1
|
Li C, Bian Y, Zhao Z, Liu Y, Guo Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. CYBORG AND BIONIC SYSTEMS 2024; 5:0172. [PMID: 39431246 PMCID: PMC11486891 DOI: 10.34133/cbsystems.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
With the prevalence of cardiovascular disease, it is imperative that medical monitoring and treatment become more instantaneous and comfortable for patients. Recently, wearable and implantable optoelectronic devices can be seamlessly integrated into human body to enable physiological monitoring and treatment in an imperceptible and spatiotemporally unconstrained manner, opening countless possibilities for the intelligent healthcare paradigm. To achieve biointegrated cardiac healthcare, researchers have focused on novel strategies for the construction of flexible/stretchable optoelectronic devices and systems. Here, we overview the progress of biointegrated flexible and stretchable optoelectronics for wearable and implantable cardiac healthcare devices. Firstly, the device design is addressed, including the mechanical design, interface adhesion, and encapsulation strategies. Next, the practical applications of optoelectronic devices for cardiac physiological monitoring, cardiac optogenetics, and nongenetic stimulation are presented. Finally, an outlook on biointegrated flexible and stretchable optoelectronic devices and systems for intelligent cardiac healthcare is discussed.
Collapse
Affiliation(s)
- Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Tian X, He H. Activation of Mitochondrial Ca 2+ Oscillation and Mitophagy Induction by Femtosecond Laser Photostimulation. Bio Protoc 2022; 12:e4369. [PMID: 35991968 PMCID: PMC9382407 DOI: 10.21769/bioprotoc.4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ultra-precise stimulation solely to individual mitochondria, without any influence to the whole cell, is quite difficult by traditional biochemical reagents. In mitophagy research, the mitochondria and even the whole cell usually suffer irreversible and great damage caused by treatment with potent chemicals. In this protocol, we present the technical procedures of our developed noninvasive ultra- precise laser stimulation (UPLaS) technology, which introduces precise stimulation to individual mitochondria, to excite mitochondrial Ca 2+ (mitoCa 2+ ) oscillations, with little perturbation to mitochondrial membrane potential (MMP), or mitochondrial reactive oxygen species (mitoROS). The mitoCa 2+ oscillation by UPLaS was able to initiate the PINK1/Parkin pathway for mitophagy. This protocol has good potential to benefit researches on mitophagy and mitochondrial diseases. Graphic abstract: Figure 1.Flowchart of the UPLaS technology.The femtosecond laser (1030 nm, 1 MHz, 220 fs) can stimulate individual mitochondria (1 μm 2 ) for a short period (0.1 s), whereas confocal microscopy (CM) provides continuous cell imaging to monitor molecular dynamics in real time, before and after UPLaS.
Collapse
Affiliation(s)
- Xiaoying Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China,*For correspondence:
| |
Collapse
|
4
|
Han M, Yildiz E, Kaleli HN, Karaz S, Eren GO, Dogru‐Yuksel IB, Senses E, Şahin A, Nizamoglu S. Tissue-Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Adv Healthc Mater 2022; 11:e2102160. [PMID: 34969168 DOI: 10.1002/adhm.202102160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/29/2021] [Indexed: 01/01/2023]
Abstract
Optoelectronic biointerfaces have made a significant impact on modern science and technology from understanding the mechanisms of the neurotransmission to the recovery of the vision for blinds. They are based on the cell interfaces made of organic or inorganic materials such as silicon, graphene, oxides, quantum dots, and π-conjugated polymers, which are dry and stiff unlike a cell/tissue environment. On the other side, wet and soft hydrogels have recently been started to attract significant attention for bioelectronics because of its high-level tissue-matching biomechanics and biocompatibility. However, it is challenging to obtain optimal opto-bioelectronic devices by using hydrogels requiring device, heterojunction, and hydrogel engineering. Here, an optoelectronic biointerface integrated with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, hydrogel that simultaneously achieves efficient, flexible, stable, biocompatible, and safe photostimulation of cells is demonstrated. Besides their interfacial tissue-like biomechanics, ≈34 kPa, and high-level biocompatibility, hydrogel-integration facilitates increase in charge injection amounts sevenfolds with an improved responsivity of 156 mA W-1 , stability under mechanical bending , and functional lifetime over three years. Finally, these devices enable stimulation of individual hippocampal neurons and photocontrol of beating frequency of cardiac myocytes via safe charge-balanced capacitive currents. Therefore, hydrogel-enabled optoelectronic biointerfaces hold great promise for next-generation wireless neural and cardiac implants.
Collapse
Affiliation(s)
- Mertcan Han
- Department of Electrical and Electronics Engineering Koç University Istanbul 34450 Turkey
| | - Erdost Yildiz
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
| | - Hümeyra Nur Kaleli
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
| | - Selcan Karaz
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Guncem Ozgun Eren
- Graduate School of Biomedical Science and Engineering Koç University Istanbul 34450 Turkey
| | | | - Erkan Senses
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Afsun Şahin
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
- Department of Ophthalmology Medical School Koç University Istanbul 34450 Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering Koç University Istanbul 34450 Turkey
- Graduate School of Biomedical Science and Engineering Koç University Istanbul 34450 Turkey
| |
Collapse
|
5
|
Fang J, Liu D, Xu D, Wu Q, Li H, Li Y, Hu N. Integrated Au-Nanoroded Biosensing and Regulating Platform for Photothermal Therapy of Bradyarrhythmia. Research (Wash D C) 2022; 2022:9854342. [PMID: 35233537 PMCID: PMC8848336 DOI: 10.34133/2022/9854342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bradyarrhythmia is a kind of cardiovascular disease caused by dysregulation of cardiomyocytes, which seriously threatens human life. Currently, treatment strategies of bradyarrhythmia mainly include drug therapy, surgery, or implantable cardioverter defibrillators, but these strategies are limited by drug side effect, surgical trauma, and instability of implanted devices. Here, we developed an integrated Au-nanoroded biosensing and regulating platform to investigate the photothermal therapy of cardiac bradyarrhythmia in vitro. Au-nanoroded electrode array can simultaneously accumulate energy from the photothermal regulation and monitor the electrophsiological state to restore normal rhythm of cardiomyocytes in real time. To treat the cardiomyocytes cultured on Au-nanoroded device by near-infrared (NIR) laser irradiation, cardiomyocytes return to normal for long term after irradiation of suitable NIR energy and maintenance. Compared with the conventional strategies, the photothermal strategy is more effective and convenient to regulate the cardiomyocytes. Furthermore, mRNA sequencing shows that the differential expression genes in cardiomyocytes are significantly increased after photothermal strategy, which are involved in the regulation of the heart rate, cardiac conduction, and ion transport. This work establishes a promising integrated biosensing and regulating platform for photothermal therapy of bradyarrhythmia in vitro and provides reliable evidence of photothermal regulation on cardiomyocytes for cardiological clinical studies.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China.,Stoddart Institute of Molecular Science, Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Dong Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Qianni Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongbo Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Li
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510006, China.,Stoddart Institute of Molecular Science, Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
6
|
Opto-thermal technologies for microscopic analysis of cellular temperature-sensing systems. Biophys Rev 2021; 14:41-54. [PMID: 35340595 PMCID: PMC8921355 DOI: 10.1007/s12551-021-00854-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractCould enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review introduces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during microheating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature causes imbalance of intracellular Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
Collapse
|
7
|
Li J, Li H, Rao P, Luo J, Wang X, Wang L. Shining light on cardiac electrophysiology: From detection to intervention, from basic research to translational applications. Life Sci 2021; 274:119357. [PMID: 33737082 DOI: 10.1016/j.lfs.2021.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Cardiac arrhythmias are an important group of cardiovascular diseases, which can occur alone or in association with other cardiovascular diseases. The development of cardiac arrhythmias cannot be separated from changes in cardiac electrophysiology, and the investigation and clarification of cardiac electrophysiological changes are beneficial for the treatment of cardiac arrhythmias. However, electrical energy-based pacemakers and defibrillators, which are widely used to treat arrhythmias, still have certain disadvantages. Thereby, optics promises to be used for optical manipulation and its use in biomedicine is increasing. Since visible light is readily absorbed and scattered in living tissues and tissue penetration is shallow, optical modulation for cells and tissues requires conversion media that convert light energy into bioelectrical activity. In this regard, fluorescent dyes, light-sensitive ion channels, and optical nanomaterials can assume this role, the corresponding optical mapping technology, optogenetics technology, and optical systems based on luminescent nanomaterials have been introduced into the research in cardiovascular field and are expected to be new tools for the study and treatment of cardiac arrhythmias. In addition, infrared and near-infrared light has strong tissue penetration, which is one of the excellent options of external trigger for achieving optical modulation, and is also widely used in the study of optical modulation of biological activities. Here, the advantages of optical applications are summarized, the research progresses and emerging applications of optical-based technologies as detection and intervention tools for cardiac electrophysiological are highlighted. Moreover, the prospects for future applications of optics in clinical diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Jianyi Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, PR China
| | - Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Junmiao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
8
|
Rocha LS, Amoresi RA, Moreno H, Ramirez MA, Ponce MA, Foschini CR, Longo E, Simões AZ. Novel Approaches of Nanoceria with Magnetic, Photoluminescent, and Gas-Sensing Properties. ACS OMEGA 2020; 5:14879-14889. [PMID: 32637762 PMCID: PMC7330910 DOI: 10.1021/acsomega.9b04250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
The modification of CeO2 with rare-earth elements opens up a wide range of applications as biomedical devices using infrared emission as well as magnetic and gas-sensing devices, once the structural, morphological, photoluminescent, magnetic, electric, and gas-sensing properties of these systems are strongly correlated to quantum electronic transitions between rare-earth f-states among defective species. Quantitative phase analysis revealed that the nanopowders are free from secondary phases and crystallize in the fluorite-type cubic structure. Magnetic coercive field measurements on the powders indicate that the substitution of cerium with lanthanum (8 wt %), in a fluorite-type cubic structure, created oxygen vacancies and led to a decrease in the fraction of Ce species in the 3+ state, resulting in a stronger room-temperature ferromagnetic response along with high coercivity (160 Oe). In addition to the magnetic and photoluminescent behavior, a fast response time (5.5 s) was observed after CO exposure, indicating that the defective structure of ceria-based materials corresponds to the key of success in terms of applications using photoluminescent, magnetic, or electrical behaviors.
Collapse
Affiliation(s)
- Leandro S.R. Rocha
- Department
of Chemistry, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Rafael A.C. Amoresi
- School
of Engineering, Sao Paulo State University
(UNESP), Guaratinguetá, São Paulo 12516-410, Brazil
| | - Henrique Moreno
- School
of Engineering, Sao Paulo State University
(UNESP), Guaratinguetá, São Paulo 12516-410, Brazil
| | - Miguel A. Ramirez
- School
of Engineering, Sao Paulo State University
(UNESP), Guaratinguetá, São Paulo 12516-410, Brazil
| | - Miguel A. Ponce
- Institute
of Materials Science and Technology Investigation (INTEMA), Mar del Plata 7600, Argentina
| | - Cesar R. Foschini
- School
of Engineering, Sao Paulo State University
(UNESP), Bauru, São Paulo 17033-360, Brazil
| | - Elson Longo
- Department
of Chemistry, Federal University of São
Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Alexandre Z. Simões
- School
of Engineering, Sao Paulo State University
(UNESP), Guaratinguetá, São Paulo 12516-410, Brazil
| |
Collapse
|
9
|
Shi J, Clayton C, Tian B. Nano-enabled cellular engineering for bioelectric studies. NANO RESEARCH 2020; 13:1214-1227. [PMID: 34295455 PMCID: PMC8294124 DOI: 10.1007/s12274-019-2580-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/24/2019] [Indexed: 06/13/2023]
Abstract
Engineered cells have opened up a new avenue for scientists and engineers to achieve specialized biological functions. Nanomaterials, such as silicon nanowires and quantum dots, can establish tight interfaces with cells either extra- or intracellularly, and they have already been widely used to control cellular functions. The future exploration of nanomaterials in cellular engineering may reveal numerous opportunities in both fundamental bioelectric studies and clinic applications. In this review, we highlight several nanomaterials-enabled non-genetic approaches to fabricating engineered cells. First, we briefly review the latest progress in engineered or synthetic cells, such as protocells that create cell-like behaviors from nonliving building blocks, and cells made by genetic or chemical modifications. Next, we illustrate the need for non-genetic cellular engineering with semiconductors and present some examples where chemical synthesis yields complex morphology or functions needed for biointerfaces. We then provide discussions in detail about the semiconductor nanostructure-enabled neural, cardiac, and microbial modulations. We also suggest the need to integrate tissue engineering with semiconductor devices to carry out more complex functions. We end this review by providing our perspectives for future development in non-genetic cellular engineering.
Collapse
Affiliation(s)
- Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | | | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Rao P, Wang L, Cheng Y, Wang X, Li H, Zheng G, Li Z, Jiang C, Zhou Q, Huang C. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo. BIOMEDICAL OPTICS EXPRESS 2020; 11:1401-1416. [PMID: 32206418 PMCID: PMC7075614 DOI: 10.1364/boe.381480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 05/27/2023]
Abstract
This study determines whether near-infrared (NIR) light can drive tissue-penetrating cardiac optical control with upconversion luminescent materials. Adeno-associated virus (AAV) encoding channelrhodopsin-2 (ChR2) was injected intravenously to rats to achieve ChR2 expression in the heart. The upconversion nanoparticles (UCNP) NaYF4:Yb/Tm or upconversion microparticles (UCMP) NaYF4 to upconvert blue light were selected to fabricate freestanding polydimethylsiloxane films. These were attached on the ventricle and covered with muscle tissue. Additionally, a 980-nm NIR laser was programmed and illuminated on the film or the tissue. The NIR laser successfully captured ectopic paced rhythm in the heart, which displays similar manipulation characteristics to those triggered by blue light. Our results highlight the feasibility of tissue-penetration cardiac optogenetics by NIR and demonstrate the potential to use external optical manipulation for non-invasive or weakly invasive applications in cardiovascular diseases.
Collapse
Affiliation(s)
- Panpan Rao
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- These authors contributed equally to this work
| | - Long Wang
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- These authors contributed equally to this work
| | - Yue Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Co-corresponding authors
| | - Haitao Li
- Department of Cardiology, Hainan General Hospital, 570311, Haikou, China
| | - Guoxing Zheng
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
- Co-corresponding authors
| | - Zile Li
- School of Electronic Information, Wuhan University, 430072, Wuhan, China
| | - Chan Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| | - Qing Zhou
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology,430060, Wuhan, China
| |
Collapse
|
11
|
Bub G, Daniels MJ. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart. Curr Pharm Biotechnol 2020; 21:752-764. [PMID: 30961485 PMCID: PMC7527548 DOI: 10.2174/1389201020666190405182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
In 1791, Galvani established that electricity activated excitable cells. In the two centuries that followed, electrode stimulation of neuronal, skeletal and cardiac muscle became the adjunctive method of choice in experimental, electrophysiological, and clinical arenas. This approach underpins breakthrough technologies like implantable cardiac pacemakers that we currently take for granted. However, the contact dependence, and field stimulation that electrical depolarization delivers brings inherent limitations to the scope and experimental scale that can be achieved. Many of these were not exposed until reliable in vitro stem-cell derived experimental materials, with genotypes of interest, were produced in the numbers needed for multi-well screening platforms (for toxicity or efficacy studies) or the 2D or 3D tissue surrogates required to study propagation of depolarization within multicellular constructs that mimic clinically relevant arrhythmia in the heart or brain. Here the limitations of classical electrode stimulation are discussed. We describe how these are overcome by optogenetic tools which put electrically excitable cells under the control of light. We discuss how this enables studies in cardiac material from the single cell to the whole heart scale. We review the current commercial platforms that incorporate optogenetic stimulation strategies, and summarize the global literature to date on cardiac applications of optogenetics. We show that the advantages of optogenetic stimulation relevant to iPS-CM based screening include independence from contact, elimination of electrical stimulation artefacts in field potential measuring approaches such as the multi-electrode array, and the ability to print re-entrant patterns of depolarization at will on 2D cardiomyocyte monolayers.
Collapse
Affiliation(s)
| | - Matthew J. Daniels
- Address correspondence to this author at the Institute of Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester, M13 9NT, UK; Tel: +441865234913; E-mails: ;
| |
Collapse
|
12
|
Zhu X, Lin JW, Sander MY. Infrared inhibition and waveform modulation of action potentials in the crayfish motor axon. BIOMEDICAL OPTICS EXPRESS 2019; 10:6580-6594. [PMID: 31853418 PMCID: PMC6913409 DOI: 10.1364/boe.10.006580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 05/02/2023]
Abstract
The infrared (IR) inhibition of axonal activities in the crayfish neuromuscular preparation is studied using 2 µm IR light pulses with varying durations. The intracellular neuronal activities are monitored with two-electrode current clamp, while the IR-induced temperature changes are measured by the open patch technique simultaneously. It is demonstrated that the IR pulses can reversibly shape or block locally initiated action potentials. Suppression of the AP amplitude and duration and decrease in axonal excitability by IR pulses are quantitatively analyzed. While the AP amplitude and duration decrease similarly during IR illumination, it is discovered that the recovery of the AP duration after the IR pulses is slower than that of the AP amplitude. An IR-induced decrease in the input resistance (8.8%) is detected and discussed together with the temperature dependent changes in channel kinetics as contributing factors for the inhibition reported here.
Collapse
Affiliation(s)
- Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Michelle Y. Sander
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, MA 02446, USA
| |
Collapse
|
13
|
Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc Natl Acad Sci U S A 2018; 116:413-421. [PMID: 30538202 DOI: 10.1073/pnas.1816428115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electronic pacemakers can treat electrical conduction disorders in hearts; however, they are invasive, bulky, and linked to increased incidence of infection at the tissue-device interface. Thus, researchers have looked to other more biocompatible methods for cardiac pacing or resynchronization, such as femtosecond infrared light pulsing, optogenetics, and polymer-based cardiac patches integrated with metal electrodes. Here we develop a biocompatible nongenetic approach for the optical modulation of cardiac cells and tissues. We demonstrate that a polymer-silicon nanowire composite mesh can be used to convert fast moving, low-radiance optical inputs into stimulatory signals in target cardiac cells. Our method allows for the stimulation of the cultured cardiomyocytes or ex vivo heart to beat at a higher target frequency.
Collapse
|
14
|
Jiang W, Rajguru SM. Eye Movements Evoked by Pulsed Infrared Radiation of the Rat Vestibular System. Ann Biomed Eng 2018; 46:1406-1418. [PMID: 29845411 PMCID: PMC6095805 DOI: 10.1007/s10439-018-2059-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
Light at infrared wavelengths has been demonstrated to modulate the pattern of neural signals transmitted from the angular motion sensing semicircular canals of the vestibular system to the brain. In the present study, we have characterized physiological eye movements evoked by focused, pulsed infrared radiation (IR) stimuli directed at an individual semicircular canal in a mammalian model. Pulsed IR (1863 nm) trains were directed at the posterior semicircular canal in a rat using 200-400 µm optical fibers. Evoked bilateral eye movements were measured using a custom-modified video-oculography system. The activation of vestibulo-ocular motor pathways by frequency modulated pulsed IR directed at single posterior semicircular canals evoked significant, characteristic bilateral eye movements. In this case, the resulting eye movements were disconjugate with ipsilateral eye moving upwards with a rotation towards the stimulated ear and the contralateral eye moving downwards. The eye movements were stable through several hours of repeated stimulation and could be maintained with 30 + minutes of continuous, frequency-modulated IR stimulation. Following the measurements, the distance of the fiber from target structures and orientation of the beam relative to vestibular structures were determined using micro-computed tomography. Results highlight the spatial selectivity of optical stimulation. Our results demonstrate a novel strategy for direct optical stimulation of the vestibular pathway in rodents and lays the groundwork for future applications of optical neural stimulation in inner ear research and therapeutic applications.
Collapse
Affiliation(s)
- Weitao Jiang
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 204, Coral Gables, FL, 33146, USA
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 204, Coral Gables, FL, 33146, USA.
- Department of Otolaryngology, University of Miami, 1600 NW 10th Ave, RMSB 3160, Miami, FL, 33136, USA.
| |
Collapse
|
15
|
Abstract
Optical pacing (OP) uses pulsed infrared light to initiate heartbeats in electrically excitable cardiac tissues without employing exogenous agents. OP is an alternative approach to electrical pacing that may overcome some its disadvantages for some applications. In this review, we discuss the initial demonstrations, mechanisms, safety, advantages and applications of OP.
Collapse
Affiliation(s)
- S M Ford
- Rainbow Babies and Children's Hospital Divisions of Neonatology and Pediatric Cardiology, 11100 Euclid Ave, MS 6010, Cleveland, OH 44106, United States of America
| | | | | |
Collapse
|
16
|
Greenberg JM, Lumbreras V, Pelaez D, Rajguru SM, Cheung HS. Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Eng Part C Methods 2017; 22:982-990. [PMID: 28192031 DOI: 10.1089/ten.tec.2016.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Cellular cardiomyoplasty has rapidly risen to prominence in the clinic following a myocardial infarction; however, low engraftment of transplanted cells limits the therapeutic benefit to these procedures. Recently, lineage-specific stem cells differentiated into cardiomyocytes have gained much attention to assist in the repair of an injured heart tissue; however, questions regarding the ideal cell source remain. In the present study, we have identified a source that is easy to extract stem cells from and show that the cells present have a high plasticity toward the cardiomyogenic lineage. We focused on the recently discovered neural crest stem cells residing in the periodontal ligament that can be easily obtained through dental procedures. MATERIALS AND METHODS Neural crest stem cells were obtained from human excised third molars and differentiated in culture using a protocol for directed differentiation into cardiomyocytes. Differentiation of cells was assessed through gene expression and immunostaining studies. Optical stimulation using pulsed infrared radiation (IR) (λ = 1863 nm) was delivered to cell aggregates to study their contractile ability. RESULTS We show that neural crest stem cells can be differentiated to a cardiomyogenic lineage, which was verified through immunostaining and gene expression. We observed a significant increase in cardiomyocyte-specific markers, NK2 homeobox 5 (NKX2.5) and troponin T type 2 (TNNT2), with positive changes in tropomyosin I (TPM1), gap junction protein alpha 1/Cx43 (GJA1/Cx43), and myocyte enhancement factor 2C (MEF2C). Furthermore, we were able to elicit and maintain pulse-by-pulse contractile responses in the derived cells, including in cardiospheres, with pulsed IR delivered at various radiant energies. The contractility in responses to IR could be maintained at different frequencies (0.25-2 Hz) and up to 10-min durations. While these cells did not maintain their contractility following cessation of IR, these cells demonstrated responses to the optical stimuli that are consistent with previous reports. We also found no evidence for irreversible mitochondrial depolarization in these cells following the long duration of infrared stimulation, suggesting the robustness of these cells. CONCLUSIONS Overall, these results suggest the merit of neural crest-derived stem cells for cardiomyogenic applications and a potential cell source for repair that should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Jordan M Greenberg
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Vicente Lumbreras
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida
| | - Daniel Pelaez
- 2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| | - Suhrud M Rajguru
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,3 Department of Otolaryngology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Herman S Cheung
- 1 Department of Biomedical Engineering, College of Engineering, University of Miami , Coral Gables, Florida.,2 Geriatric Research, Education and Clinical Center (GRECC), Miami Veterans Affairs Medical Center , Miami, Florida
| |
Collapse
|
17
|
Tsai SR, Hamblin MR. Biological effects and medical applications of infrared radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 170:197-207. [PMID: 28441605 PMCID: PMC5505738 DOI: 10.1016/j.jphotobiol.2017.04.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Infrared (IR) radiation is electromagnetic radiation with wavelengths between 760nm and 100,000nm. Low-level light therapy (LLLT) or photobiomodulation (PBM) therapy generally employs light at red and near-infrared wavelengths (600-100nm) to modulate biological activity. Many factors, conditions, and parameters influence the therapeutic effects of IR, including fluence, irradiance, treatment timing and repetition, pulsing, and wavelength. Increasing evidence suggests that IR can carry out photostimulation and photobiomodulation effects particularly benefiting neural stimulation, wound healing, and cancer treatment. Nerve cells respond particularly well to IR, which has been proposed for a range of neurostimulation and neuromodulation applications, and recent progress in neural stimulation and regeneration are discussed in this review. The applications of IR therapy have moved on rapidly in recent years. For example, IR therapy has been developed that does not actually require an external power source, such as IR-emitting materials, and garments that can be powered by body heat alone. Another area of interest is the possible involvement of solar IR radiation in photoaging or photorejuvenation as opposites sides of the coin, and whether sunscreens should protect against solar IR? A better understanding of new developments and biological implications of IR could help us to improve therapeutic effectiveness or develop new methods of PBM using IR wavelengths.
Collapse
Affiliation(s)
- Shang-Ru Tsai
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Molokanova E, Mercola M, Savchenko A. Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov Today 2017; 22:1045-1055. [PMID: 28179145 DOI: 10.1016/j.drudis.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Accepted: 01/27/2017] [Indexed: 01/08/2023]
Abstract
The current mandate for the drug discovery industry is to develop more efficient drugs faster while reducing the costs associated with their development. Incorporation of cell stimulation technologies during screening assays is expected to revolutionize the discovery of novel drugs as well as safety pharmacology. In this review, we highlight 'classical' and emerging cell stimulation technologies that provide the ability to evaluate the effects of drug candidates on cells in different functional states to assess clinically relevant phenotypes.
Collapse
Affiliation(s)
- Elena Molokanova
- Nanotools Bioscience, Encinitas, CA 92024, USA; Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mark Mercola
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Alex Savchenko
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, CA 94304, USA; Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Gentemann L, Kalies S, Coffee M, Meyer H, Ripken T, Heisterkamp A, Zweigerdt R, Heinemann D. Modulation of cardiomyocyte activity using pulsed laser irradiated gold nanoparticles. BIOMEDICAL OPTICS EXPRESS 2017; 8:177-192. [PMID: 28101410 PMCID: PMC5231291 DOI: 10.1364/boe.8.000177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Can photothermal gold nanoparticle mediated laser manipulation be applied to induce cardiac contraction? Based on our previous work, we present a novel concept of cell stimulation. A 532 nm picosecond laser was employed to heat gold nanoparticles on cardiomyocytes. This leads to calcium oscillations in the HL-1 cardiomyocyte cell line. As calcium is connected to the contractility, we aimed to alter the contraction rate of native and stem cell derived cardiomyocytes. A contraction rate increase was particularly observed in calcium containing buffer with neonatal rat cardiomyocytes. Consequently, the study provides conceptual ideas for a light based, nanoparticle mediated stimulation system.
Collapse
Affiliation(s)
- Lara Gentemann
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- These authors contributed equally to this publication and should be considered co-first authors
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
- These authors contributed equally to this publication and should be considered co-first authors
| | - Michelle Coffee
- Cluster of Excellence REBIRTH, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH - Center for Regenerative Medicine, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heiko Meyer
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Tammo Ripken
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Alexander Heisterkamp
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
- Institut für Quantenoptik, Gottfried Wilhelm Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover, Germany
| | - Robert Zweigerdt
- Cluster of Excellence REBIRTH, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH - Center for Regenerative Medicine, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dag Heinemann
- Biomedical Optics Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| |
Collapse
|
20
|
Shintani SA, Oyama K, Fukuda N, Ishiwata S. High-frequency sarcomeric auto-oscillations induced by heating in living neonatal cardiomyocytes of the rat. Biochem Biophys Res Commun 2014; 457:165-70. [PMID: 25545063 DOI: 10.1016/j.bbrc.2014.12.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
In the present study, we investigated the effects of infra-red laser irradiation on sarcomere dynamics in living neonatal cardiomyocytes of the rat. A rapid increase in temperature to >~38 °C induced [Ca(2+)]i-independent high-frequency (~5-10 Hz) sarcomeric auto-oscillations (Hyperthermal Sarcomeric Oscillations; HSOs). In myocytes with the intact sarcoplasmic reticular functions, HSOs coexisted with [Ca(2+)]i-dependent spontaneous beating in the same sarcomeres, with markedly varying frequencies (~10 and ~1 Hz for the former and latter, respectively). HSOs likewise occurred following blockade of the sarcoplasmic reticular functions, with the amplitude becoming larger and the frequency lower in a time-dependent manner. The present findings suggest that in the mammalian heart, sarcomeres spontaneously oscillate at higher frequencies than the sinus rhythm at temperatures slightly above the physiologically relevant levels.
Collapse
Affiliation(s)
- Seine A Shintani
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Oyama
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Shin'ichi Ishiwata
- Department of Pure and Applied Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; WASEDA Bioscience Research Institute in Singapore (WABIOS), Singapore.
| |
Collapse
|
21
|
Liu Q, Frerck MJ, Holman HA, Jorgensen EM, Rabbitt RD. Exciting cell membranes with a blustering heat shock. Biophys J 2014; 106:1570-7. [PMID: 24739156 DOI: 10.1016/j.bpj.2014.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022] Open
Abstract
Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Micah J Frerck
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Holly A Holman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah; Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
22
|
Deng W, Goldys EM, Farnham MMJ, Pilowsky PM. Optogenetics, the intersection between physics and neuroscience: light stimulation of neurons in physiological conditions. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1292-302. [PMID: 25274906 DOI: 10.1152/ajpregu.00072.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal stimulation by light is a novel approach in the emerging field of optogenetics, where genetic engineering is used to introduce light-activated channels. However, light is also capable of stimulating neurons even in the absence of genetic modifications through a range of physical and biological mechanisms. As a result, rigorous design of optogenetic experiments needs to take note of alternative and parallel effects of light illumination of neuronal tissues. Thus all matters relating to light penetration are critical to the development of studies using light-activated proteins. This paper discusses ways to quantify light, light penetration in tissue, as well as light stimulation of neurons in physiological conditions. We also describe the direct effect of light on neurons investigated at different sites.
Collapse
Affiliation(s)
- Wei Deng
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | - Ewa M Goldys
- Physics and Astronomy Department, Macquarie University, Sydney, Australia; and
| | | | - Paul M Pilowsky
- Heart Research Institute and Sydney University, Sydney, Australia
| |
Collapse
|
23
|
Yoon J, Choi M, Ku T, Choi WJ, Choi C. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers. JOURNAL OF BIOPHOTONICS 2014; 7:597-606. [PMID: 23650149 DOI: 10.1002/jbio.201200246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/03/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca(2+) level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction-limited volume can induce intracellular Ca(2+) increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca(2+) levels are amplified by calcium-induced calcium-releasing mechanisms through the ryanodine receptor, a Ca(2+) channel of the endoplasmic reticulum. The laser-induced Ca(2+) increases propagate to adjacent cells through gap junctions. Thus, ultrashort-pulsed lasers can induce smooth muscle contraction by controlling Ca(2+), even with optical stimulation of the diffraction-limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control.
Collapse
Affiliation(s)
- Jonghee Yoon
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea; KAIST Institute for Optical Science and Technology, KAIST, Daejeon, Korea
| | | | | | | | | |
Collapse
|
24
|
Lumbreras V, Bas E, Gupta C, Rajguru SM. Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling. J Neurophysiol 2014; 112:1246-55. [PMID: 24920028 DOI: 10.1152/jn.00253.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cochlear implants are currently the most effective solution for profound sensorineural hearing loss, and vestibular prostheses are under development to treat bilateral vestibulopathies. Electrical current spread in these neuroprostheses limits channel independence and, in some cases, may impair their performance. In comparison, optical stimuli that are spatially confined may result in a significant functional improvement. Pulsed infrared radiation (IR) has previously been shown to elicit responses in neurons. This study analyzes the response of neonatal rat spiral and vestibular ganglion neurons in vitro to IR (wavelength = 1,863 nm) using Ca(2+) imaging. Both types of neurons responded consistently with robust intracellular Ca(2+) ([Ca(2+)]i) transients that matched the low-frequency IR pulses applied (4 ms, 0.25-1 pps). Radiant exposures of ∼637 mJ/cm(2) resulted in continual neuronal activation. Temperature or [Ca(2+)] variations in the media did not alter the IR-evoked transients, ruling out extracellular Ca(2+) involvement or primary mediation by thermal effects on the plasma membrane. While blockage of Na(+), K(+), and Ca(2+) plasma membrane channels did not alter the IR-evoked response, blocking of mitochondrial Ca(2+) cycling with CGP-37157 or ruthenium red reversibly inhibited the IR-evoked [Ca(2+)]i transients. Additionally, the magnitude of the IR-evoked transients was dependent on ryanodine and cyclopiazonic acid-dependent Ca(2+) release. These results suggest that IR modulation of intracellular calcium cycling contributes to stimulation of spiral and vestibular ganglion neurons. As a whole, the results suggest selective excitation of neurons in the IR beam path and the potential of IR stimulation in future auditory and vestibular prostheses.
Collapse
Affiliation(s)
- Vicente Lumbreras
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and
| | - Esperanza Bas
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Chhavi Gupta
- Department of Otolaryngology, University of Miami, Miami, Florida
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami, Miami, Florida; and Department of Otolaryngology, University of Miami, Miami, Florida
| |
Collapse
|
25
|
Abstract
Methods to control neural activity by light have been introduced to the field of neuroscience. During the last decade, several techniques have been established, including optogenetics, thermogenetics, and infrared neural stimulation. The techniques allow investigators to turn-on or turn-off neural activity. This review is an attempt to show the importance of the techniques for the auditory field and provide insight in the similarities, overlap, and differences of the techniques. Discussing the mechanism of each of the techniques will shed light on the abilities and challenges for each of the techniques. The field has been grown tremendously and a review cannot be complete. However, efforts are made to summarize the important points and to refer the reader to excellent papers and reviews to specific topics. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Claus-Peter Richter
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611, USA; Dept. of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208, USA; The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.
| | - Xiaodong Tan
- Northwestern University Feinberg School of Medicine, Department of Otolaryngology, 303 E. Chicago Ave, Searle 12-561, Chicago, IL 60611, USA
| |
Collapse
|
26
|
Bas E, Van De Water TR, Lumbreras V, Rajguru S, Goss G, Hare JM, Goldstein BJ. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev 2013; 23:502-14. [PMID: 24172073 DOI: 10.1089/scd.2013.0274] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Esperanza Bas
- 1 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
27
|
Peterson EJ, Tyler DJ. Activation using infrared light in a mammalian axon model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:1896-9. [PMID: 23366284 DOI: 10.1109/embc.2012.6346323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infrared neural stimulation (INS) offers the potential to selectively activate very small populations of neurons. Before it will be possible to design efficient and effective INS interfaces, the mechanisms of INS need to be better understood. The presented study builds on work indicating that INS generates a significant capacitive current by the application of infrared light to cell membranes. A computational model is presented to investigate realistic spatial delivery of INS and to investigate whether axonal structure and ion channel composition are likely to facilitate INS activation through capacitive changes alone. Findings indicate that capacitance changes are unlikely to be the sole mechanism, because the determined thresholds to activation were higher than the capacitance changes observed in previously reported work [1].
Collapse
Affiliation(s)
- Erik J Peterson
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
28
|
Goyal V, Rajguru S, Matic AI, Stock SR, Richter CP. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation. Anat Rec (Hoboken) 2012; 295:1987-99. [PMID: 23044730 DOI: 10.1002/ar.22583] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/09/2022]
Abstract
This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea.
Collapse
Affiliation(s)
- Vinay Goyal
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA
| | | | | | | | | |
Collapse
|
29
|
Simmons CS, Petzold BC, Pruitt BL. Microsystems for biomimetic stimulation of cardiac cells. LAB ON A CHIP 2012; 12:3235-48. [PMID: 22782590 DOI: 10.1039/c2lc40308k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro. However, it is difficult to accurately replicate the cardiac environment outside of the body. Studying the biophysiology of the heart in vitro typically consists of studying single cells in a tightly controlled static environment or whole tissues in a complex dynamic environment. Micro-electromechanical systems (MEMS) allow us to bridge these two extremes by providing increasing complexity for cell culture without having to use a whole tissue. Here, we carefully describe the electromechanical environment of the heart and discuss MEMS specifically designed to replicate these stimulation modes. Strengths, limitations and future directions of various designs are discussed for a variety of applications.
Collapse
Affiliation(s)
- Chelsey S Simmons
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
30
|
Sobie EA. Getting heart cells on the same wavelength: infrared triggering of Ca2+ transients in cardiac myocytes. J Physiol 2012; 589:1243-4. [PMID: 21486850 DOI: 10.1113/jphysiol.2011.205906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eric A Sobie
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1215, New York, NY 10029, USA.
| |
Collapse
|
31
|
Oyama K, Mizuno A, Shintani SA, Itoh H, Serizawa T, Fukuda N, Suzuki M, Ishiwata S. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients. Biochem Biophys Res Commun 2011; 417:607-12. [PMID: 22182408 DOI: 10.1016/j.bbrc.2011.12.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
Abstract
It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heat pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, ΔT, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, ΔT at physiological temperature was lower than that at room temperature. Ca(2+) transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca(2+) solution. This heat pulse-induced Ca(2+)-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghafar-Zadeh E, Waldeisen JR, Lee LP. Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. LAB ON A CHIP 2011; 11:3031-48. [PMID: 21785806 DOI: 10.1039/c1lc20284g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Micro- and nanoscale engineering approaches in medicine have the potential to recreate physiologically relevant stem cell microenvironments to enhance our understanding of stem cell behaviour and bring stem cell therapy closer to fruition. The realization of such advancements will impact a number of therapeutic applications, the most immediate of which may be the repair of heart tissue. Despite profound advances in creating physiologically relevant in vivo stem cell niches through the control of biochemical regulatory factors, further synergism of innovative techniques promise to elucidate the impact of a number of physical cues such as stem cell differentiation into cardiac cells, the electromechanical coupling among these cells, and the formation of bioengineered cardiac tissue grafts. This review examines the recent physiologically relevant micro- and nanoengineering efforts that have been made to address these factors. In Sections II and III, we introduce the traditional focuses of stem cell derived cardiac tissue: differentiation directed by transcription factors and structural cues within the stem cell niche. However, the majority of this review, Sections IV-VII, endeavours to highlight innovative and unconventional microscale engineering techniques that have employed topographic, biomaterial, microfluidic, mechanical, electrical, and optical stimulation for stem cell based cardiac tissue engineering.
Collapse
|
33
|
Dittami GM, Rajguru SM, Lasher RA, Hitchcock RW, Rabbitt RD. Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes. J Physiol 2011; 589:1295-306. [PMID: 21242257 DOI: 10.1113/jphysiol.2010.198804] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neonatal rat ventricular cardiomyocytes were used to investigate mechanisms underlying transient changes in intracellular free Ca2+ concentration ([Ca2+]i) evoked by pulsed infrared radiation (IR, 1862 nm). Fluorescence confocal microscopy revealed IR-evoked [Ca2+]i events with each IR pulse (3-4 ms pulse⁻¹, 9.1-11.6 J cm⁻² pulse⁻¹). IR-evoked [Ca2+]i events were distinct from the relatively large spontaneous [Ca2+]i transients, with IR-evoked events exhibiting smaller amplitudes (0.88 ΔF/F0 vs. 1.99 ΔF/F0) and shorter time constants (τ =0.64 s vs. 1.19 s, respectively). Both IR-evoked [Ca2+]i events and spontaneous [Ca2+]i transients could be entrained by the IR pulse (0.2-1 pulse s⁻¹), provided the IR dose was sufficient and the radiation was applied directly to the cell. Examination of IR-evoked events during peak spontaneous [Ca2+]i periods revealed a rapid drop in [Ca2+]i, often restoring the baseline [Ca2+]i concentration, followed by a transient increase in [Ca2+]i.Cardiomyocytes were challenged with pharmacological agents to examine potential contributors to the IR-evoked [Ca2+]i events. Three compounds proved to be the most potent, reversible inhibitors: (1) CGP-37157 (20 μM, n =12), an inhibitor of the mitochondrial Na+/Ca2+ exchanger (mNCX), (2) Ruthenium Red (40 μM, n =13), an inhibitor of the mitochondrial Ca2+ uniporter (mCU), and (3) 2-aminoethoxydiphenylborane (10 μM, n =6), an IP3 channel antagonist. Ryanodine blocked the spontaneous [Ca2+]i transients but did not alter the IR-evoked events in the same cells. This pharmacological array implicates mitochondria as the major intracellular store of Ca2+ involved in IR-evoked responses reported here. Results support the hypothesis that 1862 nm pulsed IR modulates mitochondrial Ca2+ transport primarily through actions on mCU and mNCX.
Collapse
Affiliation(s)
- Gregory M Dittami
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | |
Collapse
|
34
|
Rajguru SM, Richter CP, Matic AI, Holstein GR, Highstein SM, Dittami GM, Rabbitt RD. Infrared photostimulation of the crista ampullaris. J Physiol 2011; 589:1283-94. [PMID: 21242259 DOI: 10.1113/jphysiol.2010.198333] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present results show that the semicircular canal crista ampullaris of the toadfish, Opsanus tau, is sensitive to infrared radiation (IR) applied in vivo. IR pulse trains (∼1862 nm, ∼200 μs pulse⁻¹) delivered to the sensory epithelium by an optical fibre evoked profound changes in phasic and tonic discharge rates of postsynaptic afferent neurons. Phasic afferent responses to pulsed IR occurred with a latency of <8 ms while tonic responses developed with a time constant (τ) of 7 ms to 10 s following the onset or cessation of the radiation. Afferents responded to direct optical radiation of the sensory epithelium but did not respond to thermal stimuli that generated nearly equivalent temperature increases of the whole organ. A subset of afferent neurons fired an action potential in response to each IR pulse delivered to the sensory epithelium, at phase-locked rates up to 96 pulses per second. The latency between IR pulses and afferent nerve action potentials was much greater than synaptic delay and spike generation, demonstrating the presence of a signalling delay interposed between the IR pulse and the action potential. The same IR stimulus applied to afferent nerve axons failed to evoke responses of similar magnitude and failed to phase-lock afferent nerve action potentials. The present data support the hypothesis that pulsed IR activates sensory hair cells, thus leading to modulation of synaptic transmission and afferent nerve discharge reported here.
Collapse
Affiliation(s)
- Suhrud M Rajguru
- Department of Otolaryngology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Jenkins MW, Duke AR, Gu S, Chiel HJ, Fujioka H, Watanabe M, Jansen ED, Rollins AM. Optical pacing of the embryonic heart. NATURE PHOTONICS 2010; 4:623-626. [PMID: 21423854 PMCID: PMC3059323 DOI: 10.1038/nphoton.2010.166] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Light has been used to noninvasively alter the excitability of both neural and cardiac tissue 1-10. Recently, pulsed laser light has been shown to be capable of eliciting action potentials in peripheral nerves and in cultured cardiomyocytes 7-10. Here, we demonstrate for the first time optical pacing (OP) of an intact heart in vivo. Pulsed 1.875 μm infrared laser light was employed to lock the heart rate to the pulse frequency of the laser. A laser Doppler velocimetry (LDV) signal was used to verify the pacing. At low radiant exposures, embryonic quail hearts were reliably paced in vivo without detectable damage to the tissue, indicating that OP has great potential as a tool to study embryonic cardiac dynamics and development. In particular, OP can be utilized to control the heart rate, and thereby alter stresses and mechanically transduced signaling.
Collapse
Affiliation(s)
- M. W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - A. R. Duke
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - S. Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - H. J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106
| | - H. Fujioka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - M. Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106
| | - E. D. Jansen
- Departments of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235
| | - A. M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
- Correspondence: Andrew M. Rollins, Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, Tel: 216 368-1917;
| |
Collapse
|
36
|
Zhao Y, Zhang Y, Zhou W, Liu X, Zeng S, Luo Q. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:035001. [PMID: 20615001 DOI: 10.1117/1.3454390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Astrocytes have been identified to actively contribute to brain functions through Ca(2+) signaling, serving as a bridge to communicate with neurons and other brain cells. However, conventional stimulation techniques are hard to apply to delicate investigations on astrocytes. Our group previously reported photostimulation with a femtosecond laser to evoke astrocytic calcium (Ca(2+)) waves, providing a noninvasive and efficient approach with highly precise targeting. In this work, detailed characteristics of astrocytic Ca(2+) signaling induced by photostimulation are presented. In a purified astrocytic culture, after the illumination of a femtosecond laser onto one cell, a Ca(2+) wave throughout the network with reduced speed is induced, and intracellular Ca(2+) oscillations are observed. The intercellular propagation is pharmacologically confirmed to be mainly mediated by ATP through P(2)Y receptors. Different patterns of Ca(2+) elevations with increased amplitude in the stimulated astrocyte are discovered by varying the femtosecond laser power, which is correspondingly followed by broader intercellular waves. These indicate that the strength of photogenerated Ca(2+) signaling in astrocytes has a positive relationship with the stimulating laser power. Therefore, distinct Ca(2+) signaling is feasibly available for specific studies on astrocytes by employing precisely controlled photostimulation.
Collapse
Affiliation(s)
- Yuan Zhao
- Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
37
|
Santos SICO, Mathew M, Loza-Alvarez P. Real time imaging of femtosecond laser induced nano-neurosurgery dynamics in C. elegans. OPTICS EXPRESS 2010; 18:364-377. [PMID: 20173856 DOI: 10.1364/oe.18.000364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study we present for the first time the use of confocal microscopy and laser scanning brightfield microscopy (LSBF) for real time imaging of femtosecond laser nanosurgery and its dynamics in C. elegans. A single multimodal optical workstation that provides the ability to perform femtosecond laser nanosurgery and simultaneous confocal and LSBF imaging was used for the purpose. With this tool several dynamic phenomena concomitant with laser nanosurgery in C. elegans were observed and imaged. Some of these dynamic phenomena, like muscular contraction and single muscle cell stimulation, have been imaged for the first time during nano-neurosurgery of C. elegans.
Collapse
Affiliation(s)
- Susana I C O Santos
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Castelldefels (Barcelona), Spain
| | | | | |
Collapse
|
38
|
Choi M, Yoon J, Choi C. Label-free optical control of arterial contraction. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:015006. [PMID: 20210446 DOI: 10.1117/1.3316404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The diameters of blood vessels, especially in the brain, change dynamically over time to provide sufficient blood supply as needed. No existing technique allows noninvasive control of vascular diameter in vivo. We report that label-free irradiation with a femtosecond pulsed laser can trigger blood vessel contraction in vivo. In response to laser irradiation, cultured vascular smooth muscle cells showed a rapid increase in calcium concentration, followed by cell contraction. In a murine thinned skull window model, laser irradiation focused in the arterial vessel wall caused localized vascular contraction, followed by recovery. The nonlinear nature of the pulsed laser allowed highly specific targeting of subcortical vessels without affecting the surrounding region. We believe that femtosecond pulsed laser irradiation will become a useful experimental tool in the field of vascular biology.
Collapse
Affiliation(s)
- Myunghwan Choi
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Yuseong-gu, Daejeon, Korea
| | | | | |
Collapse
|
39
|
Zhao Y, Zhang Y, Liu X, Lv X, Zhou W, Luo Q, Zeng S. Photostimulation of astrocytes with femtosecond laser pulses. OPTICS EXPRESS 2009; 17:1291-1298. [PMID: 19188957 DOI: 10.1364/oe.17.001291] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.
Collapse
Affiliation(s)
- Yuan Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Department of Biomedical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Ando J, Smith NI, Fujita K, Kawata S. Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:255-62. [PMID: 19137284 DOI: 10.1007/s00249-008-0397-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 12/02/2008] [Accepted: 12/14/2008] [Indexed: 11/25/2022]
Abstract
We monitored femtosecond laser induced membrane potential changes in non-excitable cells using patchclamp analysis. Membrane potential hyperpolarization of HeLa cells was evoked by 780 nm, 80 fs laser pulses focused in the cellular cytoplasm at average powers of 30-60 mW. Simultaneous detection of intracellular Ca2+ concentration and membrane potential revealed coincident photogeneration of Ca2+ waves and membrane potential hyperpolarization. By using non-excitable cells, the cell dynamics are slow enough that we can calculate the membrane potential using the steady-state approximation for ion gradients and permeabilities, as formulated in the GHK equations. The calculations predict hyperpolarization that matches the experimental measurements and indicates that the cellular response to laser irradiation is biological, and occurs via laser triggered Ca2+ which acts on Ca2+ activated K+ channels, causing hyperpolarization. Furthermore, by irradiating the cellular plasma membrane, we observed membrane potential depolarization in combination with a drop in membrane resistance that was consistent with a transient laser-induced membrane perforation. These results entail the first quantitative analysis of location-dependent laser-induced membrane potential modification and will help to clarify cellular biological responses under exposure to high intensity ultrashort laser pulses.
Collapse
Affiliation(s)
- Jun Ando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
41
|
Niioka H, Smith NI, Fujita K, Inouye Y, Kawata S. Femtosecond laser nano-ablation in fixed and non-fixed cultured cells. OPTICS EXPRESS 2008; 16:14476-14495. [PMID: 18794984 DOI: 10.1364/oe.16.014476] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To understand the onset and morphology of femtosecond laser submicron ablation in cells and to study physical evidence of intracellular laser irradiation, we used transmission electron microscopy (TEM). The use of partial fixation before laser irradiation provides for clear images of sub-micron intracellular laser ablation, and we observed clear evidence of bubble-type physical changes induced by femtosecond laser irradiation at pulse energies as low as 0.48 nJ in the nucleus and cytoplasm. By taking ultrathin sliced sections, we reconstructed the laser affected subcellular region, and found it to be comparable to the point spread function of the laser irradiation. Laser-induced bubbles were observed to be confined by the surrounding intracellular structure, and bubbles were only observed with the use of partial pre-fixation. Without partial pre-fixation, laser irradiation of the nucleus was found to produce observable aggregation of nanoscale electron dense material, while irradiation of cytosolic regions produced swollen mitochondria but residual local physical effects were not observed. This was attributed to the rapid collapse of bubbles and/or the diffusion of any observable physical effects from the irradiation site following the laser exposure.
Collapse
Affiliation(s)
- H Niioka
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|