, therefore teams should be strategic about packing snacks and fluid options while on the road. Practitioners should also plan for meals at hotels and during air travel for their players. Basketball players should aim for a minimum of 8 h of sleep per night and be encouraged to get extra sleep during congested schedules since back-to back games, high workloads, and travel may negatively influence night-time sleep. Regular sleep monitoring, education, and feedback may aid in optimizing sleep in basketball players. In addition, incorporating consistent training times may be beneficial to reduce bed and wake time variability. Hydrotherapy, compression garments, and massage may also provide an effective recovery modality to incorporate post-competition. Future research, however, is warranted to understand the influence these modalities have on enhancing recovery in basketball players. Overall, a strategic well-rounded approach, encompassing both nutrition and recovery modality strategies, should be carefully considered and implemented with teams to support basketball players' recovery for training and competition throughout the season.
Collapse
Affiliation(s)
- Jon K Davis
- Gatorade Sports Science Institute, PepsiCo, Inc., 3800 Gaylord Parkway, Suite 210, Frisco, TX, 75034, USA.
| | - Sara Y Oikawa
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Shona Halson
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | | | - Shane O'Riordan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Department of Physiology, Australian Institute of Sport, Canberra, Australia
| | - Kevin Luhrs
- Gatorade Sports Science Institute, PepsiCo, Inc., Bradenton, FL, 34210, USA
| | - Bridget Sopena
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| | - Lindsay B Baker
- Gatorade Sports Science Institute, PepsiCo, Inc., Barrington, IL, 60010, USA
| |
Collapse
|
14
|
Chapman S, Chung HC, Rawcliffe AJ, Izard R, Smith L, Roberts JD. Does Protein Supplementation Support Adaptations to Arduous Concurrent Exercise Training? A Systematic Review and Meta-Analysis with Military Based Applications. Nutrients 2021; 13:1416. [PMID: 33922458 PMCID: PMC8145048 DOI: 10.3390/nu13051416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated the impact of protein supplementation on adaptations to arduous concurrent training in healthy adults with potential applications to individuals undergoing military training. Peer-reviewed papers published in English meeting the population, intervention, comparison and outcome criteria were included. Database searches were completed in PubMed, Web of science and SPORTDiscus. Study quality was evaluated using the COnsensus based standards for the selection of health status measurement instruments checklist. Of 11 studies included, nine focused on performance, six on body composition and four on muscle recovery. Cohen's d effect sizes showed that protein supplementation improved performance outcomes in response to concurrent training (ES = 0.89, 95% CI = 0.08-1.70). When analysed separately, improvements in muscle strength (SMD = +4.92 kg, 95% CI = -2.70-12.54 kg) were found, but not in aerobic endurance. Gains in fat-free mass (SMD = +0.75 kg, 95% CI = 0.44-1.06 kg) and reductions in fat-mass (SMD = -0.99, 95% CI = -1.43-0.23 kg) were greater with protein supplementation. Most studies did not report protein turnover, nitrogen balance and/or total daily protein intake. Therefore, further research is warranted. However, our findings infer that protein supplementation may support lean-mass accretion and strength gains during arduous concurrent training in physical active populations, including military recruits.
Collapse
Affiliation(s)
- Shaun Chapman
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Henry C. Chung
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Alex J. Rawcliffe
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
| | - Rachel Izard
- Defence Science and Technology, Porton Down, UK Ministry of Defence, Salisbury, Wiltshire SP4 0JQ, UK;
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| |
Collapse
|
15
|
Russo I, Della Gatta PA, Garnham A, Porter J, Burke LM, Costa RJS. Does the Nutritional Composition of Dairy Milk Based Recovery Beverages Influence Post-exercise Gastrointestinal and Immune Status, and Subsequent Markers of Recovery Optimisation in Response to High Intensity Interval Exercise? Front Nutr 2021; 7:622270. [PMID: 33521041 PMCID: PMC7840831 DOI: 10.3389/fnut.2020.622270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the effects of flavored dairy milk based recovery beverages of different nutrition compositions on markers of gastrointestinal and immune status, and subsequent recovery optimisation markers. After completing 2 h high intensity interval running, participants (n = 9) consumed a whole food dairy milk recovery beverage (CM, 1.2 g/kg body mass (BM) carbohydrate and 0.4 g/kg BM protein) or a dairy milk based supplement beverage (MBSB, 2.2 g/kg BM carbohydrate and 0.8 g/kg BM protein) in a randomized crossover design. Venous blood samples, body mass, body water, and breath samples were collected, and gastrointestinal symptoms (GIS) were measured, pre- and post-exercise, and during recovery. Muscle biopsies were performed at 0 and 2 h of recovery. The following morning, participants returned to the laboratory to assess performance outcomes. In the recovery period, carbohydrate malabsorption (breath H2 peak: 49 vs. 24 ppm) occurred on MBSB compared to CM, with a trend toward greater gut discomfort. No difference in gastrointestinal integrity (i.e., I-FABP and sCD14) or immune response (i.e., circulating leukocyte trafficking, bacterially-stimulated neutrophil degranulation, and systemic inflammatory profile) markers were observed between CM and MBSB. Neither trial achieved a positive rate of muscle glycogen resynthesis [-25.8 (35.5) mmol/kg dw/h]. Both trials increased phosphorylation of intramuscular signaling proteins. Greater fluid retention (total body water: 86.9 vs. 81.9%) occurred on MBSB compared to CM. Performance outcomes did not differ between trials. The greater nutrient composition of MBSB induced greater gastrointestinal functional disturbance, did not prevent the post-exercise reduction in neutrophil function, and did not support greater overall acute recovery.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Paul A. Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Andrew Garnham
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
16
|
Jendricke P, Kohl J, Centner C, Gollhofer A, König D. Influence of Specific Collagen Peptides and Concurrent Training on Cardiometabolic Parameters and Performance Indices in Women: A Randomized Controlled Trial. Front Nutr 2020; 7:580918. [PMID: 33330579 PMCID: PMC7710701 DOI: 10.3389/fnut.2020.580918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose was to examine the effects of concurrent training (CT) combined with specific collagen peptides (SCP) intake on cardiometabolic parameters and performance indices in women. In a double-blind, placebo-controlled, randomized trial recreationally active women (n = 59) completed a 12-week CT training (3 day/week) and ingested 15 g of SCP (treatment group [TG]) or placebo (control group [CG]) on a daily basis. Running distance as a marker of endurance performance (time trial), velocity and heart rate at the lactate and anaerobic threshold (incremental running test) and body composition (bioelectrical impedance analysis [BIA]) were measured. BIA measurements included determination of fat mass (FM) and fat free mass (FFM). Additionally, muscular strength (one-repetition-maximum [1RM]) and muscular endurance (60% of 1RM) were assessed. After 12-weeks, TG had a higher increase in running distance (1,034 ± 643 m) compared to the CG (703 ± 356 m) indicated by a significant interaction effect (p < 0.05). Velocity at lactate and anaerobic threshold improved in both groups over time (p < 0.001), with no significant differences between groups. Similarly, heart rate at lactate threshold decreased over time (p < 0.001), with no time × group interaction. TG declined more in heart rate at anaerobic threshold (−8 ± 14 bpm) than the CG (−1 ± 7 bpm), which resulted in a significant interaction effect (p < 0.01). FM decreased over time in TG and CG (p < 0.001), with no group differences. On contrary, TG had a higher increase in FFM (0.8 ± 0.9 kg) compared to the CG (0.3 ± 1.0 kg) (time × group interaction: p < 0.05). Both, 1RM and muscular endurance improved over time (p < 0.001), with no significant group differences. In conclusion, supplementation of SCP in combination with CT resulted in a significant increase in endurance performance compared to the control group. This might potentially be a consequence of improved structural and cardiometabolic adaptations.
Collapse
Affiliation(s)
- Patrick Jendricke
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Jan Kohl
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Christoph Centner
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany
| | - Daniel König
- Department of Sports and Sport Science, University of Freiburg, Freiburg, Germany.,Department of Sports Science, Institute for Nutrition and Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Timmins RG, Shamim B, Tofari PJ, Hickey JT, Camera DM. Differences in Lower Limb Strength and Structure After 12 Weeks of Resistance, Endurance, and Concurrent Training. Int J Sports Physiol Perform 2020; 15:1223-1230. [PMID: 32209722 DOI: 10.1123/ijspp.2019-0788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate strength and structural adaptations after 12 weeks of resistance, endurance cycling, and concurrent training. METHODS Thirty-two healthy males undertook 12 weeks of resistance-only (RT; n = 10), endurance-only (END; n = 10), or concurrent resistance and endurance training (CONC; n = 12). Biceps femoris long head (BFlh) architecture, strength (3-lift 1-repetition maximum), and body composition were assessed. RESULTS Fascicle length of the BFlh reduced 15% (6%) (P < .001) and 9% (6%) (P < .001) in the END and CONC groups postintervention, with no change in the RT group (-4% [11%], P = .476). All groups increased BFlh pennation angle (CONC: 18% [9%], RT: 14% [8%], and END: 18% [10%]). Thickness of the BFlh increased postintervention by 7% (6%) (P = .002) and 7% (7%) (P = .003) in the CONC and RT groups, respectively, but not in the END group (0% [3%], P = .994). Both the CONC and RT groups significantly increased by 27% (11%) (P < .001) and 33% (12%) (P < .001) in 3-lift totals following the intervention, with no changes in the END cohort (6% [6%], P = .166). No significant differences were found for total body (CONC: 4% [2%], RT: 4% [2%], and END: 3% [2%]) and leg (CONC: 5% [3%], RT: 6% [3%], and END: 5% [3%]) fat-free mass. CONCLUSIONS Twelve weeks of RT, END, or CONC significantly modified BFlh architecture. This study suggests that conventional resistance training may dampen BFlh fascicle shortening from cycling training while increasing strength simultaneously in concurrent training. Furthermore, the inclusion of a cycle endurance training stimulus may result in alterations to hamstring architecture that increase the risk of future injury. Therefore, the incorporation of endurance cycling training within concurrent training paradigms should be reevaluated when trying to modulate injury risk.
Collapse
|
18
|
Huecker M, Sarav M, Pearlman M, Laster J. Protein Supplementation in Sport: Source, Timing, and Intended Benefits. Curr Nutr Rep 2020; 8:382-396. [PMID: 31713177 DOI: 10.1007/s13668-019-00293-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide background on the present literature regarding the utility and effectiveness of protein supplements, including protein source and nutrient timing. RECENT FINDINGS In the setting of adequate dietary protein consumption, research suggests some benefit particularly in sport or exercise activities. Protein supplements command a multi-billion-dollar market with prevalent use in sports. Many individuals, including athletes, do not consume optimal dietary protein on a daily basis. High-protein diets are remarkably safe in healthy subjects, especially in the short term. Some objective outcomes are physiologic and may not translate to clinically relevant outcomes. Athletes should, however, consider long-term implications when consuming high quantities of protein in dietary or supplement form.
Collapse
Affiliation(s)
- Martin Huecker
- Dept of Emergency Medicine, University of Louisville School of Medicine, 530 S Jackson St C1H17, Louisville, KY, 40202, USA.
| | - Menaka Sarav
- Division of Nephrology and Hypertension, NorthShore University HealthSystem-University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Michelle Pearlman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Miami Health Systems, Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
19
|
Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Betz MW, Senden JM, Goessens JPB, Gijsen AP, Rollo I, Verdijk LB, van Loon LJC. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. Am J Clin Nutr 2020; 112:303-317. [PMID: 32359142 PMCID: PMC7398777 DOI: 10.1093/ajcn/nqaa073] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. OBJECTIVES We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. METHODS In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. RESULTS Protein intake resulted in ∼70%-74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: -0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg-1 · h-1, respectively; P < 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein-derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P < 0.001). CONCLUSIONS Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein-derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise.This trial was registered at trialregister.nl as NTR5111.
Collapse
Affiliation(s)
- Tyler A Churchward-Venne
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Philippe J M Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joey S J Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joy P B Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie P Gijsen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ian Rollo
- Gatorade Sports Science Institute, Leicester, United Kingdom
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | | |
Collapse
|
20
|
Shamim B, Devlin BL, Timmins RG, Tofari P, Lee Dow C, Coffey VG, Hawley JA, Camera DM. Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men. Sports Med 2019; 48:2869-2883. [PMID: 30341593 PMCID: PMC6244626 DOI: 10.1007/s40279-018-0999-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background We implemented a high-protein diet (2 g·kg−1·d−1) throughout 12 weeks of concurrent exercise training to determine whether interferences to adaptation in muscle hypertrophy, strength and power could be attenuated compared to resistance training alone. Methods Thirty-two recreationally active males (age: 25 ± 5 years, body mass index: 24 ± 3 kg·m−2; mean ± SD) performed 12 weeks of either isolated resistance (RES; n = 10) or endurance (END; n = 10) training (three sessions·w−1), or concurrent resistance and endurance (CET; n = 12) training (six sessions·w−1). Maximal strength (1RM), body composition and power were assessed pre- and post-intervention. Results Leg press 1RM increased ~ 24 ± 13% and ~ 33 ± 16% in CET and RES from PRE-to-POST (P < 0.001), with no difference between groups. Total lean mass increased ~ 4% in both CET and RES from PRE-to-POST (P < 0.001). Ultrasound estimated vastus lateralis volume increased ~ 15% in CET and ~ 11% in RES from PRE-to-POST (P < 0.001), with no difference between groups. Wingate peak power relative to body mass displayed a trend (P = 0.053) to be greater in RES (12.5 ± 1.6 W·kg BM−1) than both CET (10.8 ± 1.7 W·kg BM−1) and END (10.9 ± 1.8 W·kg BM−1) at POST. Absolute VO2peak increased 6.9% in CET and 12% in END from PRE-to-POST (P < 0.05), with no difference between groups. Conclusion Despite high protein availability, select measures of anaerobic power-based adaptations, but not muscle strength or hypertrophy, appear susceptible to ‘interference effects’ with CET and should be closely monitored throughout training macro-cycles. Trials Registry: This trial was registered with the Australian-New Zealand Clinical Trials Registry (ACTRN12617001229369). Electronic supplementary material The online version of this article (10.1007/s40279-018-0999-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Brooke L Devlin
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ryan G Timmins
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Paul Tofari
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Connor Lee Dow
- School of Exercise Science, Australian Catholic University, Melbourne, VIC, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Moore DR. Maximizing Post-exercise Anabolism: The Case for Relative Protein Intakes. Front Nutr 2019; 6:147. [PMID: 31552263 PMCID: PMC6746967 DOI: 10.3389/fnut.2019.00147] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/23/2019] [Indexed: 01/03/2023] Open
Abstract
Maximizing the post-exercise increase in muscle protein synthesis, especially of the contractile myofibrillar protein fraction, is essential to facilitate effective muscle remodeling, and enhance hypertrophic gains with resistance training. MPS is the primary regulated variable influencing muscle net balance with dietary amino acid ingestion representing the single most important nutritional variable enhancing post-exercise rates of muscle protein synthesis. Dose-response studies in average (i.e., ~80 kg) males have reported an absolute 20 g dose of high quality, rapidly digested protein maximizes mixed, and myofibrillar protein synthetic rates. However, it is unclear if these absolute protein intakes can be viewed in a “one size fits all” solution. Re-analysis of published literature in young adults suggests a relative single meal intake of ~0.31 g/kg of rapidly digested, high quality protein (i.e., whey) should be considered as a nutritional guideline for individuals of average body composition aiming to maximize post-exercise myofibrillar protein synthesis while minimizing irreversible amino acid oxidative catabolism that occurs with excessive intakes of this macronutrient. This muscle-specific bolus intake is lower than that reported to maximize whole body anabolism (i.e., ≥0.5 g/kg). Review of the available literature suggests that potential confounders such as the co-ingestion of carbohydrate, sex, and amount of active muscle mass do not represent significant barriers to the translation of this objectively determined relative protein intake. Additional research is warranted to elucidate the effective dose for proteins with suboptimal amino acid compositions (e.g., plant-based), and/or slower digestion rates as well as whether recommendations are appreciably affected by other physiological conditions such endurance exercise, high habitual daily protein ingestion, aging, obesity, and/or periods of chronic negative energy balance.
Collapse
Affiliation(s)
- Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Ojima K. Myosin: Formation and maintenance of thick filaments. Anim Sci J 2019; 90:801-807. [PMID: 31134719 PMCID: PMC6618170 DOI: 10.1111/asj.13226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Skeletal muscle consists of bundles of myofibers containing millions of myofibrils, each of which is formed of longitudinally aligned sarcomere structures. Sarcomeres are the minimum contractile unit, which mainly consists of four components: Z‐bands, thin filaments, thick filaments, and connectin/titin. The size and shape of the sarcomere component is strictly controlled. Surprisingly, skeletal muscle cells not only synthesize a series of myofibrillar proteins but also regulate the assembly of those proteins into the sarcomere structures. However, authentic sarcomere structures cannot be reconstituted by combining purified myofibrillar proteins in vitro, therefore there must be an elaborate mechanism ensuring the correct formation of myofibril structure in skeletal muscle cells. This review discusses the role of myosin, a main component of the thick filament, in thick filament formation and the dynamics of myosin in skeletal muscle cells. Changes in the number of myofibrils in myofibers can cause muscle hypertrophy or atrophy. Therefore, it is important to understand the fundamental mechanisms by which myofibers control myofibril formation at the molecular level to develop approaches that effectively enhance muscle growth in animals.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|
23
|
Smiles WJ, Churchward-Venne TA, van Loon LJC, Hawley JA, Camera DM. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men. FASEB J 2019; 33:7009-7017. [PMID: 30840513 DOI: 10.1096/fj.201801917r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-circulating lipid availability attenuates protein feeding-induced muscle protein synthesis (MPS). Whether the combined effects of exercise and protein ingestion can rescue this inhibition is unknown. In a parallel-groups design, middle-aged sedentary males (n = 28) matched for fat-free mass and body mass index received a 5-h intravenous infusion of either saline/control (n = 9), 20% intralipid infusion (n = 9), or intralipid with concomitant exercise (n = 10). Two hours into each of these infusions, participants received a primed constant infusion of L-(ring-[13C]6)-phenylalanine. Muscle biopsies were taken immediately after control and lipid infusions, at which time, a 30-g protein beverage was ingested. Further biopsies were taken 2 and 4 h after protein ingestion. Intralipid increased plasma free fatty acid concentrations from ∼0.4-2 mM, resulting in an attenuated MPS response to protein ingestion, which was prevented by exercise. Intralipid resulted in a lower peak aminoacidemia following protein ingestion that was exacerbated by prior exercise, suggesting efficiency of the working skeletal muscle to utilize amino acid substrate to drive the postprandial anabolic response. We conclude that in the face of high-fat availability, exercise preserves the sensitivity of skeletal muscle to the anabolic properties of amino acids.-Smiles, W. J., Churchward-Venne, T. A., van Loon, L. J. C., Hawley, J. A., Camera, D. M. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men.
Collapse
Affiliation(s)
- William J Smiles
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| | - Tyler A Churchward-Venne
- School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and.,School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - John A Hawley
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| | - Donny M Camera
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| |
Collapse
|
24
|
Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Peeters WM, Zorenc AH, Schierbeek H, Rollo I, Verdijk LB, van Loon LJC. Myofibrillar and Mitochondrial Protein Synthesis Rates Do Not Differ in Young Men Following the Ingestion of Carbohydrate with Whey, Soy, or Leucine-Enriched Soy Protein after Concurrent Resistance- and Endurance-Type Exercise. J Nutr 2019; 149:210-220. [PMID: 30698812 PMCID: PMC6561602 DOI: 10.1093/jn/nxy251] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/13/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Protein ingestion during recovery from resistance-type exercise increases postexercise muscle protein synthesis rates. Whey protein has been reported to have greater anabolic properties than soy protein, an effect which may be attributed to the higher leucine content of whey. OBJECTIVE The objective of this study was to compare postprandial myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates after ingestion of carbohydrate with whey, soy, or soy protein enriched with free leucine (to match the leucine content of whey) during recovery from a single bout of concurrent resistance- and endurance-type exercise in young healthy men. METHODS In a randomized, double-blind, parallel-group design, 36 healthy young recreationally active men (mean ± SEM age: 23 ± 0.4 y) received a primed continuous infusion of l-[ring-13C6]-phenylalanine and l-[ring-3,5-2H2]-tyrosine and ingested 45 g carbohydrate with 20 g protein from whey (WHEY), soy (SOY), or leucine-enriched soy (SOY + LEU) after concurrent resistance- and endurance-type exercise. Blood and muscle biopsies were collected over a 360 min postexercise recovery period to assess MyoPS and MitoPS rates, and associated signaling through the mammalian target of rapamycin complex 1 (mTORC1). RESULTS Postprandial peak plasma leucine concentrations were significantly higher in WHEY (mean ± SEM: 322 ± 10 μmol/L) and SOY + LEU (328 ± 14 μmol/L) compared with SOY (216 ± 6 μmol/L) (P < 0.05). Despite the apparent differences in plasma leucinemia, MyoPS (WHEY: 0.054 ± 0.002; SOY: 0.053 ± 0.004; SOY + LEU: 0.056 ± 0.004%·h-1; P = 0.83), and MitoPS (WHEY: 0.061 ± 0.004; SOY: 0.061 ± 0.006; SOY + LEU: 0.063 ± 0.004%·h-1; P = 0.96) rates over the entire 360 min recovery period did not differ between treatments. Similarly, signaling through mTORC1Ser2448, p70S6kThr389, 4E-BP1Thr37/46, and rpS6Ser235/236 was similar between treatments. CONCLUSION Postexercise MyoPS and MitoPS rates do not differ after co-ingestion of carbohydrate with 20 g protein from whey, soy, or leucine-enriched soy protein during 360 min of recovery from concurrent resistance- and endurance-type exercise in young, recreationally active men. This trial was registered at Nederlands Trial Register as NTR5098.
Collapse
Affiliation(s)
- Tyler A Churchward-Venne
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Philippe J M Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Joey S J Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Wouter M Peeters
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Antoine H Zorenc
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Henk Schierbeek
- Department of Pediatrics, Academic Medical Center, Emma Children's Hospital, Amsterdam, Netherlands
| | - Ian Rollo
- Gatorade Sports Science Institute, Leicester, United Kingdom
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherland,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
25
|
Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Peeters WM, Zorenc AH, Schierbeek H, Rollo I, Verdijk LB, van Loon LJC. Myofibrillar and Mitochondrial Protein Synthesis Rates Do Not Differ in Young Men Following the Ingestion of Carbohydrate with Milk Protein, Whey, or Micellar Casein after Concurrent Resistance- and Endurance-Type Exercise. J Nutr 2019; 149:198-209. [PMID: 30698725 PMCID: PMC6561606 DOI: 10.1093/jn/nxy244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Whey and micellar casein are high-quality dairy proteins that can stimulate postprandial muscle protein synthesis rates. How whey and casein compare with milk protein in their capacity to stimulate postprandial myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during postexercise recovery is currently unknown. OBJECTIVE The objective of this study was to compare postprandial MyoPS and MitoPS rates after protein-carbohydrate co-ingestion with milk protein, whey, or micellar casein during recovery from a single bout of concurrent resistance- and endurance-type exercise in young healthy men. METHODS In a randomized, double-blind, parallel-group design, 48 healthy, young, recreationally active men (mean ± SEM age: 23 ± 0.3 y) received a primed continuous infusion of L-[ring-13C6]-phenylalanine and L-[ring-3,5-2H2]-tyrosine and ingested 45 g carbohydrate with 0 g protein (CHO), 20 g milk protein (MILK), 20 g whey protein (WHEY), or 20 g micellar casein protein (CASEIN) after a sequential bout of resistance- and endurance-type exercise (i.e., concurrent exercise). Blood and muscle biopsies were collected over 360 min during recovery from exercise to assess MyoPS and MitoPS rates and signaling through mammalian target of rapamycin complex 1 (mTORC1). RESULTS Despite temporal differences in postprandial plasma leucine concentrations between treatments (P < 0.001), MyoPS rates over 360 min of recovery did not differ between treatments (CHO: 0.049% ± 0.003%/h; MILK: 0.059% ± 0.003%/h; WHEY: 0.054% ± 0.002%/h; CASEIN: 0.059% ± 0.005%/h; P = 0.11). When MILK, WHEY, and CASEIN were pooled into a single group (PROTEIN), protein co-ingestion resulted in greater MyoPS rates compared with CHO (PROTEIN: 0.057% ± 0.002%/h; CHO: 0.049% ± 0.003%/h; P = 0.04). MitoPS rates and signaling through the mTORC1 pathway were similar between treatments. CONCLUSION MyoPS and MitoPS rates do not differ after co-ingestion of either milk protein, whey protein, or micellar casein protein with carbohydrate during recovery from a single bout of concurrent resistance- and endurance-type exercise in recreationally active young men. Co-ingestion of protein with carbohydrate results in greater MyoPS, but not MitoPS rates, when compared with the ingestion of carbohydrate only during recovery from concurrent exercise. This trial was registered at Nederlands Trial Register: NTR5098.
Collapse
Affiliation(s)
- Tyler A Churchward-Venne
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Philippe J M Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joey S J Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Wouter M Peeters
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Antoine H Zorenc
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Henk Schierbeek
- Department of Pediatrics, Academic Medical Center, Emma Children's Hospital,
Amsterdam, Netherlands
| | - Ian Rollo
- Gatorade Sports Science Institute, Leicester, United Kingdom
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department
of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
26
|
Case Study: The Effect of Nutritional Intervention on Body Composition and Physical Performance of a Female Squash Player. Int J Sport Nutr Exerc Metab 2018; 28:279-283. [PMID: 29091479 DOI: 10.1123/ijsnem.2017-0069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The body composition of a squash player may affect athletic performance as carrying excessive body fat may increase injury risk and impair agility and speed. This case study outlines the effect of a nutritional intervention on body composition, vitamin D status, and physical performance of a female squash player. A structured, 6-week, moderate energy-restricted diet (70-78% of estimated energy requirement of 2,300 kcal) was implemented with weekly support. A daily supplement of vitamin D, omega-3 fatty acids, and a multivitamin and whey protein was used. Full blood count, vitamin D status, body composition, and physical performance assessments were carried out at baseline and Week 6 of intervention. Body composition changes were measured using the BOD POD™ and skinfold calipers. Body fat was 23% at baseline and 22% at Week 6. Mean sum of eight skinfolds was 127.4 ± 2.2 mm at baseline and 107.3 ± 0.4 mm at Week 6. Lean body mass-to-fat mass ratio improved from 3.4 at baseline to 3.7 at Week 6. The greatest increments compared with baseline in serum markers were 25-hydroxyvitamin D3 (68%), ferritin (31%), eosinophils (20%), and triglycerides (16%). All physical performance measures improved, with reactive strength index (4.8%), and on-court repeated speed (6.0%) showing the greatest improvements from baseline. This intervention demonstrates that structured energy restriction alongside appropriately structured strength and conditioning training is an effective way to gradually reduce the body fat and improve the body composition of a female athlete.
Collapse
|
27
|
Ojima K, Ichimura E, Suzuki T, Oe M, Muroya S, Nishimura T. HSP90 modulates the myosin replacement rate in myofibrils. Am J Physiol Cell Physiol 2018; 315:C104-C114. [PMID: 29561661 DOI: 10.1152/ajpcell.00245.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin is a major myofibrillar component in skeletal muscles. In myofibrils, ~300 myosin molecules form a single thick filament in which there is constant turnover of myosin. Our previous study demonstrated that the myosin replacement rate is reduced by inhibition of protein synthesis (Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T, Am J Physiol Cell Physiol 309: C669-C679, 2015); however, additional factors influencing myosin replacement were unknown. Here, we showed that rapid myosin replacement requires heat shock protein 90 (HSP90) activity. We utilized the fluorescence recovery after photobleaching technique to measure the replacement rate of green fluorescent protein-fused myosin heavy chain (GFP-MYH) in myotubes overexpressing HSP90. Intriguingly, the myosin replacement rate was significantly increased in HSP90-overexpressing myotubes, whereas the myosin replacement rate slowed markedly in the presence of an HSP90-specific inhibitor, indicating that HSP90 activity promotes myosin replacement. To determine the mechanism of this effect, we investigated whether HSP90 activity increased the amount of myosin available for incorporation into myofibrils. Strikingly, the gene expression levels of MYHs were significantly elevated by HSP90 overexpression but downregulated by inhibition of HSP90 activity. Cytosolic myosin content was also increased in myotubes overexpressing HSP90. Taken together, our results demonstrate that HSP90 activity facilitates myosin replacement by upregulating MYH gene expression and thereby increasing cytosolic myosin content.
Collapse
Affiliation(s)
- Koichi Ojima
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba , Japan
| | - Emi Ichimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University , Sapporo , Japan
| | - Takahiro Suzuki
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University , Sapporo , Japan
| | - Mika Oe
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba , Japan
| | - Susumu Muroya
- Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba , Japan
| | - Takanori Nishimura
- Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University , Sapporo , Japan
| |
Collapse
|
28
|
Shamim B, Hawley JA, Camera DM. Protein Availability and Satellite Cell Dynamics in Skeletal Muscle. Sports Med 2018; 48:1329-1343. [DOI: 10.1007/s40279-018-0883-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Brown MA, Stevenson EJ, Howatson G. Whey protein hydrolysate supplementation accelerates recovery from exercise-induced muscle damage in females. Appl Physiol Nutr Metab 2017; 43:324-330. [PMID: 29106812 DOI: 10.1139/apnm-2017-0412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A number of different forms of protein and their analogues have been investigated for their efficacy in ameliorating exercise-induced muscle damage (EIMD) and recovery. Preliminary data regarding whey protein hydrolysate (WPH) supplementation are promising. However, its efficacy beyond acute eccentric/resistance exercise bouts or longer term training programmes are limited and all investigations have been conducted in male or mixed-sex groups. This study sought to elucidate whether the benefits of WPH previously reported can be demonstrated in females following repeated-sprint exercise. Twenty physically active females were assigned to consume 2 doses of 70 mL WPH or isoenergetic carbohydrate (CHO) for 4 days post-EIMD. Measures of muscle soreness, limb girth, flexibility, muscle function, and creatine kinase were collected before, immediately after, and 24, 48, and 72 h postexercise. Time effects were observed for all variables (p < 0.05) except limb girth, which is indicative of EIMD. Flexibility improved beyond baseline measures following WPH by 72 h, but had failed to recover in the CHO group (p = 0.011). Reactive strength index was higher throughout recovery in the WPH group compared with CHO (p = 0.016). Reductions in creatine kinase were greater following WPH compared with CHO at 48 h post-EIMD (p = 0.031). The findings suggest that 4-day supplementation of WPH is beneficial for reducing symptoms of EIMD and improving recovery of muscle function in physically active females.
Collapse
Affiliation(s)
- Meghan A Brown
- a School of Sport and Exercise, University of Gloucestershire, Gloucester, GL2 9HW, UK.,b Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Emma J Stevenson
- c Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Glyn Howatson
- d Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.,e Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| |
Collapse
|
30
|
Vorup J, Pedersen MT, Brahe LK, Melcher PS, Alstrøm JM, Bangsbo J. Effect of small-sided team sport training and protein intake on muscle mass, physical function and markers of health in older untrained adults: A randomized trial. PLoS One 2017; 12:e0186202. [PMID: 29016675 PMCID: PMC5634648 DOI: 10.1371/journal.pone.0186202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
The effect of small-sided team sport training and protein intake on muscle mass, physical function, and adaptations important for health in untrained older adults was examined. Forty-eight untrained older (72±6 (±standard deviation, SD) years men and women were divided into either a team sport group ingesting a drink high in protein (18 g) immediately and 3 h after each training session (TS-HP, n = 13), a team sport group ingesting an isocaloric drink with low protein content (3 g; TS-LP, n = 18), or a control group continuing their normal activities (CON, n = 17). The team sport training was performed as ~20 min of small-sided ball games twice a week over 12 weeks. After the intervention period, leg muscle mass was 0.6 kg higher (P = 0.047) in TS-HP, with no effect in TS-LP. In TS-HP, number of sit-to-stand repetitions increased (1.2±0.6, P = 0.054), time to perform 2.45 m up-and-go was lower (0.7±0.3 s, P = 0.03) and number of arm curl repetitions increased (3.5±1.2, P = 0.01), whereas in TS-LP only number of repetitions in sit-to-stand was higher (1.6±0.6, P = 0.01). In TS-LP, reductions were observed in total and abdominal fat mass (1.2±0.5 and 0.4±0.2 kg, P = 0.03 and P = 0.02, respectively), heart rate at rest (9±3 bpm, P = 0.002) and plasma C-reactive protein (1.8±0.8 mmol/L, P = 0.03), with no effects in TS-HP. Thus, team sport training improves functional capacity of untrained older adults and increases leg muscle mass only when ingesting proteins after training. Furthermore, team sport training followed by intake of drink with low protein content does lower fat mass, heart rate at rest and level of systemic inflammation. Trial Registration: clinicaltrials.gov NCT03120143
Collapse
Affiliation(s)
- Jacob Vorup
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
| | - Mogens Theisen Pedersen
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
| | - Lena Kirchner Brahe
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
| | - Pia Sandfeld Melcher
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
| | - Joachim Meno Alstrøm
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
| | - Jens Bangsbo
- Copenhagen Centre for Team Sport and Health, Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, University of Copenhagen, Copenhagen O, Denmark
- * E-mail:
| |
Collapse
|
31
|
Camera DM, Burniston JG, Pogson MA, Smiles WJ, Hawley JA. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. FASEB J 2017; 31:5478-5494. [PMID: 28855275 DOI: 10.1096/fj.201700531r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 12/23/2022]
Abstract
It is generally accepted that muscle adaptation to resistance exercise (REX) training is underpinned by contraction-induced, increased rates of protein synthesis and dietary protein availability. By using dynamic proteome profiling (DPP), we investigated the contribution of both synthesis and breakdown to changes in abundance on a protein-by-protein basis in human skeletal muscle. Age-matched, overweight males consumed 9 d of a high-fat, low-carbohydrate diet during which time they either undertook 3 sessions of REX or performed no exercise. Precursor enrichment and the rate of incorporation of deuterium oxide into newly synthesized muscle proteins were determined by mass spectrometry. Ninety proteins were included in the DPP, with 28 proteins exhibiting significant responses to REX. The most common pattern of response was an increase in turnover, followed by an increase in abundance with no detectable increase in protein synthesis. Here, we provide novel evidence that demonstrates that the contribution of synthesis and breakdown to changes in protein abundance induced by REX differ on a protein-by-protein basis. We also highlight the importance of the degradation of individual muscle proteins after exercise in human skeletal muscle.-Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., Hawley, J. A. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise.
Collapse
Affiliation(s)
- Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark A Pogson
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, United Kingdom
| | - William J Smiles
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University, Victoria, Australia; .,Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
32
|
Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect. Sports Med 2017; 46:1029-39. [PMID: 26932769 DOI: 10.1007/s40279-016-0496-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.
Collapse
|
33
|
Smiles WJ, Hawley JA, Camera DM. Effects of skeletal muscle energy availability on protein turnover responses to exercise. ACTA ACUST UNITED AC 2016; 219:214-25. [PMID: 26792333 DOI: 10.1242/jeb.125104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle adaptation to exercise training is a consequence of repeated contraction-induced increases in gene expression that lead to the accumulation of functional proteins whose role is to blunt the homeostatic perturbations generated by escalations in energetic demand and substrate turnover. The development of a specific 'exercise phenotype' is the result of new, augmented steady-state mRNA and protein levels that stem from the training stimulus (i.e. endurance or resistance based). Maintaining appropriate skeletal muscle integrity to meet the demands of training (i.e. increases in myofibrillar and/or mitochondrial protein) is regulated by cyclic phases of synthesis and breakdown, the rate and turnover largely determined by the protein's half-life. Cross-talk among several intracellular systems regulating protein synthesis, breakdown and folding is required to ensure protein equilibrium is maintained. These pathways include both proteasomal and lysosomal degradation systems (ubiquitin-mediated and autophagy, respectively) and the protein translational and folding machinery. The activities of these cellular pathways are bioenergetically expensive and are modified by intracellular energy availability (i.e. macronutrient intake) and the 'training impulse' (i.e. summation of the volume, intensity and frequency). As such, exercise-nutrient interactions can modulate signal transduction cascades that converge on these protein regulatory systems, especially in the early post-exercise recovery period. This review focuses on the regulation of muscle protein synthetic response-adaptation processes to divergent exercise stimuli and how intracellular energy availability interacts with contractile activity to impact on muscle remodelling.
Collapse
Affiliation(s)
- William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| |
Collapse
|
34
|
Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 2016; 98:131-143. [PMID: 26876650 DOI: 10.1016/j.freeradbiomed.2016.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 12/18/2022]
Abstract
Skeletal muscle is a highly malleable tissue capable of altering its phenotype in response to external stimuli including exercise. This response is determined by the mode, (endurance- versus resistance-based), volume, intensity and frequency of exercise performed with the magnitude of this response-adaptation the basis for enhanced physical work capacity. However, training-induced adaptations in skeletal muscle are variable and unpredictable between individuals. With the recent application of molecular techniques to exercise biology, there has been a greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses. This review summarizes the molecular and cellular events mediating adaptation processes in skeletal muscle in response to exercise. We discuss established and novel cell signaling proteins mediating key physiological responses associated with enhanced exercise performance and the capacity for reactive oxygen and nitrogen species to modulate training adaptation responses. We also examine the molecular bases underpinning heterogeneous responses to resistance and endurance exercise and the dissociation between molecular 'markers' of training adaptation and subsequent exercise performance.
Collapse
Affiliation(s)
- Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Vic. 3065, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
35
|
Camera DM, Ong JN, Coffey VG, Hawley JA. Selective Modulation of MicroRNA Expression with Protein Ingestion Following Concurrent Resistance and Endurance Exercise in Human Skeletal Muscle. Front Physiol 2016; 7:87. [PMID: 27014087 PMCID: PMC4779983 DOI: 10.3389/fphys.2016.00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 01/05/2023] Open
Abstract
We examined changes in the expression of 13 selected skeletal muscle microRNAs (miRNAs) implicated in exercise adaptation responses following a single bout of concurrent exercise. In a randomized cross-over design, seven healthy males undertook a single trial consisting of resistance exercise (8 × 5 leg extension, 80% 1 Repetition Maximum) followed by cycling (30 min at ~70% VO2peak) with either post-exercise protein (PRO: 25 g whey protein) or placebo (PLA) ingestion. Muscle biopsies (vastus lateralis) were obtained at rest and 4 h post-exercise. Detection of miRNA via quantitative Polymerase Chain Reaction (qPCR) revealed post-exercise increases in miR-23a-3p (~90%), miR-23b-3p (~39%), miR-133b (~80%), miR-181-5p (~50%), and miR-378-5p (~41%) at 4 h post-exercise with PRO that also resulted in higher abundance compared to PLA (P < 0.05). There was a post-exercise decrease in miR-494-3p abundance in PLA only (~88%, P < 0.05). There were no changes in the total abundance of target proteins post-exercise or between conditions. Protein ingestion following concurrent exercise can modulate the expression of miRNAs implicated in exercise adaptations compared to placebo. The selective modulation of miRNAs with target proteins that may prioritize myogenic compared to oxidative/metabolic adaptive responses indicate that miRNAs can play a regulatory role in the molecular machinery enhancing muscle protein synthesis responses with protein ingestion following concurrent exercise.
Collapse
Affiliation(s)
- Donny M Camera
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic UniversityMelbourne, VIC, Australia; Exercise and Nutrition Research Group, School of Medical Sciences, Royal Melbourne Institute of TechnologyMelbourne, VIC, Australia
| | - Jun N Ong
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic University Melbourne, VIC, Australia
| | - Vernon G Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University Gold Coast, QLD, Australia
| | - John A Hawley
- Mary MacKillop Institute for Health Research, Centre for Exercise and Nutrition, Australian Catholic UniversityMelbourne, VIC, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores UniversityLiverpool, UK
| |
Collapse
|
36
|
Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg HC, Blomstrand E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One 2016; 11:e0149082. [PMID: 26885978 PMCID: PMC4757413 DOI: 10.1371/journal.pone.0149082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
Collapse
Affiliation(s)
- Zuzanna Kazior
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eva Blomstrand
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
37
|
Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr 2016; 146:155-83. [PMID: 26764320 PMCID: PMC4725426 DOI: 10.3945/jn.114.203208] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/03/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
The goal of this critical review is to comprehensively assess the evidence for the molecular, physiologic, and phenotypic skeletal muscle responses to resistance exercise (RE) combined with the nutritional intervention of protein and/or amino acid (AA) ingestion in young adults. We gathered the literature regarding the translational response in human skeletal muscle to acute exposure to RE and protein/AA supplements and the literature describing the phenotypic skeletal muscle adaptation to RE and nutritional interventions. Supplementation of protein/AAs with RE exhibited clear protein dose-dependent effects on translational regulation (protein synthesis) through mammalian target of rapamycin complex 1 (mTORC1) signaling, which was most apparent through increases in p70 ribosomal protein S6 kinase 1 (S6K1) phosphorylation, compared with postexercise recovery in the fasted or carbohydrate-fed state. These acute findings were critically tested via long-term exposure to RE training (RET) and protein/AA supplementation, and it was determined that a diminishing protein/AA supplement effect occurs over a prolonged exposure stimulus after exercise training. Furthermore, we found that protein/AA supplements, combined with RET, produced a positive, albeit minor, effect on the promotion of lean mass growth (when assessed in >20 participants/treatment); a negligible effect on muscle mass; and a negligible to no additional effect on strength. A potential concern we discovered was that the majority of the exercise training studies were underpowered in their ability to discern effects of protein/AA supplementation. Regardless, even when using optimal methodology and large sample sizes, it is clear that the effect size for protein/AA supplementation is low and likely limited to a subset of individuals because the individual variability is high. With regard to nutritional intakes, total protein intake per day, rather than protein timing or quality, appears to be more of a factor on this effect during long-term exercise interventions. There were no differences in strength or mass/muscle mass on RET outcomes between protein types when a leucine threshold (>2 g/dose) was reached. Future research with larger sample sizes and more homogeneity in design is necessary to understand the underlying adaptations and to better evaluate the individual variability in the muscle-adaptive response to protein/AA supplementation during RET.
Collapse
Affiliation(s)
- Paul T Reidy
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
38
|
Pasiakos SM, McClung HL, Margolis LM, Murphy NE, Lin GG, Hydren JR, Young AJ. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition. PLoS One 2015; 10:e0140863. [PMID: 26474292 PMCID: PMC4608805 DOI: 10.1371/journal.pone.0140863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Effects of conventional endurance (CE) exercise and essential amino acid (EAA) supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC) and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS) and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO2peak 4.0 ± 0.5 L∙min-1) were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L∙m-1) LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg) or CE (cycle ergometry performed at the same absolute VO2 as LC) exercise, during which EAA (10 g EAA, 3.6 g leucine) or control (CON, non-nutritive) drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P < 0.05), independent of dietary treatment. EAA enhanced mixed-muscle and sarcoplasmic MPS during exercise, regardless of mode (drink main effect, P < 0.05). Mixed-muscle and sarcoplasmic MPS were higher in recovery for LC than CE (mode main effect, P < 0.05). No other differences or interactions (mode x drink) were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P < 0.05). These data show that, although whole-body protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.
Collapse
Affiliation(s)
- Stefan M. Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
- * E-mail:
| | - Holly L. McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Lee M. Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Nancy E. Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Gregory G. Lin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Jay R. Hydren
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Andrew J. Young
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
39
|
Pugh JK, Faulkner SH, Jackson AP, King JA, Nimmo MA. Acute molecular responses to concurrent resistance and high-intensity interval exercise in untrained skeletal muscle. Physiol Rep 2015; 3:e12364. [PMID: 25902785 PMCID: PMC4425969 DOI: 10.14814/phy2.12364] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/04/2015] [Indexed: 01/17/2023] Open
Abstract
Concurrent training involving resistance and endurance exercise may augment the benefits of single-mode training for the purpose of improving health. However, muscle adaptations, associated with resistance exercise, may be blunted by a subsequent bout of endurance exercise, via molecular interference. High-intensity interval training (HIIT), generating similar adaptations to endurance exercise, may offer an alternative exercise mode to traditional endurance exercise. This study examined the influence of an acute HIIT session on the molecular responses following resistance exercise in untrained skeletal muscle. Ten male participants performed resistance exercise (4 × 8 leg extensions, 70% 1RM, (RE)) or RE followed by HIIT (10 × 1 min at 90% HRmax, (RE+HIIT)). Muscle biopsies were collected from the vastus lateralis before, 2 and 6 h post-RE to determine intramuscular protein phosphorylation and mRNA responses. Phosphorylation of Akt (Ser(473)) decreased at 6 h in both trials (P < 0.05). Phosphorylation of mTOR (Ser(2448)) was higher in RE+HIIT (P < 0.05). All PGC-1α mRNA variants increased at 2 h in RE+HIIT with PGC-1α and PGC-1α-ex1b remaining elevated at 6 h, whereas RE-induced increases at 2 and 6 h for PGC-1α-ex1b only (P < 0.05). Myostatin expression decreased at 2 and 6 h in both trials (P < 0.05). MuRF-1 was elevated in RE+HIIT versus RE at 2 and 6 h (P < 0.05). Atrogin-1 was lower at 2 h, with FOXO3A downregulated at 6 h (P < 0.05). These data do not support the existence of an acute interference effect on protein signaling and mRNA expression, and suggest that HIIT may be an alternative to endurance exercise when performed after resistance exercise in the same training session to optimize adaptations.
Collapse
Affiliation(s)
- Jamie K Pugh
- School of Sport Exercise and Health Sciences Loughborough University, Loughborough, UK
| | - Steve H Faulkner
- School of Sport Exercise and Health Sciences Loughborough University, Loughborough, UK
| | - Andrew P Jackson
- School of Sport Exercise and Health Sciences Loughborough University, Loughborough, UK
| | - James A King
- School of Sport Exercise and Health Sciences Loughborough University, Loughborough, UK
| | - Myra A Nimmo
- School of Sport Exercise and Health Sciences Loughborough University, Loughborough, UK College of Life and Environmental Sciences University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Margolis LM, Rivas DA. Implications of exercise training and distribution of protein intake on molecular processes regulating skeletal muscle plasticity. Calcif Tissue Int 2015; 96:211-21. [PMID: 25348078 PMCID: PMC6691734 DOI: 10.1007/s00223-014-9921-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
To optimize its function, skeletal muscle exhibits exceptional plasticity and possesses the fundamental capacity to adapt its metabolic and contractile properties in response to various external stimuli (e.g., external loading, nutrient availability, and humoral factors). The adaptability of skeletal muscle, along with its relatively large mass and high metabolic rate, makes this tissue an important contributor to whole body health and mobility. This adaptational process includes changes in the number, size, and structural/functional properties of the myofibers. The adaptations of skeletal muscle to exercise are highly interrelated with dietary intake, particularly dietary protein, which has been shown to further potentiate exercise training-induced adaptations. Understanding the molecular adaptation of skeletal muscle to exercise and protein consumption is vital to elicit maximum benefit from exercise training to improve human performance and health. In this review, we will provide an overview of the molecular pathways regulating skeletal muscle adaptation to exercise and protein, and discuss the role of subsequent timing of nutrient intake following exercise.
Collapse
Affiliation(s)
- Lee M Margolis
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center On Aging, Tufts University, 711 Washington Street, Boston, MA, 02111, USA
| | | |
Collapse
|
41
|
Milsom J, Naughton R, O'Boyle A, Iqbal Z, Morgans R, Drust B, Morton JP. Body composition assessment of English Premier League soccer players: a comparative DXA analysis of first team, U21 and U18 squads. J Sports Sci 2015; 33:1799-806. [PMID: 25686107 DOI: 10.1080/02640414.2015.1012101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Professional soccer players from the first team (1st team, n = 27), under twenty-one (U21, n = 21) and under eighteen (U18, n = 35) squads of an English Premier League soccer team were assessed for whole body and regional estimates of body composition using dual-energy X-ray absorptiometry (DXA). Per cent body fat was lower in 1st team (10.0 ± 1.6) compared with both U21 (11.6 ± 2.5, P = 0.02) and U18 (11.4 ± 2.6, P = 0.01) players. However, this difference was not due to variations (P = 0.23) in fat mass between squads (7.8 ± 1.6 v. 8.8 ± 2.1 v. 8.2 ± 2.4 kg, respectively) but rather the presence of more lean mass in 1st team (66.9 ± 7.1 kg, P < 0.01) and U21 (64.6 ± 6.5 kg, P = 0.02) compared with U18 (60.6 ± 6.3 kg) players. Accordingly, fat mass index was not different (P = 0.138) between squads, whereas lean mass index was greater (P < 0.01) in 1st team players (20.0 ± 1.1 kg · m(-2)) compared with U18 players (18.8 ± 1.4 kg · m(-2)). Differences in lean mass were also reflective of higher lean tissue mass in all regions, for example, upper limbs/lower limbs and trunk. Data suggest that training and nutritional interventions for younger players should therefore be targeted to lean mass growth as opposed to body fat loss.
Collapse
Affiliation(s)
- Jordan Milsom
- a Liverpool Football Club , Melwood Training Ground , Liverpool , UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle. Eur J Appl Physiol 2015; 115:1185-94. [DOI: 10.1007/s00421-015-3116-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|