1
|
Santos RT, de Sá Freire Onofre ME, de Assis Fernandes Caldeira D, Klein AB, Rocco PRM, Cruz FF, Silva PL. Pharmacological Agents and Potential New Therapies in Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:155-170. [PMID: 38115617 DOI: 10.2174/0115701611266576231211045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.
Collapse
Affiliation(s)
- Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Eduarda de Sá Freire Onofre
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Bello Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zhang H, D'Alessandro A, Li M, Reisz JA, Riddle S, Muralidhar A, Bull T, Zhao L, Gerasimovskaya E, Stenmark KR. Histone deacetylase inhibitors synergize with sildenafil to suppress purine metabolism and proliferation in pulmonary hypertension. Vascul Pharmacol 2023; 149:107157. [PMID: 36849042 PMCID: PMC10067337 DOI: 10.1016/j.vph.2023.107157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
RATIONALE Sildenafil, a well-known vasodilator known to interfere with purinergic signaling through effects on cGMP, is a mainstay in the treatment of pulmonary hypertension (PH). However, little is known regarding its effects on the metabolic reprogramming of vascular cells, which is a hallmark of PH. Purine metabolism, especially intracellular de novo purine biosynthesis is essential for vascular cell proliferation. Since adventitial fibroblasts are critical contributors to proliferative vascular remodeling in PH, in this study we aimed to investigate if sildenafil, beyond its well-known vasodilator role in smooth muscle cells, impacts intracellular purine metabolism and proliferation of fibroblasts derived from human PH patients. METHODS Integrated omics approaches (plasma and cell metabolomics) and pharmacological inhibitor approaches were employed in plasma samples and cultured pulmonary artery fibroblasts from PH patients. MEASUREMENTS AND MAIN RESULTS Plasma metabolome analysis of 27 PH patients before and after treatment with sildenafil, demonstrated a partial, but specific effect of sildenafil on purine metabolites, especially adenosine, adenine, and xanthine. However, circulating markers of cell stress, including lactate, succinate, and hypoxanthine were only decreased in a small subset of sildenafil-treated patients. To better understand potential effects of sildenafil on pathological changes in purine metabolism (especially purine synthesis) in PH, we performed studies on pulmonary fibroblasts from PAH patients (PH-Fibs) and corresponding controls (CO-Fibs), since these cells have previously been shown to demonstrate stable and marked PH associated phenotypic and metabolic changes. We found that PH-Fibs exhibited significantly increased purine synthesis. Treatment of PH-Fibs with sildenafil was insufficient to normalize cellular metabolic phenotype and only modestly attenuated the proliferation. However, we observed that treatments which have been shown to normalize glycolysis and mitochondrial abnormalities including a PKM2 activator (TEPP-46), and the histone deacetylase inhibitors (HDACi), SAHA and Apicidin, had significant inhibitory effects on purine synthesis. Importantly, combined treatment with HDACi and sildenafil exhibited synergistic inhibitory effects on proliferation and metabolic reprogramming in PH-Fibs. CONCLUSIONS While sildenafil alone partially rescues metabolic alterations associated with PH, treatment with HDACi, in combination with sildenafil, represent a promising and potentially more effective strategy for targeting vasoconstriction, metabolic derangement and pathological vascular remodeling in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Akshay Muralidhar
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, USA
| | - Todd Bull
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, USA
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Evgenia Gerasimovskaya
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado School of Medicine, Denver, USA.
| |
Collapse
|
3
|
Pizzicato LN, Nadipelli VR, Governor S, Mao J, Lanes S, Butler J, Pepe RS, Phatak H, El‐Kersh K. Real-world treatment patterns, healthcare resource utilization, and cost among adults with pulmonary arterial hypertension in the United States. Pulm Circ 2022; 12:e12090. [PMID: 35795495 PMCID: PMC9248786 DOI: 10.1002/pul2.12090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Treatment for pulmonary arterial hypertension (PAH) has evolved over the past decade, including approval of new medications and growing evidence to support earlier use of combination therapy. Despite these changes, few studies have assessed real-world treatment patterns, healthcare resource utilization (HCRU), and costs among people with PAH using recent data. We conducted a retrospective cohort study using administrative claims from the HealthCore Integrated Research Database®. Adult members with claims for a PAH diagnosis, right heart catheterization, and who initiated PAH treatment (index date) between October 1, 2015 and November 30, 2020 were identified. Members had to be continuously enrolled in the health plan for 6 months before the index date (baseline) and ≥30 days after. Treatment patterns, HCRU, and costs were described. A total of 843 members with PAH (mean age 62.3 years, 64.2% female) were included. Only 21.0% of members received combination therapy as their first-line treatment, while most members (54.6%) received combination therapy as second-line treatment. All-cause HCRU remained high after treatment initiation with 58.0% of members having ≥1 hospitalization and 41.3% with ≥1 emergency room visit. Total all-cause costs declined from $15,117 per patient per month at baseline to $14,201 after treatment initiation, with decreased medical costs ($14,208 vs. $6,349) more than offsetting increased pharmacy costs ($909 vs. $7,852). In summary, despite growing evidence supporting combination therapy, most members with PAH initiated treatment with monotherapy. Total costs decreased following treatment, driven by a reduction in medical costs even with increases in pharmacy costs.
Collapse
Affiliation(s)
| | - Vijay R. Nadipelli
- Acceleron Pharma Inc., a wholly owned subsidiary of Merck Sharp & Dohme Corp.CambridgeMassachusettsUSA
| | | | - Jianbin Mao
- Acceleron Pharma Inc., a wholly owned subsidiary of Merck Sharp & Dohme Corp.CambridgeMassachusettsUSA
| | | | - John Butler
- Acceleron Pharma Inc., a wholly owned subsidiary of Merck Sharp & Dohme Corp.CambridgeMassachusettsUSA
| | | | - Hemant Phatak
- Acceleron Pharma Inc., a wholly owned subsidiary of Merck Sharp & Dohme Corp.CambridgeMassachusettsUSA
| | | |
Collapse
|
4
|
Zhang H, Brown RD, Stenmark KR, Hu CJ. RNA-Binding Proteins in Pulmonary Hypertension. Int J Mol Sci 2020; 21:ijms21113757. [PMID: 32466553 PMCID: PMC7312837 DOI: 10.3390/ijms21113757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening disease characterized by significant vascular remodeling and aberrant expression of genes involved in inflammation, apoptosis resistance, proliferation, and metabolism. Effective therapeutic strategies are limited, as mechanisms underlying PH pathophysiology, especially abnormal expression of genes, remain unclear. Most PH studies on gene expression have focused on gene transcription. However, post-transcriptional alterations have been shown to play a critical role in inflammation and metabolic changes in diseases such as cancer and systemic cardiovascular diseases. In these diseases, RNA-binding proteins (RBPs) have been recognized as important regulators of aberrant gene expression via post-transcriptional regulation; however, their role in PH is less clear. Identifying RBPs in PH is of great importance to better understand PH pathophysiology and to identify new targets for PH treatment. In this manuscript, we review the current knowledge on the role of dysregulated RBPs in abnormal mRNA gene expression as well as aberrant non-coding RNA processing and expression (e.g., miRNAs) in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - R. Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
| | - Cheng-Jun Hu
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (H.Z.); (R.D.B.); (K.R.S.)
- Department of Craniofacial Biology School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-4576; Fax: +1-303-724-4580
| |
Collapse
|
5
|
Making a case for metallothioneins conferring cardioprotection in pulmonary hypertension. Med Hypotheses 2020; 137:109572. [DOI: 10.1016/j.mehy.2020.109572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 11/23/2022]
|
6
|
Lindegaard Pedersen M, Krüger M, Grimm D, Infanger M, Wehland M. The prostacyclin analogue treprostinil in the treatment of pulmonary arterial hypertension. Basic Clin Pharmacol Toxicol 2020; 126:32-42. [PMID: 31403254 DOI: 10.1111/bcpt.13305] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 01/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare but life-threatening disease that progresses rapidly and is currently without a cure. Pharmacological treatments aim to slow down disease progression and to reduce symptoms by targeting the prostacyclin, the endothelin or the nitric oxide pathway. Drugs targeting the prostacyclin pathway have been shown to be favourable for PAH patients by causing vasodilatative, anti-proliferative as well as anti-inflammatory effects, but tend to be underused, partially due to adverse effects and difficulties associated with their intravenous administration. Treprostinil, a stable prostacyclin analogue, was FDA-approved in 2002 to improve exercise capacity in PAH patients and is available in intravenous, subcutaneous, inhaled and oral form. The four different possible ways of administration, a long half-life and its stability at room temperature give treprostinil an advantage over epoprostenol, iloprost and selexipag, the three other FDA-approved drugs targeting the prostacyclin pathway. In clinical trials, treprostinil improved exercise capacity, quality of life (QOL), functional class and clinical status. While the different forms of treprostinil lead to specific complications, its general adverse effects are dizziness, nausea, pain in the jaw and extremities, diarrhoea, flushing and headache. This MiniReview will assess the benefits and drawbacks of treprostinil in the treatment of PAH by examining its specific mechanism of action and pharmacological properties, such as pharmacokinetics, pharmacodynamics, adverse effects and interactions. In addition, we will analyse and discuss results from different clinical trials, comparing treprostinil's four different forms to each other as well as to other drugs targeting the prostacyclin pathway.
Collapse
Affiliation(s)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Cost Effectiveness of Bosentan for Pulmonary Arterial Hypertension: A Systematic Review. Can Respir J 2018; 2018:1015239. [PMID: 30581511 PMCID: PMC6276424 DOI: 10.1155/2018/1015239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives Although many studies have reported on the cost-effectiveness of bosentan for treating pulmonary arterial hypertension (PAH), a systematic review of economic evaluations of bosentan is currently lacking. Objective evaluation of current pharmacoeconomic evidence can assist decision makers in determining the appropriate place in therapy of a new medication. Methods Systematic literature searches were conducted in English-language databases (MEDLINE, EMBASE, EconLit databases, and the Cochrane Library) and Chinese-language databases (China National Knowledge Infrastructure, WanFang Data, and Chongqing VIP) to identify studies assessing the cost-effectiveness of bosentan for PAH treatments. Results A total of 8 published studies were selected for inclusion. Among them were two studies comparing bosentan with epoprostenol and treprostinil. Both results indicated that bosentan was more cost-effective than epoprostenol, while the results of bosentan and treprostinil were not consistent. Four studies compared bosentan with other endothelin receptor antagonists, which indicated ambrisentan might be the drug of choice for its economic advantages and improved safety profile. Only two economic evaluations provided data to compare bosentan versus sildenafil, and the results favored the use of sildenafil in PAH patients. Four studies compared bosentan with conventional, supportive, or palliative therapy, and whether bosentan was cost-effective was uncertain. Conclusions Bosentan may represent a more cost-effective option compared with epoprostenol and conventional or palliative therapy. There was unanimous agreement that bosentan was not a cost-effective front-line therapy compared with sildenafil and other endothelin receptor antagonists. However, high-quality cost-effectiveness analyses that utilize long-term follow-up data and have no conflicts of interest are still needed.
Collapse
|
8
|
Li F, You Y, Zhu H. 15-HETE protects pulmonary artery smooth muscle cells against apoptosis via SIRT1 regulation during hypoxia. Biomed Pharmacother 2018; 108:325-330. [PMID: 30227325 DOI: 10.1016/j.biopha.2018.07.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
15-Hydroxyeicosatetraenoic acid (15-HETE) is produced by the catalytic metabolism of arachidonic acid by the enzyme 15-lipoxygenase. It is produced during hypoxia, and participates in the remodeling of pulmonary artery smooth muscle (PASM). Previous research has revealed that sirtuin 1 (SIRT1) involved in apoptosis in various cells and tissues. Herein, we attempted to determine whether 15-HETE counteracts SIRT1-promoted cell death in murine PASM cells (PASMCs). To verify this theory, we investigated changes in SIRT1 concentration in response to the counteraction of cell death by 15-HETE. We used western blotting and a terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay, and investigated the survival, nuclear morphology, and mitochondrial potential of the cells. Our results revealed that 15-HETE promotes the transcription and translation of SIRT1. Moreover, 15-HETE increases viability and impaired mitochondrial depolarization, and promotes the expression of Bcl-2 and Bcl-xL in PASMCs without serum. The reactions mentioned above were eliminated by SIRT1 inhibitors (EX 527 and SIRT1 inhibitor IV). Our findings suggest that 15-HETE is crucial for the protection of PASMCs against cell death, and the SIRT1 pathway may provide a new strategy for pulmonary artery hypertension therapy.
Collapse
Affiliation(s)
- Fujun Li
- Deparment of Physiology of Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China; Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, No. 199 Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Yanqiu You
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, Heilongjiang, 150081, China.
| | - Hui Zhu
- Deparment of Physiology of Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, China.
| |
Collapse
|
9
|
|
10
|
Bedan M, Grimm D, Wehland M, Simonsen U, Infanger M, Krüger M. A Focus on Macitentan in the Treatment of Pulmonary Arterial Hypertension. Basic Clin Pharmacol Toxicol 2018; 123:103-113. [PMID: 29719121 DOI: 10.1111/bcpt.13033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2018] [Accepted: 04/18/2018] [Indexed: 01/10/2023]
Abstract
The approval of macitentan has increased the number of pharmacological treatments of pulmonary arterial hypertension (PAH). Here, we review the effect on PAH of macitentan compared to other endothelin receptor antagonists. Drugs targeting the endothelin (ET) pathway include the selective ETA receptor antagonist ambrisentan, the ETA /ETB receptor antagonists, bosentan and macitentan, which were recently approved for PAH treatment. Macitentan exhibits higher antagonistic potency than bosentan and ambrisentan in pulmonary smooth muscle cells. Compared to ambrisentan and bosentan, macitentan has a longer duration of action, reflected by the longer half-life, as well as pharmacodynamics attributed to its active metabolite, ACT-132577. The efficacy of macitentan on PAH was investigated in the phase III SERAPHIN trial (NCT00660179). Macitentan significantly reduced morbidity and mortality. It improved the 6-min. walk distance (6MWD) among PAH patients. In the AMB-320/321-E (NCT00578786) study, ambrisentan improved exercise capacity. In the EARLY study (NCT00091715), bosentan showed improvements in 6MWD which were not statistically significant. Bosentan had an effect on PAH in patients with Eisenmenger syndrome (ES) in the BREATHE-5 study (NCT00367770), while macitentan did not improve 6MWD in these patients, but there are differences regarding study size and functional class, and that 30% of the patients treated with macitentan were already in treatment with a phosphodiesterase type 5 inhibitor. Macitentan revealed a lower risk of developing peripheral oedema and hepatotoxicity in the SERAPHIN study. In summary, macitentan has an efficiency comparable to bosentan and ambrisentan in the treatment of PAH. Patients treated with macitentan exhibited less adverse effects compared to bosentan and ambrisentan. In patients with PAH associated with ES, the trials with bosentan and macitentan do not seem comparable, and it needs to be clarified whether these drugs are effective when administered as part of a combination treatment in this condition.
Collapse
Affiliation(s)
- Martin Bedan
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark
| | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ulf Simonsen
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus C, Denmark
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol 2017; 816:138-145. [PMID: 28842125 DOI: 10.1016/j.ejphar.2017.08.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2017] [Revised: 07/02/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death throughout the world. The increase in new patients every year leads to a demand for the identification of valid and novel prognostic and diagnostic biomarkers for the prevention and treatment of cardiovascular diseases. MicroRNAs (miRNAs) are critical endogenous small noncoding RNAs that negatively modulate gene expression by regulating its translation. miRNAs are implicated in most physiological processes of the heart and in the pathological progression of cardiovascular diseases. miR-214 is a deregulated miRNA in many pathological conditions, and it contributes to the pathogenesis of multiple human disorders, including cancer and cardiovascular diseases. miR-214 has dual functions in different cardiac pathological circumstances. However, it is considered as a promising marker in the prognosis, diagnosis and treatment of cardiovascular diseases. In this review, we discuss the role of miR-214 in various cardiac disease conditions, including ischaemic heart diseases, cardiac hypertrophy, pulmonary arterial hypertension (PAH), angiogenesis following vascular injury and heart failure.
Collapse
Affiliation(s)
- Yanfang Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Lei Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Yuan Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wanpeng Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
12
|
Krause A, Machacek M, Lott D, Hurst N, Bruderer S, Dingemanse J. Population Modeling of Selexipag Pharmacokinetics and Clinical Response Parameters in Patients With Pulmonary Arterial Hypertension. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:477-485. [PMID: 28556581 PMCID: PMC5529739 DOI: 10.1002/psp4.12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Selexipag (Uptravi) is an oral selective IP prostacyclin receptor agonist approved for the treatment of pulmonary arterial hypertension (PAH). The pivotal GRIPHON study was the largest clinical study ever conducted in PAH patients, providing long‐term data from 1,156 patients. PAH comedication did not affect exposure to selexipag, while exposure to its active metabolite ACT‐333679 was reduced by 30% when taken in combination, clinically not relevant in the context of individual dose up‐titration. Using log‐linear regression models linking model‐predicted steady‐state exposure to pharmacodynamics (PD), exposure to selexipag and ACT‐333679 showed some statistically significant, albeit not clinically relevant, effects on exercise capacity, laboratory values, and the occurrence of prostacyclin‐related adverse events, but not on vital signs or adverse events denoting hemorrhage. Using suitable modeling techniques, the GRIPHON study yielded clinically relevant data with limited burden of pharmacokinetics (PK) blood sampling, demonstrating that PK/PD modeling enables firm conclusions even with sparse PK and PD sampling.
Collapse
Affiliation(s)
- A Krause
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - M Machacek
- Lixoft, Modelling and Pharmacology, Antony, France
| | - D Lott
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - N Hurst
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - S Bruderer
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - J Dingemanse
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
13
|
Bruderer S, Hurst N, Remenova T, Dingemanse J. Clinical pharmacology, efficacy, and safety of selexipag for the treatment of pulmonary arterial hypertension. Expert Opin Drug Saf 2017; 16:743-751. [PMID: 28494686 DOI: 10.1080/14740338.2017.1328052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Selexipag is the first oral, non-prostanoid, selective prostacyclin receptor (IP receptor) agonist, approved for the long-term treatment of pulmonary arterial hypertension (PAH) in adult patients. Areas covered: This article reviews the clinical pharmacology, efficacy, and safety of selexipag in the treatment of PAH. Expert opinion: Selexipag is the first oral drug that selectively targets the prostacyclin pathway, and has evidence of long-term efficacy and safety. In the global phase 3 study GRIPHON (NCT01106014) in PAH patients, selexipag significantly reduced the risk of the primary composite outcome of morbidity/mortality (M/M). The adverse events in the selexipag group were consistent with the known side effects of prostacyclin, including headache, nausea, jaw pain, and diarrhea. Importantly, selexipag was efficacious and safe irrespective of whether or not patients were already receiving other PAH therapies. With selexipag approval, triple oral combination therapy addressing three important pathways is available for patients with PAH. Selexipag has one major metabolite, ACT-333679, which is also a selective IP receptor agonist, with 37-fold higher potency than selexipag. Pharmacokinetic properties of ACT-333679 permit twice-daily dosing of selexipag, providing a more convenient treatment compared to prostacyclin or its analogs. For patients with moderate hepatic impairment a once-daily regimen is recommended.
Collapse
Affiliation(s)
- Shirin Bruderer
- a Department of Clinical Pharmacology , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Noémie Hurst
- a Department of Clinical Pharmacology , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Tatiana Remenova
- a Department of Clinical Pharmacology , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| | - Jasper Dingemanse
- a Department of Clinical Pharmacology , Actelion Pharmaceuticals Ltd , Allschwil , Switzerland
| |
Collapse
|