1
|
Iwami R, Mihana T, Kanno K, Naruse M, Uchida A. Experimental control of mode-competition dynamics in a chaotic multimode semiconductor laser for decision making. OPTICS EXPRESS 2024; 32:17274-17294. [PMID: 38858916 DOI: 10.1364/oe.517257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/11/2024] [Indexed: 06/12/2024]
Abstract
Photonic computing is widely used to accelerate the computational performance in machine learning. Photonic decision making is a promising approach utilizing photonic computing technologies to solve the multi-armed bandit problems based on reinforcement learning. Photonic decision making using chaotic mode-competition dynamics has been proposed. However, the experimental conditions for achieving a superior decision-making performance have not yet been established. Herein, we experimentally investigate mode-competition dynamics in a chaotic multimode semiconductor laser in the presence of optical feedback and injection. We control the chaotic mode-competition dynamics via optical injection and observe that positive wavelength detuning results in an efficient mode concentration to one of the longitudinal modes with a small optical injection power. We experimentally investigate two-dimensional bifurcation diagram of the total intensity of the laser dynamics. Complex mixed dynamics are observed in the presence of optical feedback and injection. We experimentally conduct decision making to solve the bandit problem using chaotic mode-competition dynamics. A fast mode-concentration property is observed at positive wavelength detunings, resulting in fast convergence of the correct decision rate. Our findings could be useful in accelerating the decision-making performance in adaptive optical networks using reinforcement learning.
Collapse
|
2
|
Asuke N, Chauvet N, Röhm A, Kanno K, Uchida A, Niiyama T, Sunada S, Horisaki R, Naruse M. Analysis of temporal structure of laser chaos by Allan variance. Phys Rev E 2023; 107:014211. [PMID: 36797858 DOI: 10.1103/physreve.107.014211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Allan variance has been widely utilized for evaluating the stability of the time series generated by atomic clocks and lasers, in time regimes ranging from short to extremely long. This multiscale examination capability of the Allan variance may also be beneficial in evaluating the chaotic oscillating dynamics of semiconductor lasers- not just for conventional phase stability analysis. In the present study, we demonstrated Allan variance analysis of the complex time series generated by a semiconductor laser with delayed feedback, including low-frequency fluctuations (LFFs), which exhibit both fast and slow dynamics. While the detection of LFFs is difficult with the conventional power spectrum analysis method in the low-frequency regime, the Allan variance approach clearly captured the appearance of multiple time-scale dynamics, such as LFFs. This study demonstrates that Allan variance can help in understanding and characterizing diverse laser dynamics, including LFFs, spanning a wide range of timescales.
Collapse
Affiliation(s)
- Naoki Asuke
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nicolas Chauvet
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - André Röhm
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazutaka Kanno
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan
| | - Atsushi Uchida
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan
| | - Tomoaki Niiyama
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa city, Ishikawa 920-1192, Japan
| | - Satoshi Sunada
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa city, Ishikawa 920-1192, Japan
| | - Ryoichi Horisaki
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Naruse
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Dynamics of Semiconductor Lasers under External Optical Feedback from Both Sides of the Laser Cavity. PHOTONICS 2022. [DOI: 10.3390/photonics9010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
To increase the spectral efficiency of coherent communication systems, lasers with ever-narrower linewidths are required as they enable higher-order modulation formats with lower bit-error rates. In particular, semiconductor lasers are a key component due to their compactness, low power consumption, and potential for mass production. In field-testing scenarios their output is coupled to a fiber, making them susceptible to external optical feedback (EOF). This has a detrimental effect on its stability, thus it is traditionally countered by employing, for example, optical isolators and angled output waveguides. In this work, EOF is explored in a novel way with the aim to reduce and stabilize the laser linewidth. EOF has been traditionally studied in the case where it is applied to only one side of the laser cavity. In contrast, this work gives a generalization to the case of feedback on both sides. It is implemented using photonic components available via generic foundry platforms, thus creating a path towards devices with high technology-readiness level. Numerical results shows an improvement in performance of the double-feedback case with respect to the single-feedback case. In particularly, by appropriately selecting the phase of the feedback from both sides, a broad stability regime is discovered. This work paves the way towards low-cost, integrated and stable narrow-linewidth integrated lasers.
Collapse
|