1
|
Almeida A, De Mello-Sampayo C, Lopes A, Carvalho da Silva R, Viana P, Meisel L. Predicted Environmental Risk Assessment of Antimicrobials with Increased Consumption in Portugal during the COVID-19 Pandemic; The Groundwork for the Forthcoming Water Quality Survey. Antibiotics (Basel) 2023; 12:antibiotics12040652. [PMID: 37107014 PMCID: PMC10135311 DOI: 10.3390/antibiotics12040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The environmental release of antimicrobial pharmaceuticals is an imminent threat due to ecological impacts and microbial resistance phenomena. The recent COVID-19 outbreak will likely lead to greater loads of antimicrobials in the environment. Thus, identifying the most used antimicrobials likely to pose environmental risks would be valuable. For that, the ambulatory and hospital consumption patterns of antimicrobials in Portugal during the COVID-19 pandemic (2020–2021) were compared with those of 2019. A predicted risk assessment screening approach based on exposure and hazard in the surface water was conducted, combining consumption, excretion rates, and ecotoxicological/microbiological endpoints in five different regions of Portugal. Among the 22 selected substances, only rifaximin and atovaquone demonstrated predicted potential ecotoxicological risks for aquatic organisms. Flucloxacillin, piperacillin, tazobactam, meropenem, ceftriaxone, fosfomycin, and metronidazole showed the most significant potential for antibiotic resistance in all analysed regions. Regarding the current screening approach and the lack of environmental data, it is advisable to consider rifaximin and atovaquone in subsequent water quality surveys. These results might support the forthcoming monitorisation of surface water quality in a post-pandemic survey.
Collapse
Affiliation(s)
- Anabela Almeida
- Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Campus Universitário de Lordemão, 3020-210 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Universidade de Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.A.); (L.M.)
| | - Cristina De Mello-Sampayo
- Laboratory of Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Lopes
- Agência Portuguesa do Ambiente (APA), Rua da Murgueira, 9, 2610-124 Amadora, Portugal
| | - Rita Carvalho da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Biosafety Unit, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Viana
- Agência Portuguesa do Ambiente (APA), Rua da Murgueira, 9, 2610-124 Amadora, Portugal
| | - Leonor Meisel
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMED.Ulisboa), 1600-277 Lisbon, Portugal
- Correspondence: (A.A.); (L.M.)
| |
Collapse
|
2
|
Rathod SM, Patel NC, Patel PU. Simultaneous determination of emtricitabine, tenofovir alafenamide fumarate and dolutegravir sodium by validated stability-indicating RP-HPLC-DAD method. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:94-106. [PMID: 36037931 DOI: 10.1016/j.pharma.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 08/23/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The purpose of this research was to develop and validate a stability-indicating RP-HPLC technique for simultaneous quantification of Emtricitabine (EMT), Tenofovir Alafenamide Fumarate (TEN), and Dolutegravir Sodium (DOL) in bulk and in their combined formulation. MATERIAL AND METHODS The developed approach was done on Exterra C18 column (150×4.6mm, 5μm) and Methanol and Buffer (comprising 0.1 (v/v) of Triethylamine and o-phosphoric acid in water, pH 2.6) as mobile phase in the proportion of 75:25 (v/v), eluted at 1mL/min. The analytes were quantified using DAD detector at 265nm. RESULTS The approach was validated in accordance with the ICH guidelines. Linearity, precision, accuracy, specificity, Limit of Detection (LOD), Limit of Quantitation (LOQ), and robustness were used to validate the proposed method. Linear response was found in the range of 500-1500μg/mL for EMT, 62.5-187.5μg/mL for TEN and 125-375μg/mL for DOL. The LOD values of EMT, TEN and DOL were found 91.78μg/mL, 10.47μg/mL and 19.28μg/mL correspondingly. The LOQ values of EMT, TEN and DOL were found and 278.11μg/mL, 31.74μg/mL and 58.42μg/mL correspondingly. The assay outcomes for all drugs were observed between 99.11-100.84%. To access the method's stability indicating capabilities, the drugs were exposed to various environmental (acid, alkaline, neutral, oxidative, photolytic and thermal) conditions. CONCLUSION The established approach was considered to be accurate, linear, precise, specific, robust and it can be utilized to analyse the drugs mentioned in its tablet.
Collapse
Affiliation(s)
- S M Rathod
- Department of Pharmaceutical Chemistry and Quality Assurance, APMC College of Pharmaceutical Education and Research, Himatnagar, 383001 Gujarat, India.
| | - N C Patel
- Department of Pharmacognosy, APMC College of Pharmaceutical Education and Research, Himatnagar, 383001 Gujarat, India
| | - P U Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidyanagar, Mehsana-Gozaria Highway, 384012 Gujarat, India
| |
Collapse
|
3
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
4
|
Wonganan P, Limpanasithikul W, Jianmongkol S, Kerr SJ, Ruxrungtham K. Pharmacokinetics of nucleoside/nucleotide reverse transcriptase inhibitors for the treatment and prevention of HIV infection. Expert Opin Drug Metab Toxicol 2020; 16:551-564. [PMID: 32508203 DOI: 10.1080/17425255.2020.1772755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Despite dramatic increases in new drugs and regimens, a combination of two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remains the backbone of many regimens to treat HIV. AREA COVERED This article summarizes the pharmacokinetic characteristics of approved NRTIs that are currently in the international treatment and prevention guidelines. EXPERT OPINION Compared to other NRTIs, tenofovir alafenamide fumarate (TAF) is more advantageous in terms of potency and safety. It is therefore a preferred choice in combination with emtricitabine (FTC) in most HIV treatment guidelines. The efficacy of the two-drug combination of NRTI/Integrase strand-transfer inhibitor, i.e. lamivudine/dolutegravir has been approved as an option for initial therapy. This regimen however has some limitations in patients with HBV coinfection. The two NRTI combinations tenofovir disproxil fumarate (TDF)/FTC and TAF/FTC have also been approved for pre-exposure prophylaxis (PrEP). Interestingly, a promising long-acting nucleoside reverse transcriptase translocation inhibitor, islatravir, formulated for implant was well tolerated and remained effective for up to a year, suggesting its potential as a single agent for PrEP. In the next decade, it remains to be seen whether NRTI-based regimens will remain the backbone of preferred ART regimens, or if the treatment will eventually move toward NRTI-sparing regimens to avoid long-term NRTI-toxicity.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| | | | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand.,HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand
| | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
5
|
Straubinger T, Kay K, Bies R. Modeling HIV Pre-Exposure Prophylaxis. Front Pharmacol 2020; 10:1514. [PMID: 32082142 PMCID: PMC7005100 DOI: 10.3389/fphar.2019.01514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Pre-exposure prophylaxis (PrEP) has emerged as a promising strategy for preventing the transmission of HIV. Although only one formulation is currently approved for PrEP, research into both new compounds and new delivery systems for PrEP regimens offer intriguing challenges from the perspective of pharmacokinetic and pharmacodynamic modeling. This review aims to provide an overview the current modeling landscape for HIV PrEP, focused on PK/PD and QSP models relating to antiretroviral agents. Both current PrEP treatments and new compounds that show promise as PrEP agents are highlighted, as well as models of uncommon administration routes, predictions based on models of mechanism of action and viral dynamics, and issues related to adherence to therapy. The spread of human immunodeficiency virus (HIV) remains one of the foremost global health concerns. In the absence of a vaccine, other prophylactic strategies have been developed to prevent HIV transmission. One approach, known as pre-exposure prophylaxis (PrEP), allows HIV-negative individuals who are at high risk of exposure to the virus, be it through an HIV-positive sexual partner or through the shared use of drug injection equipment, to substantially reduce the risk of developing an HIV infection. PrEP is a relatively recent approach to combating the HIV epidemic, with the only currently approved treatment being Truvada, a daily oral antiretroviral (ARV) therapy initially indicated in the treatment of active HIV-1 infections, but approved for HIV PrEP in 2012. Although PrEP therapy has consistently demonstrated high efficacy in preventing HIV infection, this efficacy is dependent on patient adherence to the prescribed treatment regimen. This can present a significant problem in low- and middle-income countries, which may lack the infrastructure to provide sufficient access to PrEP medication to maintain daily dosing regimens. Furthermore, while the conventional approach has generally been to advocate for continuous administration akin to regimens used for viral suppression in infected patients, there has been some discussion of whether a better treatment paradigm might be to push for PrEP therapy primarily during those known periods of heightened exposure risk, while relying on post-exposure prophylaxis regimens to prevent infection after unanticipated exposures during low-risk periods. These considerations have led to a push for the development of long-duration and on-demand PrEP formulations, including subdermal and subcutaneous implants, slow-release intramuscular depot injections, vaginal and rectal antimicrobial gels, and intravaginal rings and dissolving films. PrEP therapy is a quickly evolving field, with a variety of antiretroviral compounds and formulations under investigation. This review aims to report on notable drugs and formulations from a pharmacokinetic/pharmacodynamic (PK/PD) modeling perspective. Given the nature of PrEP as a preventive therapy designed for long-term use, clinical trials for PrEP therapies can last for months or even years, particularly in the case of long-duration formulations. Furthermore, in contrast to antiretroviral trials in infected patients, pharmacodynamic endpoints in PrEP therapies are difficult to quantify, as the primary endpoint for efficacy is generally the rate of seroconversion. Computational modeling approaches offer flexible and powerful tools to provide insight into drug behavior in clinical settings, and can ultimately reduce the time, expense, and patient burden incurred in the development of PrEP therapies.
Collapse
Affiliation(s)
- Thomas Straubinger
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Katherine Kay
- Metrum Research Group, Tariffville, CT, United States
| | - Robert Bies
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Cusato J, Allegra S, Nicolò AD, Calcagno A, D'Avolio A. Precision medicine for HIV: where are we? Pharmacogenomics 2018; 19:145-165. [DOI: 10.2217/pgs-2017-0123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To date, antiretroviral therapy is highly effective in HIV-affected patients, but the individualization of such a life-long therapy may be advised. This review briefly summarizes the main factors involved in the potential personalization of antiretroviral treatment. Relevant articles in English were identified by PubMed and recent congresses’ abstracts. Foremost influences concerning pharmacodynamics, therapeutic drug monitoring, pharmacogenetics, comorbidities, immune recovery and viral characteristics affecting the healthcare of HIV-positive patients are listed here. Furthermore, pharmacoeconomic aspects are mentioned. Applying pharmacokinetic and pharmacogenetic knowledge may be informative and guide the better choice of treatment in order to achieve long-term efficacy and avoid adverse events. Randomized investigations of the clinical relevance of tailored antiretroviral regimens are needed in order to obtain a better management of HIV/AIDS-affected patients.
Collapse
Affiliation(s)
- Jessica Cusato
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Sarah Allegra
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Amedeo De Nicolò
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Andrea Calcagno
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| | - Antonio D'Avolio
- Department of Medical Sciences; University of Turin – ASL ‘Città di Torino’ Laboratory of Clinical Pharmacology and Pharmacogenetics; Amedeo di Savoia Hospital, Turin, Italy
| |
Collapse
|
7
|
Imaz A, Podzamczer D. Tenofovir alafenamide, emtricitabine, elvitegravir, and cobicistat combination therapy for the treatment of HIV. Expert Rev Anti Infect Ther 2017; 15:195-209. [PMID: 28117606 DOI: 10.1080/14787210.2017.1286736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Tenofovir alafenamide (TAF) is a novel prodrug of the nucleotide analogue reverse-transcriptase inhibitor, tenofovir. TAF has been co-formulated with emtricitabine (FTC), elvitegravir (EVG) and the EVG metabolic enhancer, cobicistat (COBI) as a single-tablet regimen being the first TAF-containing antiretroviral combination available. Areas covered: This article summarizes the available information on the pharmacology of the novel compound TAF and overviews TAF/FTC/EVG/COBI use for HIV-1 infected patients, with specific focus on clinical efficacy and safety data. Information sources include peer-reviewed scientific literature, conference proceedings and publically available regulatory reports. Compared to tenofovir disoproxil fumarate, TAF results in higher concentrations of the active metabolite tenofovir diphosphate within lymphoid cells, whereas plasma tenofovir exposure is about 90% lower. The efficacy and safety of TAF/FTC/EVG/COBI in treatment-naïve HIV-infected patients has been assessed in phase-III randomized trials, showing non-inferior virological suppression in comparison with TDF/FTC/EVG/COBI, and significantly lower renal and bone toxicity. In addition, TAF/FTC/EVG/COBI has demonstrated efficacy and safety as a switching strategy in suppressed HIV-1 infected individuals, including those with mild or moderate renal impairment. Expert commentary: Approval of the single-tablet TAF/FTC/EVG/COBI regimen is an important advance in HIV therapy, as it is associated with very high efficacy and a better kidney and bone safety profile compared to TDF-containing regimens due to the incorporation of TAF.
Collapse
Affiliation(s)
- Arkaitz Imaz
- a HIV and STD Unit, Department of Infectious Diseases , Bellvitge University Hospital, Bellvitge Biomedical Research Institut (IDIBELL) , Barcelona , Spain
| | - Daniel Podzamczer
- a HIV and STD Unit, Department of Infectious Diseases , Bellvitge University Hospital, Bellvitge Biomedical Research Institut (IDIBELL) , Barcelona , Spain
| |
Collapse
|
8
|
Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1. Eur J Pharm Sci 2016; 94:72-83. [PMID: 26796142 DOI: 10.1016/j.ejps.2016.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
A major aim of Systems Pharmacology is to understand clinically relevant mechanisms of action (MOA) of drugs and to use this knowledge in order to optimize therapy. To enable this mission it is necessary to obtain knowledge on how in vitro testable insights translate into clinical efficacy. Mathematical modeling and data integration are essential components to achieve this goal. Two modeling philosophies are prevalent, each of which in isolation is not sufficient to achieve the above described: In a 'top-down' approach, a minimal pharmacokinetic-pharmacodynamic (PK-PD) model is derived from- and fitted to available clinical data. This model may lack interpretability in terms of mechanisms and may only be predictive for scenarios already covered by the data used to derive it. A 'bottom-up' approach builds on mechanistic insights derived from in vitro/ex vivo experiments, which can be conducted under controlled conditions, but may not be fully representative for the in vivo/clinical situation. In this work, we employ both approaches side-by-side to predict the clinical potency (IC50 values) of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, emtricitabine and tenofovir. In the 'top-down' approach, this requires to establish the dynamic link between the intracellularly active NRTI-triphosphates (which exert the effect) and plasma prodrug PK and to subsequently link this composite PK model to viral kinetics. The 'bottom-up' approach assesses inhibition of reverse transcriptase-mediated viral DNA polymerization by the intracellular, active NRTI-triphosphates, which has to be brought into the context of target cell infection. By using entirely disparate sets of data to derive and parameterize the respective models, our approach serves as a means to assess the clinical relevance of the 'bottom-up' approach. We obtain very good qualitative and quantitative agreement between 'top-down' vs. 'bottom-up' predicted IC50 values, arguing for the validity of the 'bottom-up' approach. We noted, however, that the 'top-down' approach is strongly dependent on the sparse and noisy intracellular pharmacokinetic data. All in all, our work provides confidence that we can translate in vitro parameters into measures of clinical efficacy using the 'bottom-up' approach. This may allow to infer the potency of various NRTIs in inhibiting e.g. mutant viruses, to distinguish sources of interaction of NRTI combinations and to assess the efficacy of different NRTIs for repurposing, e.g. for pre-exposure prophylaxis.
Collapse
|
9
|
Leung GPH. Iatrogenic mitochondriopathies: a recent lesson from nucleoside/nucleotide reverse transcriptase inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:347-69. [PMID: 22399431 DOI: 10.1007/978-94-007-2869-1_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) has revolutionized the treatment of infection by human immunodeficiency virus (HIV) and hepatitis-B virus. NRTIs can suppress viral replication in the long-term, but possess significant toxicity that can seriously compromise treatment effectiveness. The major toxicity of NRTIs is mitochondrial toxicity. This manifests as serious side effects such as myopathy, peripheral neuropathy and lactic acidosis. In general, it is believed that the mitochondrial pathogenesis is closely related to the effect of NRTIs on mitochondrial DNA polymerase-γ. Depletion and mutation of mitochondrial DNA during chronic NRTI therapy may lead to cellular respiratory dysfunction and release of reactive oxidative species, resulting in cellular damage. It is now apparent that the etiology is far more complex than originally thought. It appears to involve multiple mechanisms as well as host factors such as HIV per se, inborn mitochondrial mutation, and sex. Management of mitochondrial toxicity during NRTI therapy remains a challenge. Interruption of NRTI therapy and substitution of the causative agents with alternative better-tolerated NRTIs represents the mainstay of management for mitochondrial toxicity and its clinical manifestations. A range of pharmacological approaches has been proposed as treatments and prophylaxes.
Collapse
Affiliation(s)
- George P H Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Clinical implications of fixed-dose coformulations of antiretrovirals on the outcome of HIV-1 therapy. AIDS 2011; 25:1683-90. [PMID: 21673556 DOI: 10.1097/qad.0b013e3283499cd9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The substitution by generic equivalents of some of the drugs included in fixed-dose antiretroviral coformulations (FDACs) poses the potential risk of disrupting these combinations and administering the components separately in order to incorporate the new generic drug, which offers a more competitive sales price. This may represent a step backwards in the advances achieved in simplicity and adherence to therapy, posing an increased risk of selective noncompliance of some of the separately administered drug substances. Available antiretroviral drugs must be administered for life in the affected individuals - both children and adults. The FDACs represent a significant advance in the simplification of antiretroviral therapy, facilitating adherence to complex and chronic treatments, and contributing to a quantifiable improvement in patient quality of life. These drug coformulations reduce the risk of treatment error, are associated with a lower risk of hospitalization, and can lessen the possibility of covert monotherapy in situations of selective noncompliance. Thus, FDACs can reduce the risk of selection of HIV-1 resistances, which not only adversely affect the treatment options of the individual patient but also constitute a public health problem, and further increase the cost and complexity of therapy. With the exception of those cases requiring dose adjustments, the preferential use of FDACs should be recommended for the treatment of HIV-1 infection in those situations when the agents included in the coformulation are drugs of choice.
Collapse
|
11
|
Babayeva M, Cox S, White MP, Taft DR. Renal excretion of apricitabine in rats: ex vivo and in vivo studies. Eur J Drug Metab Pharmacokinet 2011; 36:141-50. [PMID: 21744041 DOI: 10.1007/s13318-011-0038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
Apricitabine (ATC) is a novel nucleoside reverse transcriptase inhibitor undergoing phase 2/3 clinical development for the treatment of HIV infection. In this investigation, the renal handling of ATC was evaluated in the isolated perfused rat kidney (IPK) model with follow-up in vivo studies. IPK experiments were performed to characterize the renal excretion of ATC, to probe mechanisms of ATC excretion using known inhibitors of organic cation (cimetidine) and organic anion (probenecid) transport systems, and to screen for potential drug-drug interactions between ATC and clinically relevant medications (dapsone, metformin, pentamidine, stavudine, tenofovir and ritonavir). ATC demonstrated net tubular secretion in the IPK with a baseline excretion ratio (XR) of 2.1 ± 0.56. ATC XR decreased 3.6-fold in the presence of cimetidine and 2-fold in the presence of probenecid. Among the clinically relevant medications, metformin produced the greatest inhibitory effect on ATC excretion. In vivo studies were conducted in rats to evaluate ATC disposition upon co-administration with compounds that showed a significant effect on ATC clearance in the IPK model. Co-administration of cimetidine and trimethoprim significantly reduced ATC renal clearance, but resulted in only a moderate increase in plasma exposure. Metformin had no apparent effect on ATC clearance in rats. These findings indicate that the IPK model is more sensitive to secretory inhibition as compared to in vivo. The medications screened showed minimal effects on ATC renal excretion in the IPK, and should thus be excluded as potential in vivo interactants. Overall, this study generated important information on renal handling of ATC to support its development and commercialization.
Collapse
Affiliation(s)
- Mariana Babayeva
- College of Pharmacy, Long Island University, 75 DeKalb Avenue, Brooklyn, NY 11201, USA
| | | | | | | |
Collapse
|
12
|
Llibre JM, Antela A, Arribas JR, Domingo P, Gatell JM, López-Aldeguer J, Lozano F, Miralles C, Moltó J, Moreno S, Ortega E, Riera M, Rivero A, Villalonga C, Clotet B. El papel de las combinaciones de antirretrovirales a dosis fijas en el tratamiento de la infección por VIH-1. Enferm Infecc Microbiol Clin 2010; 28:615-20. [DOI: 10.1016/j.eimc.2010.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/31/2010] [Indexed: 12/14/2022]
|
13
|
Pharmacokinetics and Bioavailability of an Integrase and Novel Pharmacoenhancer-Containing Single-Tablet Fixed-Dose Combination Regimen for the Treatment of HIV. J Acquir Immune Defic Syndr 2010; 55:323-9. [DOI: 10.1097/qai.0b013e3181eb376b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sparidans RW, Prins JM, Schellens JHM, Beijnen JH. Liquid chromatography–tandem mass spectrometric assay for the nucleoside reverse transcriptase inhibitor emtricitabine in human plasma. Biomed Chromatogr 2007; 21:621-7. [PMID: 17340566 DOI: 10.1002/bmc.797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A liquid chromatography-tandem mass spectrometric assay for the determination of the antiretroviral nucleoside emtricitabine in human plasma was developed and validated using a simple sample pre-treatment procedure. After addition of 5'-deoxy-5-fluorocytidine as the internal standard and protein precipitation with acetonitrile, the supernatant was directly injected in the isocratic chromatographic system using a polar embedded reversed-phase column and formic acid in water-methanol as the eluent. The eluate was completely led into an electrospray interface with positive ionization and the analytes were quantified using triple quadrupole mass spectrometry. The assay was validated in the range 5-5000 ng/mL. Intra-day precisions were <or=7% and inter-day precisions were <or=10%. Accuracies between 92 and 99% were found. The analytes were chemically stable under all relevant conditions and the assay was applied in the analysis of plasma samples of HIV-infected patients treated with the drug.
Collapse
Affiliation(s)
- Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Section of Biomedical Analysis, Division of Drug Toxicology, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
15
|
Abstract
The human immunodeficiency virus (HIV) was discovered in 1982, but treatment strategies were not introduced until 5 years later. Early regimens consisted of one or two drugs and often led to treatment failure. Since the advent in 1995 of highly active antiretroviral therapy (HAART), which consists of at least three agents, a dramatic improvement has been seen in the number of patients attaining undetectable viral loads, improved CD4 counts, and improved survival. However, early HAART often consisted of drugs with complex dosing schedules, strict food requirements, treatment-limiting adverse effects, and the need to take 16-20 pills/day. These treatment barriers often led to patient nonadherence, with subsequent treatment failure and development of resistant strains. The CD4 count and viral load are the most important surrogate markers used to determine if treatment is indicated. Current guidelines suggest starting treatment in patients who are symptomatic with an acquired immunodeficiency syndrome-defining illness regardless of CD4 count or viral load, as well as in asymptomatic patients with a CD4 count of 350 cells/mm(3) or below. In patients with CD4 counts above 350 cells/mm(3) and viral loads above 100,000 copies/ml, some clinicians prefer to defer treatment, whereas others will consider starting therapy; treatment is deferred in patients with CD4 counts above 350 cells/mm(3) and viral load s below 100,000 copies/ml. If therapy is started, the selection of appropriate agents is based on comorbidities (liver disease, depression, cardiovascular disease), pregnancy status, adherence potential (dosage regimen, pill burden, dosing frequency), food restrictions (dosing with regard to meals), adverse drug effects, and potential drug-drug interactions. Within the last 8 years, newer antiretroviral agents have focused on ways to improve adherence, such as convenient dosing (fewer pills), pharmacokinetic and formulation changes to reduce dosing frequency or pill burden, and coformulated dosage forms that contain two or three drugs in one convenient pill. Other improvements include increased potency of newer agents, agents sensitive to a highly resistant virus, improved adverse-effect profile (e.g., less gastrointestinal effects, improved lipid profiles), as well as protease inhibitor boosting with ritonavir, which takes advantage of the potent cytochrome P450 inhibitory action of ritonavir. This review focuses on the concepts of antiretroviral therapy, barriers to successful antiretroviral treatment, developments to limit treatment barriers, and new drug entities for the treatment of HIV.
Collapse
Affiliation(s)
- Frank J Piacenti
- Department of Pharmacy Practice, Lincoln Medical Center, Bronx, New York 10451, USA.
| |
Collapse
|
16
|
Abstract
The advent of combination antiretroviral therapy for the treatment of human immunodeficiency virus (HIV) infection has dramatically changed the prognosis and quality of life of HIV-infected adults and children. To date, there are 21 antiretroviral agents available with only 11 agents being approved for the use in young children less than 6 years of age. The currently available antiretroviral agents belong to four different classes; nucleoside/nucleotide reverse transcriptase inhibitors (NRTI, NtRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), protease inhibitors (PI), and a new class of fusion inhibitors (FI). It is recommended that the treatment regimen should be a combination of at least 3 drugs from different drug classes as this has been shown to slow disease progression, improve survival, and result in better virologic and immunologic responses. Treatment with antiretroviral agents is frequently complicated by the issues of adherence, tolerability, long term toxicity and drug resistance. Many efforts have been made to develop new antiretroviral agents with greater potency, higher tolerability profiles and better convenience. Some new agents are also effective against drug-resistant strains of HIV. Since 2001, there were 7 new antiretroviral agents and 2 fixed-dose multidrug formulations being approved for the treatment of HIV infection, most are approved only for use in adults. In this article, we will review new antiretroviral agents including emtricitabine, tenofovir disoproxil fumarate, atazanavir, fosamprenavir, tipranavir and enfuvirtide. Pediatric information on these drugs will be provided when available.
Collapse
Affiliation(s)
- Pimpanada Chearskul
- Division of Infectious Diseases, Children's Hospital of Michigan, Carman and Ann Adams, Department of Pediatrics, Wayne State University, School of Medicine, Detroit 48201, USA
| | | | | | | |
Collapse
|
17
|
Maagaard A, Holberg-Petersen M, Kvittingen EA, Sandvik L, Bruun JN. Depletion of mitochondrial DNA copies/cell in peripheral blood mononuclear cells in HIV-1-infected treatment-naive patients. HIV Med 2006; 7:53-8. [PMID: 16313293 DOI: 10.1111/j.1468-1293.2005.00336.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Mitochondrial toxicity is believed to be the main reason for adverse effects related to nucleoside reverse transcriptase inhibitors (NRTIs). The aim of the present study was to compare mitochondrial toxicity in NRTI-treated HIV-positive patients, HIV-positive treatment-naïve patients and HIV-negative controls by comparing mitochondrial DNA (mtDNA) copies/cell in peripheral blood mononuclear cells (PBMCs) and lactate/pyruvate (L/P) ratios in the different groups. METHODS We enrolled 60 participants in the study: 31 patients on combined antiretroviral therapy (CART), 14 HIV-positive treatment-naive patients and 15 HIV-negative controls. mtDNA (copies/cell) in peripheral blood was analysed using quantitative real-time polymerase chain reaction (PCR). Standard curves and serial dilutions of plasmid-cloned mitochondrion and retinoblastoma (RB1) PCR products with known concentrations were generated to estimate the mtDNA and nuclear DNA (nDNA) copy numbers in each sample. The L/P ratio was enzymatically and spectrophotometrically analysed in samples from individuals in a fasted, non-exercise state. Results The median mtDNA copy number was 63 copies/cell (interquartile range 33-94) in HIV-positive patients and 153 (132-283) in HIV-negative controls (P<0.001). No significant difference was seen between the HIV-positive NRTI-exposed patients and the HIV-positive treatment-naive patients. Current use of didanosine was negatively correlated with depletion of mtDNA (r=-0.36, P=0.046). HIV-positive patients also had a higher L/P ratio compared with HIV-negative controls (P=0.004). CONCLUSIONS The number of mtDNA copies/cell in PBMCs was depleted in HIV-positive treatment-naive patients as well as in HIV-positive NRTI-exposed patients. HIV-positive patients also had a higher L/P ratio compared with HIV-negative controls, which supports this conclusion. The study suggests that neither mtDNA in PBMCs nor L/P ratio is a good marker of NRTI-associated mitochondrial toxicity.
Collapse
Affiliation(s)
- A Maagaard
- Department of Infectious Diseases, Ullevaal University Hospital, Faculty Division, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Emtricitabine (Emtriva) is an orally administered nucleoside reverse transcriptase inhibitor (NRTI) that is indicated in combination with other antiretroviral agents in the treatment of HIV infection in adults. As a component of antiretroviral therapy (ART), emtricitabine effectively reduces and/or maintains suppression of viral load in ART-naive adults or ART-experienced adults switching from stable combination regimens, and is generally well tolerated. Emtricitabine is a component of preferred initial HIV combination therapy regimens; it can be used in place of lamivudine as part of the dual NRTI backbone in non-nucleoside reverse transcriptase inhibitor (NNRTI)- and protease inhibitor (PI)-based regimens. Moreover, preliminary data from a randomised, open-label study suggest that emtricitabine plus tenofovir DF, a preferred dual-NRTI combination, is better tolerated than co-formulated lamivudine/zidovudine, another preferred dual-NRTI combination, resulting in a higher persistent virological response rate, as analysed using the US FDA time to loss of virological response (TLOVR) algorithm. With the convenience of once-daily (single pill) administration, no dietary restrictions and a favourable drug interaction and tolerability profile, emtricitabine should facilitate patient adherence to treatment, which, in turn, is central to the success of antiretroviral therapy. Similarly, emtricitabine is attractive as an option for ART-experienced stable adults requiring regimen simplification.
Collapse
|