1
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
2
|
Bydlowski SP, Levy D. Association of ABCG5 and ABCG8 Transporters with Sitosterolemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:31-42. [PMID: 38036873 DOI: 10.1007/978-3-031-43883-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Sitosterolemia is a rare genetic lipid disorder, mainly characterized by the accumulation of dietary xenosterols in plasma and tissues. It is caused by inactivating mutations in either ABCG5 or ABCG8 subunits, a subfamily-G ATP-binding cassette (ABCG) transporters. ABCG5/G8 encodes a pair of ABC half transporters that form a heterodimer (G5G8). This heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the hepatobiliary and transintestinal secretion of cholesterol and dietary plant sterols to the surface of hepatocytes and enterocytes, promoting the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. In this way, ABCG5/G8 function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Here, we review the biological characteristics and function of ABCG5/G8, and how the mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis, among other features.
Collapse
Affiliation(s)
- Sergio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera) CNPq, Rio de Janeiro, Brazil.
| | - Debora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Xu H, Xin Y, Wang J, Liu Z, Cao Y, Li W, Zhou Y, Wang Y, Liu P. The TICE Pathway: Mechanisms and Potential Clinical Applications. Curr Atheroscler Rep 2023; 25:653-662. [PMID: 37736845 DOI: 10.1007/s11883-023-01147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications. RECENT FINDINGS Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets. TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yiyang Xin
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China
| | - Weiguo Li
- People's Hospital of Hebi, Henan University, Henan, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Henan, China.
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Peng Liu
- People's Hospital of Hebi, Henan University, Henan, China.
| |
Collapse
|
4
|
Matsuo M, Ogata Y, Yamanashi Y, Takada T. ABCG5 and ABCG8 Are Involved in Vitamin K Transport. Nutrients 2023; 15:nu15040998. [PMID: 36839356 PMCID: PMC9966996 DOI: 10.3390/nu15040998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
ATP-binding cassette protein G5 (ABCG5)/ABCG8 heterodimer exports cholesterol from cells, while Niemann-Pick C1-like 1 (NPC1L1) imports cholesterol and vitamin K. We examined whether ABCG5/ABCG8 transports vitamin K similar to NPC1L1. Since high concentrations of vitamin K3 show cytotoxicity, the cytoprotective effects of ABCG5/ABCG8 were examined. BHK cells expressing ABCG5/ABCG8 were more resistant to vitamin K3 cytotoxicity than control cells, suggesting that ABCG5/ABCG8 transports vitamin K3 out of cells. The addition of vitamin K1 reversed the effects of ABCG5/ABCG8, suggesting that vitamin K1 competitively inhibits the transport of vitamin K3. To examine the transport of vitamin K1 by ABCG5/ABCG8, vitamin K1 levels in the medium and cells were measured. Vitamin K1 levels in cells expressing ABCG5/ABCG8 were lower than those in control cells, while vitamin K1 efflux increased in cells expressing ABCG5/ABCG8. Furthermore, the biliary vitamin K1 concentration in Abcg5/Abcg8-deficient mice was lower than that in wild-type mice, although serum vitamin K1 levels were not affected by the presence of Abcg5/Abcg8. These findings suggest that ABCG5 and ABCG8 are involved in the transport of sterols and vitamin K. ABCG5/ABCG8 and NPC1L1 might play important roles in the regulation of vitamin K absorption and excretion.
Collapse
Affiliation(s)
- Michinori Matsuo
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto 605-8501, Japan
- Correspondence:
| | - Yutaka Ogata
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
5
|
Williams K, Segard A, Graf GA. Sitosterolemia: Twenty Years of Discovery of the Function of ABCG5ABCG8. Int J Mol Sci 2021; 22:2641. [PMID: 33807969 PMCID: PMC7961684 DOI: 10.3390/ijms22052641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sitosterolemia is a lipid disorder characterized by the accumulation of dietary xenosterols in plasma and tissues caused by mutations in either ABCG5 or ABCG8. ABCG5 ABCG8 encodes a pair of ABC half transporters that form a heterodimer (G5G8), which then traffics to the surface of hepatocytes and enterocytes and promotes the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. We review the literature from the initial description of the disease, the discovery of its genetic basis, current therapy, and what has been learned from animal, cellular, and molecular investigations of the transporter in the twenty years since its discovery. The genomic era has revealed that there are far more carriers of loss of function mutations and likely pathogenic variants of ABCG5 ABCG8 than previously thought. The impact of these variants on G5G8 structure and activity are largely unknown. We propose a classification system for ABCG5 ABCG8 mutants based on previously published systems for diseases caused by defects in ABC transporters. This system establishes a framework for the comprehensive analysis of disease-associated variants and their impact on G5G8 structure-function.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/history
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/history
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Cholesterol/metabolism
- Enterocytes/metabolism
- Enterocytes/pathology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- History, 21st Century
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/history
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Intestinal Diseases/genetics
- Intestinal Diseases/history
- Intestinal Diseases/metabolism
- Intestinal Diseases/pathology
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/history
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Lipoproteins/genetics
- Lipoproteins/history
- Lipoproteins/metabolism
- Mutation
- Phytosterols/adverse effects
- Phytosterols/genetics
- Phytosterols/history
- Phytosterols/metabolism
Collapse
Affiliation(s)
- Kori Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
| | - Allison Segard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
- Saha Cardiovascular Research Center, Lexington, KY 40536, USA
- Barnstable Brown Diabetes and Obesity Center, Lexington, KY 40536, USA
| |
Collapse
|
6
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Abstract
Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Alan T Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
8
|
ABCG5/G8: a structural view to pathophysiology of the hepatobiliary cholesterol secretion. Biochem Soc Trans 2020; 47:1259-1268. [PMID: 31654053 PMCID: PMC6824678 DOI: 10.1042/bst20190130] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
The ABCG5/G8 heterodimer is the primary neutral sterol transporter in hepatobiliary and transintestinal cholesterol excretion. Inactivating mutations on either the ABCG5 or ABCG8 subunit cause Sitosterolemia, a rare genetic disorder. In 2016, a crystal structure of human ABCG5/G8 in an apo state showed the first structural information on ATP-binding cassette (ABC) sterol transporters and revealed several structural features that were observed for the first time. Over the past decade, several missense variants of ABCG5/G8 have been associated with non-Sitosterolemia lipid phenotypes. In this review, we summarize recent pathophysiological and structural findings of ABCG5/G8, interpret the structure-function relationship in disease-causing variants and describe the available evidence that allows us to build a mechanistic view of ABCG5/G8-mediated sterol transport.
Collapse
|
9
|
Patel SB, Graf GA, Temel RE. ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res 2018; 59:1103-1113. [PMID: 29728459 DOI: 10.1194/jlr.r084244] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as formation of gallstones and the risk of gallbladder cancer. While polymorphic variants raise or lower the risks of these phenotypes, loss of function of this locus leads to more dramatic phenotypes, such as premature atherosclerosis, platelet dysfunction, and thrombocytopenia, and, perhaps, increased endocrine disruption and liver dysfunction. Whether small amounts of xenosterol exposure over a lifetime cause pathology in normal humans with polymorphic variants at the sitosterolemia locus remains largely unexplored. The purpose of this review will be to summarize the current state of knowledge, but also highlight key conceptual and mechanistic issues that remain to be explored.
Collapse
Affiliation(s)
- Shailendra B Patel
- Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45219
| | - Gregory A Graf
- Department of Pharmaceutical Sciences and Saha Cardiovascular Research Center and University of Kentucky, Lexington, KY 40536
| | - Ryan E Temel
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To discuss recent insights into the measurement and cellular basis of transintestinal cholesterol excretion (TICE) in humans and to explore TICE as a therapeutic target for increasing reverse cholesterol transport. RECENT FINDINGS TICE is the net effect of cholesterol excretion by the enterocyte into the intestinal lumen and is the balance between input and output fluxes through the enterocytes. These fluxes are: cholesterol excretion into the intestinal lumen mainly via ATP-binding cassette (ABC) G5/8, cholesterol absorption from the intestine by Niemann-Pick C1 like protein 1, the uptake of plasma lipoproteins by enterocytes at the basolateral membrane, and the excretion of cholesterol in chylomicrons into the lymph. Multiple studies have shown that TICE contributes to fecal neutral sterol (FNS) excretion in humans. TICE can be targeted with plant sterols, liver X receptor agonists, bile acids, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors. SUMMARY TICE contributes significantly to FNS excretion in humans, independently of the biliary pathway. Knowledge about its underlying cellular mechanisms surges through in-vivo and in-vitro studies in mice and humans. TICE might be an interesting therapeutic target for increasing cholesterol disposal with the feces. Albeit multiple therapeutic options are available, studies showing clinical benefit are still needed.
Collapse
Affiliation(s)
| | | | - Albert K Groen
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Hegyi Z, Homolya L. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. PLoS One 2016; 11:e0156516. [PMID: 27228027 PMCID: PMC4882005 DOI: 10.1371/journal.pone.0156516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
ABCG4 belongs to the ABCG subfamily, the members of which are half transporters composed of a single transmembrane and a single nucleotide-binding domain. ABCG proteins have a reverse domain topology as compared to other mammalian ABC transporters, and have to form functional dimers, since the catalytic sites for ATP binding and hydrolysis, as well as the transmembrane domains are composed of distinct parts of the monomers. Here we demonstrate that ABCG4 can form homodimers, but also heterodimers with its closest relative, ABCG1. Both the full-length and the short isoforms of ABCG1 can dimerize with ABCG4, whereas the ABCG2 multidrug transporter is unable to form a heterodimer with ABCG4. We also show that contrary to that reported in some previous studies, ABCG4 is predominantly localized to the plasma membrane. While both ABCG1 and ABCG4 have been suggested to be involved in lipid transport or regulation, in accordance with our previous results regarding the long version of ABCG1, here we document that the expression of both the short isoform of ABCG1 as well as ABCG4 induce apoptosis in various cell types. This apoptotic effect, as a functional read-out, allowed us to demonstrate that the dimerization between these half transporters is not only a physical interaction but functional cooperativity. Given that ABCG4 is predominantly expressed in microglial-like cells and endothelial cells in the brain, our finding of ABCG4-induced apoptosis may implicate a new role for this protein in the clearance mechanisms within the central nervous system.
Collapse
Affiliation(s)
- Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Sano O, Tsujita M, Shimizu Y, Kato R, Kobayashi A, Kioka N, Remaley AT, Michikawa M, Ueda K, Matsuo M. ABCG1 and ABCG4 Suppress γ-Secretase Activity and Amyloid β Production. PLoS One 2016; 11:e0155400. [PMID: 27196068 PMCID: PMC4872999 DOI: 10.1371/journal.pone.0155400] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2016] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) and ABCG4, expressed in neurons and glia in the central nervous system, mediate cholesterol efflux to lipid acceptors. The relationship between cholesterol level in the central nervous system and Alzheimer's disease has been reported. In this study, we examined the effects of ABCG1 and ABCG4 on amyloid precursor protein (APP) processing, the product of which, amyloid β (Aβ), is involved in the pathogenesis of Alzheimer's disease. Expression of ABCG1 or ABCG4 in human embryonic kidney 293 cells that stably expressed Swedish-type mutant APP increased cellular and cell surface APP levels. Products of cleavage from APP by α-secretase and by β-secretase also increased. The levels of secreted Aβ, however, decreased in the presence of ABCG1 and ABCG4, but not ABCG4-KM, a nonfunctional Walker-A lysine mutant. In contrast, secreted Aβ levels increased in differentiated SH-SY5Y neuron-like cells in which ABCG1 and ABCG4 were suppressed. Furthermore, Aβ42 peptide in the cerebrospinal fluid from Abcg1 null mice significantly increased compared to the wild type mice. To examine the underlying mechanism, we analyzed the activity and distribution of γ-secretase. ABCG1 and ABCG4 suppressed γ-secretase activity and disturbed γ-secretase localization in the raft domains where γ-secretase functions. These results suggest that ABCG1 and ABCG4 alter the distribution of γ-secretase on the plasma membrane, leading to the decreased γ-secretase activity and suppressed Aβ secretion. ABCG1 and ABCG4 may inhibit the development of Alzheimer's disease and can be targets for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Osamu Sano
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Maki Tsujita
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Yuji Shimizu
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Reiko Kato
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Aya Kobayashi
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, NHLBI, National Institutes of Health, Bethesda, MD, 20892–1508, United States of America
| | - Makoto Michikawa
- Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya, 467–8601, Japan
| | - Kazumitsu Ueda
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto, 606–8502, Japan
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
| | - Michinori Matsuo
- iCeMS, Kyoto University, Kyoto, 606–8502, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, 605–8501, Japan
- * E-mail:
| |
Collapse
|
13
|
Future therapeutic targets for the treatment and prevention of cholesterol gallstones. Eur J Pharmacol 2015; 765:366-74. [DOI: 10.1016/j.ejphar.2015.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023]
|
14
|
Gok O, Karaali ZE, Acar L, Kilic U, Ergen A. ABCG5 and ABCG8 gene polymorphisms in type 2 diabetes mellitus in the Turkish population. Can J Diabetes 2015; 39:405-10. [PMID: 26088706 DOI: 10.1016/j.jcjd.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between ABCG5 and ABCG8 gene polymorphisms and plasma lipid concentrations in Turkish patients with type 2 diabetes mellitus. METHODS Included in this study were 80 patients with type 2 diabetes and 73 healthy controls. Two selected single nucleotide polymorphisms in ABC transporter genes, ABCG5 (rs6720173) and ABCG8 (rs4148211), were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS The rate of having the ABCG8 AA genotype (p=0.001) was significantly higher in the patients than in the control subjects. Correspondingly, the rates of having the AG genotype (p=0.001) and the G allele (p=0.001) were significantly lower in the patients than in controls. Upon comparing the groups regarding ABCG5, the frequencies of occurrence of the GG genotype (p=0.031) and G allele (p=0.003) were considerably higher in patients than in control subjects. In the patients, the rates of having the CC genotype (p=0.003) and the C allele (p=0.031) were also significantly lower than those in control subjects. There was no significant difference between G5 and G8 polymorphism and lipid levels in the study groups. The ABCG8 AA genotype carriers had higher triglyceride (p=0.045) and very low-density-cholesterol (p=0.045) levels than the ABCG8 GG genotype carriers in all study populations. CONCLUSIONS These results indicate that the AA genotype for ABCG8 and the GG genotype and G allele for ABCG5 are risk factors for diabetes. This study reveals the first data concerning the ABCG5 and ABCG8 gene polymorphisms in Turkish patients with diabetes.
Collapse
Affiliation(s)
- Ozlem Gok
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Ermis Karaali
- Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Leyla Acar
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
15
|
Sano O, Ito S, Kato R, Shimizu Y, Kobayashi A, Kimura Y, Kioka N, Hanada K, Ueda K, Matsuo M. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane. PLoS One 2014; 9:e109886. [PMID: 25302608 PMCID: PMC4193829 DOI: 10.1371/journal.pone.0109886] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.
Collapse
Affiliation(s)
- Osamu Sano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Shiho Ito
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Reiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yuji Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Aya Kobayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Michinori Matsuo
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
- Department of Food and Nutrition, Faculty of Home Economics, Kyoto Women’s University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
16
|
Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Nakamura M, Matsuo Y, Yasuno N, Yamanouchi U, Fujimoto M, Takanashi H, Ranathunge K, Franke RB, Shitan N, Nishizawa NK, Takamure I, Yano M, Tsutsumi N, Schreiber L, Yazaki K, Nakazono M, Kato K. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:40-51. [PMID: 25041515 DOI: 10.1111/tpj.12614] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/09/2014] [Accepted: 07/07/2014] [Indexed: 05/20/2023]
Abstract
Suberin is a complex polymer composed of aliphatic and phenolic compounds. It is a constituent of apoplastic plant interfaces. In many plant species, including rice (Oryza sativa), the hypodermis in the outer part of roots forms a suberized cell wall (the Casparian strip and/or suberin lamellae), which inhibits the flow of water and ions and protects against pathogens. To date, there is no genetic evidence that suberin forms an apoplastic transport barrier in the hypodermis. We discovered that a rice reduced culm number1 (rcn1) mutant could not develop roots longer than 100 mm in waterlogged soil. The mutated gene encoded an ATP-binding cassette (ABC) transporter named RCN1/OsABCG5. RCN1/OsABCG5 gene expression in the wild type was increased in most hypodermal and some endodermal roots cells under stagnant deoxygenated conditions. A GFP-RCN1/OsABCG5 fusion protein localized at the plasma membrane of the wild type. Under stagnant deoxygenated conditions, well suberized hypodermis developed in wild types but not in rcn1 mutants. Under stagnant deoxygenated conditions, apoplastic tracers (periodic acid and berberine) were blocked at the hypodermis in the wild type but not in rcn1, indicating that the apoplastic barrier in the mutant was impaired. The amount of the major aliphatic suberin monomers originating from C(28) and C(30) fatty acids or ω-OH fatty acids was much lower in rcn1 than in the wild type. These findings suggest that RCN1/OsABCG5 has a role in the suberization of the hypodermis of rice roots, which contributes to formation of the apoplastic barrier.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjyojima, Eiheiji, Fukui, 910-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Putative Stem Cell Markers in Non–Small-Cell Lung Cancer: A Clinicopathologic Characterization. J Thorac Oncol 2014; 9:41-9. [DOI: 10.1097/jto.0000000000000021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Yu XH, Qian K, Jiang N, Zheng XL, Cayabyab FS, Tang CK. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta 2014; 428:82-8. [DOI: 10.1016/j.cca.2013.11.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/23/2022]
|
19
|
Bonamassa B, Moschetta A. Atherosclerosis: lessons from LXR and the intestine. Trends Endocrinol Metab 2013; 24:120-8. [PMID: 23158108 DOI: 10.1016/j.tem.2012.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Modulation of the cholesterol-sensing liver X receptors (LXRs) and their downstream targets has emerged as promising therapeutic avenues in atherosclerosis. The intestine is important for its unique capabilities to act as a gatekeeper for cholesterol absorption and to participate in the process of cholesterol elimination in the feces and reverse cholesterol transport (RCT). Pharmacological and genetic intestine-specific LXR activation have been shown to protect against atherosclerosis. In this review we discuss the LXR-targeted molecular players in the enterocytes as well as the intestine-driven pathways contributing to cholesterol homeostasis with therapeutic potential as targets in the prevention and treatment of atherosclerosis..
Collapse
Affiliation(s)
- Barbara Bonamassa
- Laboratory of Lipid Metabolism and Cancer, Department of Translational Pharmacology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (CH), Italy
| | | |
Collapse
|
20
|
Renner O, Lütjohann D, Richter D, Strohmeyer A, Schimmel S, Müller O, Stange EF, Harsch S. Role of the ABCG8 19H risk allele in cholesterol absorption and gallstone disease. BMC Gastroenterol 2013; 13:30. [PMID: 23406058 PMCID: PMC3598676 DOI: 10.1186/1471-230x-13-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gallstone disease is associated with p.D19H of ABCG8 as well as alterations of cholesterol and bile acid metabolism. However, molecular mechanisms have not been fully elucidated. It is important to understand the link between the sterol transporters ABCG5/8 and NPC1L1 and intestinal cholesterol absorption as well as de novo synthesis in gallstone patients stratified according to 19H risk allele. Moreover, the functional importance of the 19H variant on intestinal ABCG8 feature remains to be clarified. METHODS Measurements of serum surrogate markers of cholesterol absorption (plant sterols: sitosterol, campesterol) and synthesis (cholesterol precursor: lathosterol) were carried out by gas chromatography/mass spectrometry (GC/MS). For expression studies, total RNA was isolated from 168 ileal biopsies of study participants with (34) and without gallstone disease (134). Messenger RNA was measured by LightCycler real-time PCR. Genomic DNA was obtained from blood leukocytes. Genotype frequencies of p.D19H were established using MALDI-TOF mass spectrometry. RESULTS Compared to controls, cholesterol absorption but not synthesis in gallstone carriers was diminished by about 21% based on low serum sitosterol (P = 0.0269) and campesterol (P = 0.0231) to cholesterol ratios. D19H was found to be significantly associated with gallstones (odds ratio [OR] = 2.9, P = 0.0220, 95% confidence interval [CI]:1.22-6.89), particularly in the overweight cohort (OR = 3.2, P = 0.0430, 95% CI:1.07-9.26). Cholesterol absorption was about 24% lower in individuals carrying p.D19H compared to wild type (Psitosterol = 0.0080, Pcampesterol = 0.0206). Moreover, irrespective of phenotype, carriers of p.D19H displayed a significant lower absorption than carriers of the major allele. The most pronounced effect on cholesterol absorption ratio was observed for serum campesterol levels (wild type controls to mutated controls 28%, P = 0.0347 and wild type controls to gallstone carriers with 19H allele 37%, P = 0.0030). Notably, ABCG5/8 and NPC1L1 expression was similar in gallstone carriers and controls regardless of p.D19H presence. CONCLUSIONS Both gallstone disease and p.D19H of ABCG8 are associated with diminished cholesterol absorption. However, p.D19H is not responsible for the differences in small intestinal sterol transporter expression.
Collapse
Affiliation(s)
- Olga Renner
- Dr, Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tuebingen, 70376, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
EuLoc: a web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segments into the general form of Chou's PseAAC. J Comput Aided Mol Des 2013; 27:91-103. [PMID: 23283513 DOI: 10.1007/s10822-012-9628-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/17/2012] [Indexed: 01/25/2023]
Abstract
The function of a protein is generally related to its subcellular localization. Therefore, knowing its subcellular localization is helpful in understanding its potential functions and roles in biological processes. This work develops a hybrid method for computationally predicting the subcellular localization of eukaryotic protein. The method is called EuLoc and incorporates the Hidden Markov Model (HMM) method, homology search approach and the support vector machines (SVM) method by fusing several new features into Chou's pseudo-amino acid composition. The proposed SVM module overcomes the shortcoming of the homology search approach in predicting the subcellular localization of a protein which only finds low-homologous or non-homologous sequences in a protein subcellular localization annotated database. The proposed HMM modules overcome the shortcoming of SVM in predicting subcellular localizations using few data on protein sequences. Several features of a protein sequence are considered, including the sequence-based features, the biological features derived from PROSITE, NLSdb and Pfam, the post-transcriptional modification features and others. The overall accuracy and location accuracy of EuLoc are 90.5 and 91.2 %, respectively, revealing a better predictive performance than obtained elsewhere. Although the amounts of data of the various subcellular location groups in benchmark dataset differ markedly, the accuracies of 12 subcellular localizations of EuLoc range from 82.5 to 100 %, indicating that this tool is much more balanced than other tools. EuLoc offers a high, balanced predictive power for each subcellular localization. EuLoc is now available on the web at http://euloc.mbc.nctu.edu.tw/.
Collapse
|
22
|
|
23
|
Hozoji-Inada M, Munehira Y, Nagao K, Kioka N, Ueda K. Liver X receptor beta (LXRbeta) interacts directly with ATP-binding cassette A1 (ABCA1) to promote high density lipoprotein formation during acute cholesterol accumulation. J Biol Chem 2011; 286:20117-24. [PMID: 21507939 DOI: 10.1074/jbc.m111.235846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells have evolved multiple mechanisms for maintaining cholesterol homeostasis, and, among these, ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux is highly regulated at the transcriptional level through the activity of the nuclear receptor liver X receptor (LXR). Here, we show that in addition to its well defined role in transcription, LXRβ directly binds to the C-terminal region ((2247)LTSFL(2251)) of ABCA1 to mediate its post-translational regulation. In the absence of cholesterol accumulation in the macrophage-like cell line THP-1, the ABCA1-LXRβ complex stably localizes to the plasma membrane, but apolipoprotein A-I (apoA-I) binding or cholesterol efflux does not occur. Exogenously added LXR ligands, which mimic cholesterol accumulation, cause LXRβ to dissociate from ABCA1, thus freeing ABCA1 for apoA-I binding and subsequent cholesterol efflux. Photoaffinity labeling experiments with 8-azido-[α-(32)P]ATP showed that the interaction of LXRβ with ABCA1 inhibits ATP binding by ABCA1. This is the first study to show that a protein-protein interaction with the endogenous protein suppresses the function of ABC proteins by inhibiting ATP binding. LXRβ can cause a post-translational response by binding directly to ABCA1, as well as a transcriptional response, to maintain cholesterol homeostasis.
Collapse
Affiliation(s)
- Masako Hozoji-Inada
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
24
|
Ehrenman K, Sehgal A, Lige B, Stedman TT, Joiner KA, Coppens I. Novel roles for ATP-binding cassette G transporters in lipid redistribution in Toxoplasma. Mol Microbiol 2010; 76:1232-49. [PMID: 20487267 DOI: 10.1111/j.1365-2958.2010.07169.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma is a protozoan parasite proficiently adapted to thrive in a parasitophorous vacuole (PV) formed in the cytoplasm of a large variety of mammalian cells. As an actively dividing organism, the parasite must adjust the lipid composition of its membranes to preserve organelle vitality and expand the size of the PV membrane to accommodate growing progeny. We showed that Toxoplasma takes up host lipids and can expel major lipids in an ATP-dependent process. In order to provide detailed mechanistic insights into lipid trafficking phenomena relevant to Toxoplasma biology, we characterized six parasite ATP-binding cassette (ABC) G family transporters and investigated their potential contribution to lipid homeostatic processes. All these transporters are expressed in the parasite and five of them are upregulated upon exposure to sterols. Four ABCG are localized to secretory organelles and the plasma membrane, and promote cholesterol and phospholipid efflux, reflecting the importance in exportation of large amounts of lipids into the PV. Interestingly, one ABCG that is associated with vesicles in the PV and the plasma membrane acts as a cholesterol importer. This last finding expands our current view on the role of some ABCG transporters in eukaryotic sterol influx.
Collapse
Affiliation(s)
- Karen Ehrenman
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
25
|
ATP-binding cassette proteins involved in glucose and lipid homeostasis. Biosci Biotechnol Biochem 2010; 74:899-907. [PMID: 20460728 DOI: 10.1271/bbb.90921] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose and lipids are essential to the body, but excess glucose or lipids lead to metabolic syndrome. ATP-binding cassette (ABC) proteins are involved in the homeostasis of glucose and lipid in that they regulate insulin secretion and remove excess cholesterol from the body. Sulfonylurea receptor (SUR) is a subunit of the ATP-sensitive potassium channels, which regulate insulin secretion from pancreatic beta-cells by sensing cellular metabolic levels. ABCG1 removes excess cholesterol from peripheral tissues and functions in reverse cholesterol transport to the liver. ABCG5 and ABCG8 suppress the absorption of cholesterol in the intestine and exclude cholesterol from the liver to the bile duct. ABCG1 and ABCG4, expressed in the central nervous system, play roles in lipid metabolism in the brain. These ABC proteins are targets of drugs and functional foods to cure and prevent diabetes, hyperlipidemia, and neurodegenerative diseases. In this review, recent knowledge of the physiological function and regulation of ABC proteins in the homeostasis of glucose and lipids is discussed.
Collapse
|
26
|
Hostettler L, Zlobec I, Terracciano L, Lugli A. ABCG5-positivity in tumor buds is an indicator of poor prognosis in node-negative colorectal cancer patients. World J Gastroenterol 2010; 16:732-9. [PMID: 20135722 PMCID: PMC2817062 DOI: 10.3748/wjg.v16.i6.732] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the expression of 8 putative cancer stem cell (CSC) markers within colorectal cancer tumor buds and to determine their prognostic impact in patients with this disease.
METHODS: Immunohistochemistry was performed on 101 colorectal cancer resections for CK22 (to identify tumor buds) as well as CD133, CD166, CD24, CD44s, CD90, EpCAM, ALDH1, and ABCG5, and their expression within tumor buds was evaluated.
RESULTS: CD90, CD44s, and CD133 expression in tumor buds was found in less than 5% of all cases. ALDH1, CD24, CD166 were expressed in 16.5%, 16.2%, and 34% cases, respectively, while ABCG5 and EpCAM expression was more frequent and found in 35% and 69% of cases, respectively. Of the 8 markers studied, EpCAM and ABCG5 positivity in tumor buds were significantly associated with poor prognosis (P = 0.023, P = 0.038, respectively) in multivariable analysis with pT and pN classification [P = 0.048; hazard ratio (HR): 2.64; 95% CI: 1.0-6.9, for EpCAM and P = 0.029; HR: 2.22; 95% CI: 1.0-4.5, for ABCG5]. Poor survival time was particularly striking for lymph node-negative patients with ABCG5-positive buds (P < 0.001).
CONCLUSION: Expression of putative stem cell markers EpCAM and ABCG5 within the tumor buds of colorectal cancer are frequently noted and are associated with poor prognosis.
Collapse
|
27
|
Feldman M, van der Goot FG. Novel ubiquitin-dependent quality control in the endoplasmic reticulum. Trends Cell Biol 2009; 19:357-63. [PMID: 19631546 DOI: 10.1016/j.tcb.2009.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 01/03/2023]
Abstract
Proteins of the endomembrane system undergo assisted folding in the endoplasmic reticulum (ER), then quality-control and, if misfolded, ER-associated degradation (ERAD). Recent findings on the biogenesis of a type-I membrane protein (an LRP6 mutant) lead us to hypothesize the existence of a novel mechanism promoting folding of membrane proteins from the cytosolic side of the ER. The proposed folding mechanism involves cycles of chaperone binding through mono-ubiquitylation and de-ubiquitylation, followed eventually by poly-ubiquitylation and ERAD. This suggests a novel dual role for ubiquitylation in the ER - dependent on the type of ubiquitin chains involved - in folding and in degradation, and highlights the potential importance of de-ubiquitylating enzymes.
Collapse
Affiliation(s)
- M Feldman
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH 1015 Lausanne, Switzerland
| | | |
Collapse
|