1
|
Segura AG, Prohens L, Julià L, Amoretti S, RIbero M, Pino-Camacho L, Cano-Escalera G, Mane A, Rodriguez-Jimenez R, Roldan A, Sarró S, Ibañez A, Usall J, Lobo A, Garcia-Rizo C, Cuesta MJ, Parellada M, González-Pinto A, Berrocoso E, Bernardo M, Mas S, Rodríguez N, Perez-Ramos A, Salmeron S, González-Peñas J, Gurriarán X, Farré A, Pousa E, Zorrilla I, Mar-Barrutia L, Trabsa A, Martinez L, Sánchez-Cabezudo Á, Jiménez-López E, Pomarol-Clotet E, Salvador R, Butjosa A, Elena RA, Moreno-Izco L, Torres AMS, Saiz J, León-Quismondo L, Rivero O, González-Blanco L, De-la-Cámara C. Methylation profile scores of environmental exposures and risk of relapse after a first episode of schizophrenia. Eur Neuropsychopharmacol 2025; 94:4-15. [PMID: 39956014 DOI: 10.1016/j.euroneuro.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Both genetic and environmental factors have been found to play a significant role in psychosis relapse, either independently or through their synergistic interaction. Recently, DNA methylation (DNAm) has been proposed through the calculation of methylation profile scores (MPS). The aim of the present study is to evaluate the association of MPS as a surrogate marker of the biological impact of early stressful life events (including stressful intrauterine conditions and obstetric complications, childhood adversity and toxic habits), with the risk of schizophrenia (SCZ) relapse. 91 participants from a cohort of first-episode schizophrenia (FES) patients with less than five years of evolution were classified as non-relapse (patients who had not experienced a relapse after 3 years of enrollment) or relapse (patients who relapsed during the 3-year follow-up). As inclusion criteria, patients fulfilled Andreasen's criteria of symptomatic remission. Genome-wide DNA methylation (DNAm) was profiled and fourteen MPS reflecting environmental exposure were constructed including both early stressful life events (including stressful intrauterine conditions and delivery issues, childhood adversity) and toxic habits. Increased levels of MPS reflecting gestational diabetes (p = 0.009), hypertensive disorders during pregnancy (p = 0.004), pre-eclampsia (p = 0.049), early preterm birth (p = 0.030), childhood adversity abuse (p = 0.021) and all childhood adversity (p = 0.030) were significantly associated with an increased risk of relapse. Our study suggests that changes in specific methylation patterns may represent one of the biological mechanisms linking early stressful life events to an increased risk of relapse.
Collapse
Affiliation(s)
- Alex-González Segura
- Bipolar and Depressive Disorders Unit, Hospital Clínic de Barcelona, Barcelona, Spain, Fundació Clínic-Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Llucia Prohens
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - Laura Julià
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain
| | - Silvia Amoretti
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain; Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain; Group of Psychiatry, Mental Health and Addictions, Valld'Hebron Research Institute (VHIR), Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria RIbero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Laura Pino-Camacho
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Guillermo Cano-Escalera
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; BIOARABA, Department Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Anna Mane
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Hospital del Mar Medicar Research Institute (IMIM), Barcelona, Spain
| | - Roberto Rodriguez-Jimenez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Universidad Complutense de Madrid (UCM), Spain; Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Alexandra Roldan
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Salvador Sarró
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Angela Ibañez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Judith Usall
- Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Antonio Lobo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Psychiatry, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Clemente Garcia-Rizo
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Jesus Cuesta
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Mara Parellada
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana González-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; BIOARABA, Department Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain, Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Natalia Rodríguez
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPs), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Anaid Perez-Ramos
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Salmeron
- Barcelona Clínic Schizophrenia Unit, Hospital Clínic de Barcelona, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
| | - Javier González-Peñas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Xaquín Gurriarán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Adriana Farré
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Esther Pousa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatry Department, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Iñaki Zorrilla
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; BIOARABA, Department Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Lorea Mar-Barrutia
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; BIOARABA, Department Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Amira Trabsa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Hospital del Mar Medicar Research Institute (IMIM), Barcelona, Spain
| | - Laura Martinez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Hospital del Mar Medicar Research Institute (IMIM), Barcelona, Spain
| | - Ángeles Sánchez-Cabezudo
- Department of Psychiatry, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Jiménez-López
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Raymond Salvador
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Anna Butjosa
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Rubio-Abadal Elena
- Institut de Recerca Sant Joan de Déu, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Lucía Moreno-Izco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana M Sánchez Torres
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Hospital Universitario de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jeronimo Saiz
- Department of Psychiatry, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Leticia León-Quismondo
- Department of Psychiatry, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Olga Rivero
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; INCLIVA Biomedical Research Institute, Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain
| | - Leticia González-Blanco
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Mental Health Services of the Principality of Asturias (SESPA), Oviedo, Spain
| | - Concepción De-la-Cámara
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine and Psychiatry, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Hospital Clínico Universitario and Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza
| |
Collapse
|
2
|
Kasuga Y, Kajikawa K, Ishikawa N, Ogata Y, Takahashi M, Akita K, Tamai J, Fukuma Y, Tanaka Y, Otani T, Fukutake M, Ikenoue S, Tanaka M. The Association Between Glucose Variability and Insulin Parameters in Gestational Diabetes Diagnosed After 24 Gestational Weeks. Nutrients 2025; 17:440. [PMID: 39940296 PMCID: PMC11820587 DOI: 10.3390/nu17030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Background/Objectives: Recently, it was reported that glucose variability (GV) calculated using the 75 g oral glucose tolerance test (OGTT) is associated with adverse perinatal outcomes. However, its role in gestational diabetes mellitus (GDM) remains unclear. We investigated the association between GV and insulin parameters in Japanese women diagnosed with GDM after 24 weeks of gestation (late GDM). Methods: A total of 280 mothers with late GDM cared for at Keio University Hospital were included in this study. Using 75 g OGTT, the initial increase and subsequent decrease were calculated as the GV. Results: The initial increase was significantly positively associated with 1 h plasma glucose level (PG) and 2 h PG with 75 g OGTT (p < 0.001), but fasting PG, insulinogenic index (IGI), and homeostasis model assessment-insulin resistance were negatively associated with the initial increase (all p < 0.001). The subsequent decrease was significantly positively correlated with 1 h PG (p < 0.001) but negatively correlated with 2 h PG (p < 0.001), IGI (p = 0.009), and the whole-body insulin sensitivity index derived from the OGTT (p = 0.02). Insulin Secretion-Sensitivity Index-2 was not associated with an initial increase or subsequent decrease. Conclusions: Since the initial increase might reflect insulin secretion and the subsequent decrease might reflect insulin sensitivity in Japanese women with late GDM, GV could alter several insulin parameters. Further studies are required to investigate the usefulness of GV in the management of GDM.
Collapse
Affiliation(s)
- Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 5 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Smith HM, Ng HK, Moodie JE, Gadd DA, McCartney DL, Bernabeu E, Campbell A, Redmond P, Taylor A, Page D, Corley J, Harris SE, Tay D, Deary IJ, Evans KL, Robinson MR, Chambers JC, Loh M, Cox SR, Marioni RE, Hillary RF. DNA methylation-based predictors of metabolic traits in Scottish and Singaporean cohorts. Am J Hum Genet 2025; 112:106-115. [PMID: 39706196 PMCID: PMC11739919 DOI: 10.1016/j.ajhg.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Exploring the molecular correlates of metabolic health measures may identify their shared and unique biological processes and pathways. Molecular proxies of these traits may also provide a more objective approach to their measurement. Here, DNA methylation (DNAm) data were used in epigenome-wide association studies (EWASs) and for training epigenetic scores (EpiScores) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio, and blood-based measures of glucose, high-density lipoprotein cholesterol, and total cholesterol in >17,000 volunteers from the Generation Scotland (GS) cohort. We observed a maximum of 12,033 significant findings (p < 3.6 × 10-8) for BMI in a marginal linear regression EWAS. By contrast, a joint and conditional Bayesian penalized regression approach yielded 27 high-confidence associations with BMI. EpiScores trained in GS performed well in both Scottish and Singaporean test cohorts (Lothian Birth Cohort 1936 [LBC1936] and Health for Life in Singapore [HELIOS]). The EpiScores for BMI and total cholesterol performed best in HELIOS, explaining 20.8% and 7.1% of the variance in the measured traits, respectively. The corresponding results in LBC1936 were 14.4% and 3.2%, respectively. Differences were observed in HELIOS for body fat, where the EpiScore explained ∼9% of the variance in Chinese and Malay -subgroups but ∼3% in the Indian subgroup. The EpiScores also correlated with cognitive function in LBC1936 (standardized βrange: 0.08-0.12, false discovery rate p [pFDR] < 0.05). Accounting for the correlation structure across the methylome can vastly affect the number of lead findings in EWASs. The EpiScores of metabolic traits are broadly applicable across populations and can reflect differences in cognition.
Collapse
Affiliation(s)
- Hannah M Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Joanna E Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew R Robinson
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Guo HY, Tang SB, Li LJ, Lin J, Zhang TT, Chao S, Jin XW, Xu KP, Su XF, Yin S, Zhao MH, Huang GA, Yang LJ, Shen W, Zhang L, Zhang CL, Sun QY, Ge ZJ. Gestational diabetes mellitus causes genome hyper-methylation of oocyte via increased EZH2. Nat Commun 2025; 16:127. [PMID: 39747080 PMCID: PMC11696910 DOI: 10.1038/s41467-024-55499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Gestational diabetes mellitus (GDM), a common pregnancy disease, has long-term negative effects on offspring health. Epigenetic changes may have important contributions to that, but the underlying mechanisms are not well understood. Here, we report the influence of GDM on DNA methylation of offspring (GDF1) oocytes and the possible mechanisms. Our results show that GDM induces genomic hyper-methylation of offspring oocytes, and at least a part of the altered methylation is inherited by F2 oocytes, which may be a reason for the inheritance of metabolic disorders. We further find that GDM exposure increases the expression of Ezh2 in oocytes. Ezh2 regulates DNA methylation via DNMT1, and Ezh2 knockdown reduces the genomic methylation level of GDF1 oocytes. These results suggest that GDM may induce oocyte genomic hyper-methylation of offspring via enhancing the Ezh2 expression recruiting more DNMT1 into nucleus.
Collapse
Affiliation(s)
- Hong-Yan Guo
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Shou-Bin Tang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Li-Jun Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Jing Lin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ting-Ting Zhang
- Reproductive Medicine Center, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, People's Republic of China
| | - Shuo Chao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xiao-Wen Jin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Kui-Peng Xu
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xiao-Feng Su
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Ming-Hui Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Gui-An Huang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Li-Jia Yang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, People's Republic of China
| | - Cui-Lian Zhang
- Reproductive Medicine Center, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, People's Republic of China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health and Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
5
|
Carstens PS, Brendel H, Villar-Ballesteros ML, Mittag J, Hengst C, Brunssen C, Birdir C, Taylor PD, Poston L, Morawietz H. Characterization of human placental fetal vessels in gestational diabetes mellitus. Pflugers Arch 2025; 477:67-79. [PMID: 39384641 PMCID: PMC11711144 DOI: 10.1007/s00424-024-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Gestational diabetes mellitus is one of the most common complications during pregnancy. Its prevalence is rapidly increasing worldwide. Gestational diabetes mellitus is leading to an elevated risk for the development of endothelial dysfunction and cardiovascular diseases both in the mother and the child in later life. The underlying pathophysiological mechanisms are not well-understood. Therefore, we aimed to characterize the endothelial function in fetal placental vessels from mothers with gestational diabetes mellitus. In this study, we distinguished between insulin-treated and diet-controlled gestational diabetes mothers and compared them to a normoglycemic control group. The clinical data confirmed pre-conceptional overweight as a risk factor in women with insulin-treated gestational diabetes mellitus. The insulin-treated gestational diabetes group was also characterized by a recent family history of diabetes compared to mothers of the control or diet-controlled gestational diabetes group. Analyses of blood serum from umbilical cords suggested a reduced fetal insulin metabolism in the insulin-treated gestational diabetes group. Vascular function analysis in fetal placental vessels revealed an altered substance P-induced vasorelaxation in vessels from patients with insulin-dependent gestational diabetes. Inhibition of nitric oxide synthase affected only fetal vessel segments from the control group or diet-controlled gestational diabetes group, but not from insulin-dependent gestational diabetes. Finally, we found a significantly decreased substance P receptor (TACR1) mRNA expression in fetal vessel segments from patients with insulin-treated gestational diabetes. In conclusion, we provide evidence that different pathophysiological mechanisms might be responsible for the development of insulin-treated versus diet-controlled gestational diabetes. Only in fetal vessels from patients with insulin-treated gestational diabetes were we able to detect an endothelial dysfunction and a reduced fetal insulin conversion. This provides novel insights into the pathophysiology of the subtypes of gestational diabetes.
Collapse
Affiliation(s)
- Philine S Carstens
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - M Leyre Villar-Ballesteros
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Clara Hengst
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Center for Feto/Neonatal Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paul D Taylor
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Ren J, Zhou L, Li S, Zhang Q, Xiao X. The roles of the gut microbiota, metabolites, and epigenetics in the effects of maternal exercise on offspring metabolism. Am J Physiol Endocrinol Metab 2024; 327:E760-E772. [PMID: 39535269 DOI: 10.1152/ajpendo.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Metabolic diseases, including obesity, dyslipidemia, and type 2 diabetes, have become severe challenges worldwide. The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that an adverse intrauterine environment can increase the risk of metabolic disorders in offspring. Studies have demonstrated that maternal exercise is an effective intervention for improving the offspring metabolic health. However, the pathways through which exercise works are unclear. It has been reported that the gut microbiota mediates the effect of maternal exercise on offspring metabolism, and epigenetic modifications have also been proposed to be important molecular mechanisms. Microbial metabolites can influence epigenetics by providing substrates for DNA or histone modifications, binding to G-protein-coupled receptors to affect downstream pathways, or regulating the activity of epigenetic modifying enzymes. This review aims to summarize the intergenerational effect of maternal exercise and proposes that gut microbiota-metabolites-epigenetic regulation is an important mechanism by which maternal exercise improves offspring metabolism, which may yield novel targets for the early prevention and intervention of metabolic diseases.
Collapse
Affiliation(s)
- Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Fatima SS, Fatimi AS, Abbas M, Farhat S, Mohammed N. Methylation Patterns of Diabetes and Obesity Susceptibility Genes in Gestational Diabetes Mellitus: A Cross-Sectional Analysis from Karachi, Pakistan. Metab Syndr Relat Disord 2024. [PMID: 39515368 DOI: 10.1089/met.2024.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Background: Women with gestational diabetes mellitus (GDM) and their offspring have an increased risk of adverse perinatal and long-term health outcomes, which may be attributable to epigenetic modification of diabetes and obesity susceptibility genes. We aimed to investigate the methylation patterns of eight genes in GDM and normoglycemic (NG) mothers, and their respective offspring. Methods: This cross-sectional study, conducted at Aga Khan University from August 2019 to December 2022, recruited pregnant women in the first trimester of gestation from the outpatient obstetrics clinic. Participants were classified as NG or GDM based on the Society of Obstetricians and Gynecologists Pakistan. Venous blood samples were collected from mothers and cord blood from neonates. Peripheral blood mononuclear cells were used for DNA extraction and methylation analysis using methylation-specific PCR. Maternal and neonatal clinical data were recorded. Statistical analysis was performed using R, including binary logistic regression to assess the association between various gene methylation levels and GDM. Results: The study found that GDM mothers had significantly higher fasting blood glucose, 2-hr OGTT, and serum carboxymethyl lysine (CML) levels compared to NG mothers, but no significant differences in neonatal birth weight or serum CML levels. Chemerin methylation was significantly lower in GDM mothers and their babies, while NAMPT, MTNR1B, FNDC5, FAT4, and FTO methylation levels were higher in GDM offspring compared to NG offspring. GDM mothers also had higher methylation levels of brain-derived neurotrophic factor gene (BDNF). Multivariable binary logistic regression identified methylation levels of maternal BDNF and neonatal MTNR1B to be independently associated with GDM. Conclusions: Our study shows a trend of epigenetic modifications in both GDM mothers and their offspring in various genes related to metabolism and inflammation, suggesting an intergenerational transmission of increased risk of developing metabolic disorders. These findings emphasize the need for high throughput studies, early screening, tight glucose control during pregnancy, and postnatal follow-up to mitigate long-term health risks.
Collapse
Affiliation(s)
- Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Manzar Abbas
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Sabah Farhat
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Nuruddin Mohammed
- Department of Obstetrics and Gynecology, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Waldrop SW, Perng W, Konigsberg IR, Borengasser SJ. The potential utility of cord blood DNA methylation in pediatric clinical practice. Epigenomics 2024; 16:1365-1372. [PMID: 39530586 PMCID: PMC11622741 DOI: 10.1080/17501911.2024.2408217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Our understanding of the origins of noncommunicable diseases has evolved over the years with greater consideration given to the lasting influence exposures and experiences during the preconceptional and prenatal periods can have. Research highlights the associations of parental exposures (e.g., diet, obesity, gestational diabetes, lipid profile, toxic exposures and microbiome) with the infant/fetal methylome and suggest associations with infant, child and/or adolescent chronic health outcomes. Thus, epigenetics and specifically cord blood DNA methylation may have utility as biomarkers for disease risk identification and stratification in pediatrics. However, for cord blood DNA methylation analyses to be leveraged as biomarkers of disease risk in pediatric clinical practice, the results must be replicable, validated and clinically meaningful. Challenges and opportunities to this prospect are herein discussed.
Collapse
Affiliation(s)
- Stephanie W Waldrop
- Section on Nutrition, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO80045, USA
- Division of Clinical Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA70808, USA
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity & Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Sarah J Borengasser
- Department of Pediatrics, TSET Health Promotion Research Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| |
Collapse
|
9
|
Xu H, Liu R. Comprehensive management of gestational diabetes mellitus: practical efficacy of exercise therapy and sustained intervention strategies. Front Endocrinol (Lausanne) 2024; 15:1347754. [PMID: 39421534 PMCID: PMC11484007 DOI: 10.3389/fendo.2024.1347754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background Gestational Diabetes Mellitus (GDM) affects 14.0% of pregnancies globally, with a 35% post-pregnancy relapse and a 60% risk of Type 2 Diabetes (T2D) within 5-10 years. Challenges in long-term management, especially postpartum, include adherence and follow-up difficulties. Methods This study, based on a systematic review and meta-analysis, examined the practical effects of exercise therapy in the prevention, treatment, and prevention of progression from Gestational Diabetes Mellitus (GDM) to Type 2 Diabetes (T2D). Relevant research and clinical practices were retrieved from six major databases (PubMed, Scopus, Web of Science, Cochrane Library, MEDLINE, Science Direct). After analyzing the intervention effects of exercise therapy at different stages, factors favorably influencing the effectiveness of exercise intervention were identified during the more effective stages. Finally, a long-term and efficient exercise implementation plan for the comprehensive management of GDM was proposed. Results In GDM prevention, exercise reduced the post-intervention risk by 37% compared to the control group (Relative Risk (RR)=0.63; 95% Confidence Interval (CI): 0.54 to 0.72; p=0.01). Studies on GDM treatment showed improved glucose control in the exercise group post-intervention (Mean Difference (MD)=-0.10; 95% CI: -0.16 to -0.04; p=0.04/MD=-0.27; 95% CI: -0.36 to -0.19; p<0.0001). However, exercise therapy didn't significantly affect the incidence of T2D post-GDM (RR=0.88; 95% CI: 0.69 to 1.11; p=0.39) due to challenges in quantified exercise prescriptions and the complexity of postpartum programs. Conclusion To enhance exercise therapy effectiveness in GDM management, the study recommends adopting an integrated model emphasizing personalized pregnancy plans, postpartum strategies, and long-term support. Leveraging frequent healthcare contact during pregnancy can establish and sustain exercise habits, fostering a lifelong pattern. While the study acknowledges limitations, this approach holds potential for improving glycemic metabolism and developing healthy exercise habits in subsequent generations. Future research should include longer follow-ups to validate the practical efficacy of this approach in preventing T2D after GDM. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023463617.
Collapse
|
10
|
Josefson JL, Kuang A, Allard C, Bianco ME, Lowe W, Scholtens DM, Bouchard L, Hivert MF. Newborn adiposity is associated with cord blood DNA methylation at IGF1R and KLF7. Obesity (Silver Spring) 2024; 32:1923-1933. [PMID: 39165088 PMCID: PMC11421971 DOI: 10.1002/oby.24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study aimed to identify whether cord blood DNA methylation at specific loci is associated with neonatal adiposity, a key risk factor for childhood obesity. METHODS An epigenome-wide association study was conducted using the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study as a discovery sample. Linear regression models adjusted for maternal and offspring covariates and cell counts were used to analyze associations between neonatal adiposity as measured by sum of three skinfold thicknesses and cord blood DNA methylation. Assays were performed with Illumina EPIC arrays (791,359 CpG sites after quality control). Replication was performed in an independent cohort, Genetics of Glucose regulation in Gestation and Growth (Gen3G). RESULTS In 2740 HAPO samples, significant associations were identified at 89 CpG sites after accounting for multiple testing (Bonferroni-adjusted p < 0.05). Replication analyses conducted in 139 Gen3G participants confirmed associations for seven CpG sites. These included IGF1R, which encodes a transmembrane receptor involved in cell growth and survival that binds insulin-like growth factor I and insulin, and KLF7, which encodes a regulator of cell proliferation and inhibitor of adipogenesis; both are key regulators of growth during fetal life. CONCLUSIONS These findings support epigenetic mechanisms in the developmental origins of neonatal adiposity and as potential biomarkers of metabolic disease risk.
Collapse
Affiliation(s)
- Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catherine Allard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Monica E Bianco
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - William Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School; Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
12
|
Yaskolka Meir A, Gutierrez MJ, Hong X, Wang G, Wang X, Liang L. Gestational DNA methylation age as a marker for fetal development and birth outcomes: findings from the Boston Birth Cohort. Clin Epigenetics 2024; 16:110. [PMID: 39164769 PMCID: PMC11334360 DOI: 10.1186/s13148-024-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gestational DNA methylation age (GAmAge) has been developed and validated in European ancestry samples. Its applicability to other ethnicities and associations with fetal stress and newborn phenotypes such as inflammation markers are still to be determined. This study aims to examine the applicability of GAmAge developed from cord blood samples of European decedents to a racially diverse birth cohort, and associations with newborn phenotypes. METHODS GAmAge based on 176 CpGs (Haftorn GAmAge) was calculated for 940 children from a US predominantly urban, low-income, multiethnic birth cohort. Cord blood DNA methylation was profiled by Illumina EPIC array. Newborn phenotypes included anthropometric measurements and, for a subset of newborns (N = 194), twenty-seven cord blood inflammatory markers (sandwich immunoassays). RESULTS GAmAge had a stronger correlation with GEAA in boys (r = 0.89, 95% confidence interval (CI) [0.87,0.91]) compared with girls (r = 0.83, 95% CI [0.80,0.86]), and was stronger among extremely preterm to very preterm babies (r = 0.91, 95% CI [0.81,0.96]), compared with moderate (r = 0.48, 95% CI [0.34,0.60]) and term babies (r = 0.58, 95% CI [0.53,0.63]). Among White newborns (N = 51), the correlation between GAmAge vs. GEAA was slightly stronger (r = 0.89, 95% CI [0.82,0.94]) compared with Black/African American newborns (N = 668; r = 0.87, 95% CI [0.85,0.89]) or Hispanic (N = 221; r = 0.79, 95% CI [0.74,0.84]). Adjusting for GEAA and sex, GAmAge was associated with anthropometric measurements, cord blood brain-derived neurotrophic factor (BDNF), and monocyte chemoattractant protein-1 (MCP-1) (p < 0.05 for all). CONCLUSIONS GAmAge estimation is robust across different populations and racial/ethnic subgroups. GAmAge may be utilized as a proxy for GEAA and for assessing fetus development, indicated by inflammatory state and birth outcomes.
Collapse
Affiliation(s)
- Anat Yaskolka Meir
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Maria Jimena Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On Early Life Origins of Disease, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Burden SJ, Alshehri R, Lamata P, Poston L, Taylor PD. Maternal obesity and offspring cardiovascular remodelling - the effect of preconception and antenatal lifestyle interventions: a systematic review. Int J Obes (Lond) 2024; 48:1045-1064. [PMID: 38898228 PMCID: PMC11281905 DOI: 10.1038/s41366-024-01536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Preconception or antenatal lifestyle interventions in women with obesity may prevent adverse cardiovascular outcomes in the child, including cardiac remodelling. We undertook a systematic review of the existing data to examine the impact of randomised controlled trials of lifestyle interventions in pregnant women with obesity on offspring cardiac remodelling and related parameters of cardiovascular health. METHODS This review was registered with PROSPERO (CRD42023454762) and aligns with PRISMA guidelines. PubMed, Embase, and previous reviews were systematically searched. Follow-up studies from randomised trials of lifestyle interventions in pregnant women with obesity, which included offspring cardiac remodelling or related cardiovascular parameters as outcome measures, were included based on pre-defined inclusion criteria. RESULTS Eight studies from five randomised controlled trials were included after screening 3252 articles. Interventions included antenatal exercise (n = 2), diet and physical activity (n = 2), and preconception diet and physical activity (n = 1). Children were <2-months to 3-7-years-old, with sample sizes ranging between n = 18-404. Reduced cardiac remodelling, with reduced interventricular septal wall thickness, was consistently reported. Some studies identified improved systolic and diastolic function and a reduced resting heart rate. Risk of bias analyses rated all studies as 'fair' (some risk of bias). A high loss-to-follow-up was a common limitation. CONCLUSION Although there is some evidence to suggest that lifestyle interventions in women with obesity may limit offspring cardiac remodelling, further high-quality longitudinal studies with larger sample sizes are required to confirm these observations and to determine whether these changes persist to adulthood. Child offspring cardiovascular health benefits of preconception and antenatal lifestyle interventions in women with obesity.
Collapse
Affiliation(s)
- Samuel J Burden
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK.
| | - Rahaf Alshehri
- Cardiovascular Medicine and Science Research, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Pablo Lamata
- Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| |
Collapse
|
14
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Saucedo R, Ferreira-Hermosillo A, Robledo-Clemente M, Díaz-Velázquez MF, Valencia-Ortega J. Association of DNA Methylation with Infant Birth Weight in Women with Gestational Diabetes. Metabolites 2024; 14:361. [PMID: 39057684 PMCID: PMC11278577 DOI: 10.3390/metabo14070361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Offspring exposed to gestational diabetes mellitus (GDM) exhibit greater adiposity at birth. This early-life phenotype may increase offspring risk of developing obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease later in life. Infants born to women with GDM have a dysregulation of several hormones, cytokines, and growth factors related to fetal fat mass growth. One of the molecular mechanisms of GDM influencing these factors is epigenetic alterations, such as DNA methylation (DNAm). This review will examine the role of DNAm as a potential biomarker for monitoring fetal growth during pregnancy in women with GDM. This information is relevant since it may provide useful new biomarkers for the diagnosis, prognosis, and treatment of fetal growth and its later-life health consequences.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Magalhi Robledo-Clemente
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico; (M.R.-C.); (M.F.D.-V.)
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
16
|
Foo RX, Ma JJ, Du R, Goh GBB, Chong YS, Zhang C, Li LJ. Gestational diabetes mellitus and development of intergenerational non-alcoholic fatty liver disease (NAFLD) after delivery: a systematic review and meta-analysis. EClinicalMedicine 2024; 72:102609. [PMID: 38707911 PMCID: PMC11067479 DOI: 10.1016/j.eclinm.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Background It is known that gestational diabetes mellitus (GDM)-complicated pregnancies could affect maternal cardiometabolic health after delivery, resulting in hepatic dysfunction and a heightened risk of developing non-alcoholic fatty liver disease (NAFLD). Hence, this study aims to summarise existing literature on the impact of GDM on NAFLD in mothers and investigate the intergenerational impact on NAFLD in offspring. Methods Using 4 databases (PubMed, Embase, Web of Science and Scopus) between January 1980 and December 2023, randomized controlled trials and observational studies that assessed the effect of maternal GDM on intergenerational liver outcomes were extracted and analysed using random-effects meta-analysis to investigate the effect of GDM on NAFLD in mothers and offspring. Pooled odds ratio (OR) was calculated using hazards ratio (HR), relative risk (RR), or OR reported from each study, with corresponding 95% confidence intervals (CI), and statistical heterogeneity was assessed with the Cochran Q-test and I2 statistic, with two-sided p values. The study protocol was pre-registered on PROSPERO (CRD42023392428). Findings Twenty studies pertaining to mothers and offspring met the inclusion criteria and 12 papers were included further for meta-analysis on intergenerational NAFLD development. Compared with mothers without a history of GDM, mothers with a history of GDM had a 50% increased risk of developing NAFLD (OR 1.50; 95% CI: 1.21-1.87, over a follow-up period of 16 months-25 years. Similarly, compared with offspring born to non-GDM-complicated pregnancies, offspring born to GDM-complicated pregnancies displayed an approximately two-fold elevated risk of NAFLD development (2.14; 1.57-2.92), over a follow-up period of 1-17.8 years. Interpretation This systematic review and meta-analysis suggests that both mothers and offspring from GDM-complicated pregnancies exhibit a greater risk to develop NAFLD. These findings underline the importance of early monitoring of liver function and prompt intervention of NAFLD in both generations from GDM-complicated pregnancies. Funding No funding was available for this research.
Collapse
Affiliation(s)
- Ru Xun Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jenny Junyi Ma
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruochen Du
- Statistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George Boon Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Yap Seng Chong
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cuilin Zhang
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
17
|
Smith HM, Ng HK, Moodie JE, Gadd DA, McCartney DL, Bernabeu E, Campbell A, Redmond P, Taylor A, Page D, Corley J, Harris SE, Tay D, Deary IJ, Evans KL, Robinson MR, Chambers JC, Loh M, Cox SR, Marioni RE, Hillary RF. Methylome-wide studies of six metabolic traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308103. [PMID: 38853823 PMCID: PMC11160850 DOI: 10.1101/2024.05.29.24308103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Exploring the molecular correlates of metabolic health measures may identify the shared and unique biological processes and pathways that they track. Here, we performed epigenome-wide association studies (EWASs) of six metabolic traits: body mass index (BMI), body fat percentage, waist-hip ratio (WHR), and blood-based measures of glucose, high-density lipoprotein (HDL) cholesterol, and total cholesterol. We considered blood-based DNA methylation (DNAm) from >750,000 CpG sites in over 17,000 volunteers from the Generation Scotland (GS) cohort. Linear regression analyses identified between 304 and 11,815 significant CpGs per trait at P<3.6×10-8, with 37 significant CpG sites across all six traits. Further, we performed a Bayesian EWAS that jointly models all CpGs simultaneously and conditionally on each other, as opposed to the marginal linear regression analyses. This identified between 3 and 27 CpGs with a posterior inclusion probability ≥ 0.95 across the six traits. Next, we used elastic net penalised regression to train epigenetic scores (EpiScores) of each trait in GS, which were then tested in the Lothian Birth Cohort 1936 (LBC1936; European ancestry) and Health for Life in Singapore (HELIOS; Indian-, Malay- and Chinese-ancestries). A maximum of 27.1% of the variance in BMI was explained by the BMI EpiScore in the subset of Malay-ancestry Singaporeans. Four metabolic EpiScores were associated with general cognitive function in LBC1936 in models adjusted for vascular risk factors (Standardised βrange: 0.08 - 0.12, PFDR < 0.05). EpiScores of metabolic health are applicable across ancestries and can reflect differences in brain health.
Collapse
Affiliation(s)
- Hannah M. Smith
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Joanna E. Moodie
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danni A. Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Paul Redmond
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Adele Taylor
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Danielle Page
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Janie Corley
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ian J. Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Robinson
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - John C. Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Salama OE, Hizon N, Del Vecchio M, Kolsun K, Fonseca MA, Lin DTS, Urtatiz O, MacIsaac JL, Kobor MS, Sellers EAC, Dolinsky VW, Dart AB, Jones MJ, Wicklow BA. DNA methylation signatures of youth-onset type 2 diabetes and exposure to maternal diabetes. Clin Epigenetics 2024; 16:65. [PMID: 38741114 DOI: 10.1186/s13148-024-01675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE Youth-onset type 2 diabetes (T2D) is physiologically distinct from adult-onset, but it is not clear how the two diseases differ at a molecular level. In utero exposure to maternal type 2 diabetes (T2D) is known to be a specific risk factor for youth-onset T2D. DNA methylation (DNAm) changes associated with T2D but which differ between youth- and adult-onset might delineate the impacts of T2D development at different ages and could also determine the contribution of exposure to in utero diabetes. METHODS We performed an epigenome-wide analysis of DNAm on whole blood from 218 youth with T2D and 77 normoglycemic controls from the iCARE (improving renal Complications in Adolescents with type 2 diabetes through REsearch) cohort. Associations were tested using multiple linear regression models while adjusting for maternal diabetes, sex, age, BMI, smoking status, second-hand smoking exposure, cell-type proportions and genetic ancestry. RESULTS We identified 3830 differentially methylated sites associated with youth T2D onset, of which 3794 were moderately (adjusted p-value < 0.05 and effect size estimate > 0.01) associated and 36 were strongly (adjusted p-value < 0.05 and effect size estimate > 0.05) associated. A total of 3725 of these sites were not previously reported in the EWAS Atlas as associated with T2D, adult obesity or youth obesity. Moreover, three CpGs associated with youth-onset T2D in the PFKFB3 gene were also associated with maternal T2D exposure (FDR < 0.05 and effect size > 0.01). This is the first study to link PFKFB3 and T2D in youth. CONCLUSION Our findings support that T2D in youth has different impacts on DNAm than adult-onset, and suggests that changes in DNAm could provide an important link between in utero exposure to maternal diabetes and the onset of T2D.
Collapse
Affiliation(s)
- Ola E Salama
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Melissa Del Vecchio
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Kurt Kolsun
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mario A Fonseca
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - David T S Lin
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Oscar Urtatiz
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
- Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A C Sellers
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Allison B Dart
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
| | - Brandy A Wicklow
- Diabetes Research Envision and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Peng LH, Tan Y, Bajinka O. The influence of maternal diet on offspring's gut microbiota in early life. Arch Gynecol Obstet 2024; 309:1183-1190. [PMID: 38057588 DOI: 10.1007/s00404-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Li-Hua Peng
- Department of Physiology, Hunan Yongzhou Vocational Technical College, Yongzhou, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- School of Medicine and Allied Health Sciences, University of The Gambia, Serrekunda, Gambia.
| |
Collapse
|
20
|
Benincasa G, Napoli C, DeMeo DL. Transgenerational Epigenetic Inheritance of Cardiovascular Diseases: A Network Medicine Perspective. Matern Child Health J 2024; 28:617-630. [PMID: 38409452 DOI: 10.1007/s10995-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/28/2024]
Abstract
INTRODUCTION The ability to identify early epigenetic signatures underlying the inheritance of cardiovascular risk, including trans- and intergenerational effects, may help to stratify people before cardiac symptoms occur. METHODS Prospective and retrospective cohorts and case-control studies focusing on DNA methylation and maternal/paternal effects were searched in Pubmed from 1997 to 2023 by using the following keywords: DNA methylation, genomic imprinting, and network analysis in combination with transgenerational/intergenerational effects. RESULTS Maternal and paternal exposures to traditional cardiovascular risk factors during critical temporal windows, including the preconceptional period or early pregnancy, may perturb the plasticity of the epigenome (mainly DNA methylation) of the developing fetus especially at imprinted loci, such as the insulin-like growth factor type 2 (IGF2) gene. Thus, the epigenome is akin to a "molecular archive" able to memorize parental environmental insults and predispose an individual to cardiovascular diseases onset in later life. Direct evidence for human transgenerational epigenetic inheritance (at least three generations) of cardiovascular risk is lacking but it is supported by epidemiological studies. Several blood-based association studies showed potential intergenerational epigenetic effects (single-generation studies) which may mediate the transmittance of cardiovascular risk from parents to offspring. DISCUSSION In this narrative review, we discuss some relevant examples of trans- and intergenerational epigenetic associations with cardiovascular risk. In our perspective, we propose three network-oriented approaches which may help to clarify the unsolved issues regarding transgenerational epigenetic inheritance of cardiovascular risk and provide potential early biomarkers for primary prevention.
Collapse
Affiliation(s)
- Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Meza-León A, Montoya-Estrada A, Reyes-Muñoz E, Romo-Yáñez J. Diabetes Mellitus and Pregnancy: An Insight into the Effects on the Epigenome. Biomedicines 2024; 12:351. [PMID: 38397953 PMCID: PMC10886464 DOI: 10.3390/biomedicines12020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, diabetes mellitus represents a growing health problem. If it occurs during pregnancy, it can increase the risk of various abnormalities in early and advanced life stages of exposed individuals due to fetal programming occurring in utero. Studies have determined that maternal conditions interfere with the genotypes and phenotypes of offspring. Researchers are now uncovering the mechanisms by which epigenetic alterations caused by diabetes affect the expression of genes and, therefore, the development of various diseases. Among the numerous possible epigenetic changes in this regard, the most studied to date are DNA methylation and hydroxymethylation, as well as histone acetylation and methylation. This review article addresses critical findings in epigenetic studies involving diabetes mellitus, including variations reported in the expression of specific genes and their transgenerational effects.
Collapse
Affiliation(s)
| | | | | | - José Romo-Yáñez
- Coordinación de Endocrinología Ginecológica y Perinatal, Instituto Nacional de Perinatología, Montes Urales 800, Lomas Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
22
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
24
|
Bečeheli I, Horvatiček M, Perić M, Nikolić B, Holuka C, Klasić M, Ivanišević M, Starčević M, Desoye G, Hranilović D, Turner JD, Štefulj J. Methylation of serotonin regulating genes in cord blood cells: association with maternal metabolic parameters and correlation with methylation in peripheral blood cells during childhood and adolescence. Clin Epigenetics 2024; 16:4. [PMID: 38172913 PMCID: PMC10765867 DOI: 10.1186/s13148-023-01610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) signaling is involved in neurodevelopment, mood regulation, energy metabolism, and other physiological processes. DNA methylation plays a significant role in modulating the expression of genes responsible for maintaining 5-HT balance, such as 5-HT transporter (SLC6A4), monoamine oxidase A (MAOA), and 5-HT receptor type 2A (HTR2A). Maternal metabolic health can influence long-term outcomes in offspring, with DNA methylation mediating these effects. We investigated associations between maternal metabolic parameters-pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), and glucose tolerance status (GTS), i.e., gestational diabetes mellitus (GDM) versus normal glucose tolerance (NGT)-and cord blood methylation of SLC6A4, MAOA, and HTR2A in participants from our PlaNS birth cohort. CpG sites (15, 9, and 2 in each gene, respectively) were selected based on literature and in silico data. Methylation levels were quantified by bisulfite pyrosequencing. We also examined the stability of methylation patterns in these genes in circulating blood cells from birth to adolescence using longitudinal DNA methylation data from the ARIES database. RESULTS None of the 203 PlaNS mothers included in this study had preexisting diabetes, 99 were diagnosed with GDM, and 104 had NGT; all neonates were born at full term by planned Cesarean section. Methylation at most CpG sites differed between male and female newborns. SLC6A4 methylation correlated inversely with maternal pBMI and GWG, while methylation at HTR2A site -1665 correlated positively with GWG. None of the maternal metabolic parameters statistically associated with MAOA methylation. DNA methylation data in cord blood and peripheral blood at ages 7 and 15 years were available for 808 participants from the ARIES database; 4 CpG sites (2 in SLC6A4 and 2 in HTR2A) overlapped between the PlaNS and ARIES cohorts. A positive correlation between methylation levels in cord blood and peripheral blood at 7 and 15 years of age was observed for both SLC6A4 and HTR2A CpG sites. CONCLUSIONS Methylation of 5-HT regulating genes in cord blood cells is influenced by neonatal sex, with maternal metabolism playing an additional role. Inter-individual variations present in circulating blood cells at birth are still pronounced in childhood and adolescence.
Collapse
Affiliation(s)
- Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, 4365, Belval, Luxembourg
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marina Ivanišević
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Mirta Starčević
- Department of Neonatology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036, Graz, Austria
| | - Dubravka Hranilović
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
- University Department of Psychology, Catholic University of Croatia, 10000, Zagreb, Croatia.
| |
Collapse
|
25
|
Deng Y, Xu W, Ni M, Sun X, Wang X, Zhang T, Pan F. DNA methylation and expression of LGR6 gene in ankylosing spondylitis: A case-control study. Hum Immunol 2023; 84:110719. [PMID: 37802707 DOI: 10.1016/j.humimm.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE The objectives of the present research were to ascertain the relationship of Leucine-Rich Repeat-Containing G-Protein Coupled Receptors 6 (LGR6) methylation and transcript levels with ankylosing spondylitis (AS). METHODS Targeted bisulfite sequencing was applied to analyze LGR6 DNA methylation in 81 AS cases and 81 controls. Besides, the LGR6 transcription level of peripheral blood mononuclear cells (PBMCs) from 70 AS cases and 64 controls was measured utilizing quantitative real-time transcription-polymerase chain reaction (qRT-PCR). RESULTS The study detected the methylation levels of 43 sites in two CpG (cytosine-guanine dinucleotide) islands of LGR6 and found that LGR6 were significantly hypomethylated in AS patients (LGR6_1: P = 0.002; LGR6_2: P < 0.001). LGR6 transcript level was obviously reduced in AS (P = 0.001) and was positively related to DNA methylation level (CpG-1: P = 0.010; CpG-2: P = 0.007). Besides, the Receiver operating characteristic curve (ROC) exhibited good diagnostic performance of LGR6 methylation level (AUC = 0.676, 95% CI = 0.594-0.758, P < 0.001). Further subgroup analysis revealed that gender may affect the LGR6_1 methylation pattern. CONCLUSION The present study revealed that LGR6 DNA methylation dysregulation may be involved in the pathogenesis of AS from an epigenetic perspective for the first time, with the aim of providing new directions for biomarker identification and treatment development for AS patients.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
26
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
27
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
28
|
Liu HY, Qin S, Zhang Z, Qi J, Zhang W, Liu SM, Zhang Y. Associations of MTHFR Polymorphisms and Cytosine Modifications with Early-Gestational Diabetes Mellitus in Chinese Pregnant Women. Reprod Sci 2023; 30:2973-2982. [PMID: 37154866 DOI: 10.1007/s43032-023-01247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Early-Gestational Diabetes Mellitus (Early-GDM) is a complex condition that may cause complications in infants of affected mothers. The aim of this case-control study was to analyze the effects of genetic-epigenetic interaction on Early-GDM and fetal development with respect to cytosine modifications (i.e., 5mC, 5-methylcytosines; and 5hmC, 5-hydroxymethylcytosines) and single nucleotide polymorphisms (SNPs) of MTHFR, a key gene involving cytosine modifications. Peripheral blood samples were collected from 92 women in their first or second trimester of pregnancy (Early-GDM, n = 14; Controls, n = 78). Global DNA 5mC and 5hmC were quantified by HPLC-MS/MS, and MTHFR SNPs (rs1801133 C > T and rs1801131 A > C) were determined by TaqMan-qPCR. Association analysis suggested that MTHFR rs1801133 TT genotype was a risk factor of Early-GDM (OR [odds ratio] = 4.00; 95% CI [confidence interval]: 1.24, 12.86; p = 0.02). The C allele of rs1801131 appeared to be a protective factor for the 2-h OGTT (oral glucose tolerance test) (OR = -0.79; 95% CI: -1.48, -0.10; p = 0.03). Patients with Early-GDM had higher global 5mC and lower global 5hmC. The reduction of global 5hmC and the TT genotype of rs1801133 were associated with higher level of the 1st-FBG (fasting blood glucose in the first trimester) (p < 0.05). Additionally, global 5mC showed a positive correlation with birth weight, body length and head circumference of newborns, while global 5hmC showed a negative correlation with birth weight. The current study implicated MTHFR SNPs and cytosine modifications in the development of Early-GDM and potential complications in their newborns.
Collapse
Affiliation(s)
- Huan-Yu Liu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jiahui Qi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Song-Mei Liu
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, 430071, China.
| |
Collapse
|
29
|
Radhakrishna U, Ratnamala U, Jhala DD, Uppala LV, Vedangi A, Patel M, Vadsaria N, Shah S, Saiyed N, Rawal RM, Mercuri SR, Jemec GBE, Damiani G. Hidradenitis suppurativa presents a methylome dysregulation capable to explain the pro-inflammatory microenvironment: Are these DNA methylations potential therapeutic targets? J Eur Acad Dermatol Venereol 2023; 37:2109-2123. [PMID: 37338327 DOI: 10.1111/jdv.19286] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic, systemic, inflammatory skin condition with elusive pathogenesis that affects therapeutic intervention directly. OBJECTIVE To characterize epigenetic variations in cytokines genes contributing to HS. METHODS Epigenome-wide DNA methylation profiling with the Illumina Epic array was performed on blood DNA samples from 24 HS patients and 24 age- and sex-matched controls to explore DNA methylation changes in cytokine genes. RESULTS We identified 170 cytokine genes including 27 hypermethylated CpG sites and 143 genes with hypomethylated sites respectively. Hypermethylated genes, including LIF, HLA-DRB1, HLA-G, MTOR, FADD, TGFB3, MALAT1 and CCL28; hypomethylated genes, including NCSTN, SMAD3, IGF1R, IL1F9, NOD2, NOD1, YY1, DLL1 and BCL2 may contribute to the pathogenesis of HS. These genes were enriched in the 117 different pathways (FDR p-values ≤ 0.05), including IL-4/IL-13 pathways and Wnt/β-catenin signalling. CONCLUSIONS The lack of wound healing, microbiome dysbiosis and increased tumour susceptibility are all sustained by these dysfunctional methylomes, hopefully, capable to be targeted in the next future. Since methylome describes and summarizes genetic and environmental contributions, these data may represent a further step towards a feasible precision medicine also for HS patients.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynaecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Uppala Ratnamala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Devendrasinh D Jhala
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, India
| | - Lavanya V Uppala
- College of Information Science & Technology, The University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, Nebraska, USA
| | - Aaren Vedangi
- Department of Clinical Research, KIMS ICON Hospital, A Unit of ICON Krishi Institute Medical Sciences, Visakhapatnam, India
| | | | | | - Sushma Shah
- Department of Obstetrics and Gynaecology, B.J. Medical College, Ahmedabad, India
| | - Nazia Saiyed
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M Rawal
- College of Information Science & Technology, The University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, Nebraska, USA
| | - Santo Raffaele Mercuri
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Milan, Italy
- Italian Center of Precisione Medicine and Chronic Inflammation, Milan, Italy
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
| | - Giovanni Damiani
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Milan, Italy
- Italian Center of Precisione Medicine and Chronic Inflammation, Milan, Italy
- Clinical Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
- Young Dermatologists Italian Network, Milan, Italy
| |
Collapse
|
30
|
Nguyen G, Boath A, Heslehurst N. Addressing inequalities and improving maternal and infant outcomes: the potential power of nutritional interventions across the reproductive cycle. Proc Nutr Soc 2023; 82:241-252. [PMID: 36727523 DOI: 10.1017/s002966512300006x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Maternal nutrition is essential for optimal health and well-being of women and their infants. This review aims to provide a critical overview of the evidence-base relating to maternal weight, obesity-related health inequalities and dietary interventions encompassing the reproductive cycle: preconception, pregnancy, postnatal and interpregnancy. We provide an overview of UK data showing that overweight and obesity affects half of UK pregnancies, with increased prevalence among more deprived and minoritised ethnic populations, and with significant health and cost implications. The existing intervention evidence-base primarily focuses on the pregnancy period, where extensive evidence demonstrates the power of interventions to improve maternal diet behaviours, and minimise gestational weight gain and postnatal weight retention. There is a lack of consistency in the intervention evidence-base relating to interventions improving pregnancy health outcomes, although there is evidence of the potential power of the Mediterranean and low glycaemic index diets in improving short- and long-term health of women and their infants. Postnatal interventions focus on weight loss, with some evidence of cost-effectiveness. There is an evidence gap for preconception and interpregnancy interventions. We conclude by identifying that interventions do not address cumulative maternal obesity inequalities and overly focus on individual behaviour change. There is a lack of a joined-up approach for interventions throughout the entire reproductive cycle, with a current focus on specific stages (i.e. pregnancy) in isolation. Moving forward, the potential power of nutritional interventions using a more holistic approach across the different reproductive stages is needed to maximise the benefits on health for women and children.
Collapse
Affiliation(s)
- Giang Nguyen
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Anna Boath
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Nicola Heslehurst
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Baddiley Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
31
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
33
|
Gorzkiewicz M, Łoś-Rycharska E, Gawryjołek J, Gołębiewski M, Krogulska A, Grzybowski T. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between Polish infants with the food allergy and/or atopic dermatitis and without the disease. Front Immunol 2023; 14:1209190. [PMID: 37520545 PMCID: PMC10373304 DOI: 10.3389/fimmu.2023.1209190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives Epigenetic dynamics has been indicated to play a role in allergy development. The environmental stimuli have been shown to influence the methylation processes. This study investigated the differences in CpGs methylation rate of immune-attached genes between healthy and allergic infants. The research was aimed at finding evidence for the impact of environmental factors on methylation-based regulation of immunological processes in early childhood. Methods The analysis of methylation level of CpGs in the IL4, IL5, IL10, IFNG and FOXP3 genes was performed using high resolution melt real time PCR technology. DNA was isolated from whole blood of Polish healthy and allergic infants, with food allergy and/or atopic dermatitis, aged under six months. Results The significantly lower methylation level of FOXP3 among allergic infants compared to healthy ones was reported. Additional differences in methylation rates were found, when combining with environmental factors. In different studied groups, negative correlations between age and the IL10 and FOXP3 methylation were detected, and positive - in the case of IL4. Among infants with different allergy symptoms, the decrease in methylation level of IFNG, IL10, IL4 and FOXP3 associated with passive smoke exposure was observed. Complications during pregnancy were linked to different pattern of the IFNG, IL5, IL4 and IL10 methylation depending on allergy status. The IFNG and IL5 methylation rates were higher among exclusively breastfed infants with atopic dermatitis compared to the non-breastfed. A decrease in the IFNG methylation was noted among allergic patients fed exclusively with milk formula. In different study groups, a negative correlation between IFNG, IL5 methylation and maternal BMI or IL5 methylation and weight was noted. Some positive correlations between methylation rate of IL10 and child's weight were found. A higher methylation of IL4 was positively correlated with the number of family members with allergy. Conclusion The FOXP3 methylation in allergic infants was lower than in the healthy ones. The methylation profile of IL4, IL5, IL10, IFNG and FOXP3 associated with environmental exposures differed between the studied groups. The results offer insights into epigenetic regulation of immunological response in early childhood.
Collapse
Affiliation(s)
- Marta Gorzkiewicz
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ewa Łoś-Rycharska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Julia Gawryjołek
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aneta Krogulska
- Department of Pediatrics, Allergology and Gastroenterology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Tomasz Grzybowski
- Department of Forensic Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
34
|
Strobel KM, Juul SE, Hendrixson DT. Maternal Nutritional Status and the Microbiome across the Pregnancy and the Post-Partum Period. Microorganisms 2023; 11:1569. [PMID: 37375071 DOI: 10.3390/microorganisms11061569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Appropriate nutrition during pregnancy and the post-partum period is vital for both the mothers and their offspring. Both under- and over-nourished status may have important microbial implications on the maternal and infant gut microbiomes. Alterations in the microbiome can have implications for a person's risk of obesity and metabolic diseases. In this review, we examine alterations in the maternal gut, vaginal, placental, and milk microbiomes in the context of pre-pregnancy BMI, gestational weight gain, body composition, gestational diabetes, and maternal diet. We also investigate how the infant gut microbiome may be altered by these different parameters. Many of the microbial changes seen in under- and over-nourished states in birthing parents may result in long-term implications for the health of offspring. Differences in diet appear to be a major driver of the maternal and subsequently milk and offspring microbiomes. Further prospective longitudinal cohort studies are needed to examine nutrition and the microbiome to better understand its implications. Additionally, trials involving dietary interventions in child-bearing age adults should be explored to improve the mother and child's risks for metabolic diseases.
Collapse
Affiliation(s)
- Katie M Strobel
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Sandra E Juul
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - David Taylor Hendrixson
- Department of Pediatrics, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
35
|
Wang G, Xu R, Zhang B, Hong X, Bartell TR, Pearson C, Liang L, Wang X. Impact of intrauterine exposure to maternal diabetes on preterm birth: fetal DNA methylation alteration is an important mediator. Clin Epigenetics 2023; 15:59. [PMID: 37029435 PMCID: PMC10082529 DOI: 10.1186/s13148-023-01473-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND In utero exposure to diabetes has been shown to contribute to preterm birth, though the underlying biological mechanisms are yet to be fully elucidated. Fetal epigenetic variations established in utero may be a possible pathway. This study aimed to investigate whether in utero exposure to diabetes was associated with a change in newborn DNA methylation, and whether the identified CpG sites mediate the association between diabetes and preterm birth in a racially diverse birth cohort population. METHODS This study included 954 mother-newborn pairs. Methylation levels in the cord blood were determined using the Illumina Infinium MethylationEPIC BeadChip 850 K array platform. In utero exposure to diabetes was defined by the presence of maternal pregestational or gestational diabetes. Preterm birth was defined as gestational age at birth less than 37 weeks. Linear regression analysis was employed to identify differentially methylated CpG sites. Differentially methylated regions were identified using the DMRcate Package. RESULTS 126 (13%) newborns were born to mothers with diabetes in pregnancy and 173 (18%) newborns were born preterm, while 41 newborns were born both preterm and to mothers with diabetes in pregnancy. Genomic-wide CpG analysis found that eighteen CpG sites in cord blood were differentially methylated by maternal diabetes status at an FDR threshold of 5%. These significant CpG sites were mapped to 12 known genes, one of which was annotated to gene Major Histocompatibility Complex, Class II, DM Beta (HLA-DMB). Consistently, one of the two identified significant methylated regions overlapped with HLA-DMB. The identified differentially methylated CpG sites mediated the association between diabetes in pregnancy and preterm birth by 61%. CONCLUSIONS In this US birth cohort, we found that maternal diabetes was associated with altered fetal DNA methylation patterns, which substantially explained the link between diabetes and preterm birth.
Collapse
Affiliation(s)
- Guoying Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Boyang Zhang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - Tami R Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaobin Wang
- Center on Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Hao L, Zhang J, Liu Z, Lin X, Guo J. Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Front Oncol 2023; 13:1145766. [PMID: 37007137 PMCID: PMC10063963 DOI: 10.3389/fonc.2023.1145766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Biomolecular modifications play an important role in the development of life, and previous studies have investigated the role of DNA and proteins. In the last decade, with the development of sequencing technology, the veil of epitranscriptomics has been gradually lifted. Transcriptomics focuses on RNA modifications that affect gene expression at the transcriptional level. With further research, scientists have found that changes in RNA modification proteins are closely linked to cancer tumorigenesis, progression, metastasis, and drug resistance. Cancer stem cells (CSCs) are considered powerful drivers of tumorigenesis and key factors for therapeutic resistance. In this article, we focus on describing RNA modifications associated with CSCs and summarize the associated research progress. The aim of this review is to identify new directions for cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Linlin Hao
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongshan Liu
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xia Lin
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jie Guo
- Department of Tumor Radiotherapy, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Jie Guo,
| |
Collapse
|
37
|
Fragoso-Bargas N, Elliott HR, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Drevon CA, Qvigstad E, Moen GH, Birkeland KI, Prasad RB, Sommer C. Cross-Ancestry DNA Methylation Marks of Insulin Resistance in Pregnancy: An Integrative Epigenome-Wide Association Study. Diabetes 2023; 72:415-426. [PMID: 36534481 PMCID: PMC9935495 DOI: 10.2337/db22-0504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Although there are some epigenome-wide association studies (EWAS) of insulin resistance, for most of them authors did not replicate their findings, and most are focused on populations of European ancestry, limiting the generalizability. In the Epigenetics in Pregnancy (EPIPREG; n = 294 Europeans and 162 South Asians) study, we conducted an EWAS of insulin resistance in maternal peripheral blood leukocytes, with replication in the Born in Bradford (n = 879; n = 430 Europeans and 449 South Asians), Methyl Epigenome Network Association (MENA) (n = 320), and Botnia (n = 56) cohorts. In EPIPREG, we identified six CpG sites inversely associated with insulin resistance across ancestry, of which five were replicated in independent cohorts (cg02988288, cg19693031, and cg26974062 in TXNIP; cg06690548 in SLC7A11; and cg04861640 in ZSCAN26). From methylation quantitative trait loci analysis in EPIPREG, we identified gene variants related to all five replicated cross-ancestry CpG sites, which were associated with several cardiometabolic phenotypes. Mediation analyses suggested that the gene variants regulate insulin resistance through DNA methylation. To conclude, our cross-ancestry EWAS identified five CpG sites related to lower insulin resistance.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia O. Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd. Analytical Services, Oslo Science Park, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rashmi B. Prasad
- Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Wu Y, Zeng Y, Zhang Q, Xiao X. The Role of Maternal Vitamin D Deficiency in Offspring Obesity: A Narrative Review. Nutrients 2023; 15:nu15030533. [PMID: 36771240 PMCID: PMC9919568 DOI: 10.3390/nu15030533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, vitamin D (VD) deficiency during pregnancy is widespread globally, causing unfavorable pregnancy outcomes for both mothers and infants for a longer time than expected, based on the Developmental Origins of Health and Disease (DOHaD) theory. As VD plays a key role in maintaining normal glucose and lipid metabolism, maternal VD deficiency may lead to obesity and other obesity-related diseases among offspring later in life. This review mainly focuses on the effect of maternal VD deficiency on offspring lipid metabolism, reviewing previous clinical and animal studies to determine the effects of maternal VD deficit on offspring obesity and potential mechanisms involved in the progression of offspring obesity. Emerging clinical evidence shows that a low VD level may lead to abnormal growth (either growth restriction or largeness for gestational age) and lipid and glucose metabolism disorders in offspring. Here, we also outline the link between maternal VD deficiency and life-long offspring effects, including the disorder of adipogenesis, the secretion of adipocytokines (including leptin, resistin, and adiponectin), activated systemic inflammation, increased oxidative reactions in adipose tissue, insulin resistance, and abnormal intestinal gut microbiota. Thus, there is an urgent need to take active steps to address maternal VD deficiency to relieve the global burden of obesity.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Q.Z.); (X.X.); Tel./Fax: +86-10-69155073 (Q.Z. & X.X.)
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, The Translational Medicine Center of Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Correspondence: (Q.Z.); (X.X.); Tel./Fax: +86-10-69155073 (Q.Z. & X.X.)
| |
Collapse
|
39
|
Lecorguillé M, McAuliffe FM, Twomey PJ, Viljoen K, Mehegan J, Kelleher CC, Suderman M, Phillips CM. Maternal Glycaemic and Insulinemic Status and Newborn DNA Methylation: Findings in Women With Overweight and Obesity. J Clin Endocrinol Metab 2022; 108:85-98. [PMID: 36137169 PMCID: PMC9759168 DOI: 10.1210/clinem/dgac553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/26/2022] [Indexed: 11/07/2022]
Abstract
CONTEXT Maternal dysglycaemia and prepregnancy obesity are associated with adverse offspring outcomes. Epigenetic mechanisms such as DNA methylation (DNAm) could contribute. OBJECTIVE To examine relationships between maternal glycaemia, insulinemic status, and dietary glycemic indices during pregnancy and an antenatal behavioral-lifestyle intervention with newborn DNAm. METHODS We investigated 172 women from a randomized controlled trial of a lifestyle intervention in pregnant women who were overweight or obese. Fasting glucose and insulin concentrations and derived indices of insulin resistance (HOMA-IR), β-cell function (HOMA-%B), and insulin sensitivity were determined at baseline (15) and 28 weeks' gestation. Dietary glycemic load (GL) and index (GI) were calculated from 3-day food diaries. Newborn cord blood DNAm levels of 850K CpG sites were measured using the Illumina Infinium HumanMethylationEPIC array. Associations of each biomarker, dietary index and intervention with DNAm were examined. RESULTS Early pregnancy HOMA-IR and HOMA-%B were associated with lower DNAm at CpG sites cg03158092 and cg05985988, respectively. Early pregnancy insulin sensitivity was associated with higher DNAm at cg04976151. Higher late pregnancy insulin concentrations and GL scores were positively associated with DNAm at CpGs cg12082129 and cg11955198 and changes in maternal GI with lower DNAm at CpG cg03403995 (Bonferroni corrected P < 5.99 × 10-8). These later associations were located at genes previously implicated in growth or regulation of insulin processes. No effects of the intervention on cord blood DNAm were observed. None of our findings were replicated in previous studies. CONCLUSION Among women who were overweight or obese, maternal pregnancy dietary glycemic indices, glucose, and insulin homeostasis were associated with modest changes in their newborn methylome. TRIAL REGISTRATION ISRCTN29316280.
Collapse
Affiliation(s)
- Marion Lecorguillé
- Correspondence: Marion Lecorguillé, PhD, School of Public Health, Physiotherapy and Sports Science, Woodview House, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Patrick J Twomey
- School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Karien Viljoen
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - John Mehegan
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | - Cecily C Kelleher
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin 4, Republic of Ireland
| | | | | |
Collapse
|
40
|
Teoh CM, Cooper A, Renteria KM, Lane M, Zhu J, Koh GY. Supplementation of Methyl-Donor Nutrients to a High-Fat, High-Sucrose Diet during Pregnancy and Lactation Normalizes Circulating 25-Dihydroxycholecalciferol Levels and Alleviates Inflammation in Offspring. Metabolites 2022; 12:metabo12121252. [PMID: 36557290 PMCID: PMC9783000 DOI: 10.3390/metabo12121252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
A Western-style diet that is high in fat and sucrose has been shown to alter DNA methylation and epigenetically modify genes related to health risk in offspring. Here, we investigated the effect of a methyl-donor nutrient (MS) supplemented to a high-fat, high-sucrose (HFS) diet during pregnancy and lactation on vitamin D (VD) status and inflammatory response in offspring. After mating, 10-week-old female Sprague-Dawley (SD) rats (n = 10/group) were randomly assigned to one of the four dietary groups during pregnancy and lactation: (1) control diet (CON), (2) CON with MS (CON-MS), (3) HFS, and (4) HFS with MS (HFS-MS). Weanling offspring (three weeks old) were euthanized and sacrificed (n = 8-10/sex/group). The remaining offspring (n = 10/sex/group) were randomly assigned to either a CON or an HFS diet for 12 weeks and sacrificed at 15 weeks of age. Our results indicated that prenatal MS supplementation, but not postnatal diet, restored low vitamin D status and suppressed elevation of proinflammatory cytokine induced by maternal HFS in the offspring. Furthermore, both prenatal and postnatal diets modulated the abundance of Lactobacillus spp. and Bacteroides spp. in the offspring, a shift that was independent of vitamin D status. Collectively, our data support a role for MS in restoring the perturbation of VD status and normalizing maternal HFS-induced inflammation in the offspring. Further investigation is warranted to elucidate the methylation status of VD metabolism-related pathways in the offspring, as well as the immunomodulatory role of vitamin D during the progression of obesity.
Collapse
|
41
|
Schrott R, Song A, Ladd-Acosta C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Environ Health Rep 2022; 9:604-624. [PMID: 35907133 DOI: 10.1007/s40572-022-00373-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments. RECENT FINDINGS Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers. Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.
Collapse
Affiliation(s)
- Rose Schrott
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
42
|
Bowler S, Papoutsoglou G, Karanikas A, Tsamardinos I, Corley MJ, Ndhlovu LC. A machine learning approach utilizing DNA methylation as an accurate classifier of COVID-19 disease severity. Sci Rep 2022; 12:17480. [PMID: 36261477 PMCID: PMC9580434 DOI: 10.1038/s41598-022-22201-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Since the onset of the COVID-19 pandemic, increasing cases with variable outcomes continue globally because of variants and despite vaccines and therapies. There is a need to identify at-risk individuals early that would benefit from timely medical interventions. DNA methylation provides an opportunity to identify an epigenetic signature of individuals at increased risk. We utilized machine learning to identify DNA methylation signatures of COVID-19 disease from data available through NCBI Gene Expression Omnibus. A training cohort of 460 individuals (164 COVID-19-infected and 296 non-infected) and an external validation dataset of 128 individuals (102 COVID-19-infected and 26 non-COVID-associated pneumonia) were reanalyzed. Data was processed using ChAMP and beta values were logit transformed. The JADBio AutoML platform was leveraged to identify a methylation signature associated with severe COVID-19 disease. We identified a random forest classification model from 4 unique methylation sites with the power to discern individuals with severe COVID-19 disease. The average area under the curve of receiver operator characteristic (AUC-ROC) of the model was 0.933 and the average area under the precision-recall curve (AUC-PRC) was 0.965. When applied to our external validation, this model produced an AUC-ROC of 0.898 and an AUC-PRC of 0.864. These results further our understanding of the utility of DNA methylation in COVID-19 disease pathology and serve as a platform to inform future COVID-19 related studies.
Collapse
Affiliation(s)
- Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA
| | - Georgios Papoutsoglou
- JADBio - Gnosis DA S.A, Science and Technology Park of Crete, 70013, Heraklion, Greece
| | - Aristides Karanikas
- JADBio - Gnosis DA S.A, Science and Technology Park of Crete, 70013, Heraklion, Greece
| | - Ioannis Tsamardinos
- JADBio - Gnosis DA S.A, Science and Technology Park of Crete, 70013, Heraklion, Greece
- Department of Computer Science, University of Crete, 70013, Heraklion, Greece
| | - Michael J Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St, New York, NY, 10021, USA.
| |
Collapse
|
43
|
Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change - a tool for precision medicine? Nat Rev Endocrinol 2022; 18:433-448. [PMID: 35513492 DOI: 10.1038/s41574-022-00671-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Pioneering studies performed over the past few decades demonstrate links between epigenetics and type 2 diabetes mellitus (T2DM), the metabolic disorder with the most rapidly increasing prevalence in the world. Importantly, these studies identified epigenetic modifications, including altered DNA methylation, in pancreatic islets, adipose tissue, skeletal muscle and the liver from individuals with T2DM. As non-genetic factors that affect the risk of T2DM, such as obesity, unhealthy diet, physical inactivity, ageing and the intrauterine environment, have been associated with epigenetic modifications in healthy individuals, epigenetics probably also contributes to T2DM development. In addition, genetic factors associated with T2DM and obesity affect the epigenome in human tissues. Notably, causal mediation analyses found DNA methylation to be a potential mediator of genetic associations with metabolic traits and disease. In the past few years, translational studies have identified blood-based epigenetic markers that might be further developed and used for precision medicine to help patients with T2DM receive optimal therapy and to identify patients at risk of complications. This Review focuses on epigenetic mechanisms in the development of T2DM and the regulation of body weight in humans, with a special focus on precision medicine.
Collapse
Affiliation(s)
- Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
44
|
Qi L. Nutrition for precision health: The time is now. Obesity (Silver Spring) 2022; 30:1335-1344. [PMID: 35785484 DOI: 10.1002/oby.23448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Precision nutrition has emerged as a boiling area of nutrition research, with a particular focus on revealing the individual variability in response to diets that is determined mainly by the complex interactions of dietary factors with the multi-tiered "omics" makeups. Reproducible findings from the observational studies and diet intervention trials have lent preliminary but consistent evidence to support the fundamental role of gene-diet interactions in determining the individual variability in health outcomes including obesity and weight loss. Recent investigations suggest that the abundance and diversity of the gut microbiome may also modify the dietary effects; however, considerable instability in the results from the microbiome research has been noted. In addition, growing studies suggest that a complicated multiomics algorithm would be developed by incorporating the genome, epigenome, metabolome, proteome, and microbiome in predicting the individual variability in response to diets. Moreover, precision nutrition would also scrutinize the role of biological (circadian) rhythm in determining the individual variability of dietary effects. The evidence gathered from precision nutrition research will be the basis for constructing precision health dietary recommendations, which hold great promise to help individuals and their health care providers create precise and effective diet plans for precision health in the future.
Collapse
Affiliation(s)
- Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, Relton CL. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 2022; 23:369-383. [PMID: 35304597 DOI: 10.1038/s41576-022-00465-w] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.
Collapse
Affiliation(s)
- Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Oliver Whitehurst
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW To review recent evidence linking maternal body mass index and gestational diabetes mellitus (GDM) with offspring health outcomes. RECENT FINDINGS It is now established that the rising prevalences of maternal obesity and GDM are both making substantial contributions to the growing burden of childhood obesity and associated disorders. Strengthening evidence also links maternal obesity with increased offspring risks of cardiovascular disease, nonalcoholic fatty liver disease, lower respiratory tract infections during infancy, wheezing illnesses, asthma and attention deficit hyperactivity disorder during childhood, and with higher risks of psychiatric disorders and colorectal cancer in adulthood. GDM has been associated with increased offspring risks of cardiovascular disease, childhood wheeze/asthma (but not allergic sensitization), and with high refractive error, attention deficit hyperactivity and psychiatric disorders from childhood onwards. SUMMARY The long-term consequences of maternal obesity and GDM for the offspring in childhood and later adult life present major challenges for public health across the life course and for future generations. Tackling these challenges requires a systems-based approach to support achieving a healthy weight in young people prior to conception, alongside new insights into population based preventive measures against gestational diabetes.
Collapse
Affiliation(s)
- Kathryn V Dalrymple
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London
| | - Sarah El-Heis
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
47
|
Siddeek B, Simeoni U. Epigenetics provides a bridge between early nutrition and long-term health and a target for disease prevention. Acta Paediatr 2022; 111:927-934. [PMID: 35038770 PMCID: PMC9305224 DOI: 10.1111/apa.16258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Exposure to nutritional imbalance during early life can influence disease risk lifelong and across generations. In this long‐term conditioning, epigenetics constitutes a key mechanism. They bridge environmental cues and the expression of genes involved in the setting of long‐standing biological regulations in numerous organs and species. Epigenetic marks are proposed as innovative diagnostic biomarkers and potential targets in the prevention of diseases. However, a number of uncertainties make them difficult to use in clinical approaches in the context of early exposure to nutritional challenge. In conclusion, active investigations in this field are still needed before clinical applications are considered.
Collapse
Affiliation(s)
- Benazir Siddeek
- DOHaD Laboratory Division of Pediatrics Woman‐Mother‐Child‐Department Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne Switzerland
| | - Umberto Simeoni
- DOHaD Laboratory Division of Pediatrics Woman‐Mother‐Child‐Department Centre Hospitalier Universitaire Vaudois and University of Lausanne Lausanne Switzerland
| |
Collapse
|
48
|
Beneficial metabolic effects of probiotic supplementation in dams and offspring following hypercaloric diet during pregnancy. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
50
|
van Weelden W, Seed PT, Antoun E, Godfrey KM, Kitaba NT, Lillycrop KA, Dalrymple KV, Sobczyńska-Malefora A, Painter RC, Poston L, White SL, Flynn AC. Folate and vitamin B12 status: associations with maternal glucose and neonatal DNA methylation sites related to dysglycaemia, in pregnant women with obesity. J Dev Orig Health Dis 2022; 13:168-176. [PMID: 33972006 PMCID: PMC7612506 DOI: 10.1017/s2040174421000246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent studies implicate maternal gestational diabetes mellitus (GDM) in differential methylation of infant DNA. Folate and vitamin B12 play a role in DNA methylation, and these vitamins may also influence GDM risk. The aims of this study were to determine folate and vitamin B12 status in obese pregnant women and investigate associations between folate and vitamin B12 status, maternal dysglycaemia and neonatal DNA methylation at cytosine-phosphate-guanine sites previously observed to be associated with dysglycaemia. Obese pregnant women who participated in the UK Pregnancies Better Eating and Activity Trial were included. Serum folate and vitamin B12 were measured at the oral glucose tolerance test (OGTT) visit. Cord blood DNA methylation was assessed using the Infinium MethylationEPIC BeadChip. Regression models with adjustment for confounders were used to examine associations. Of the 951 women included, 356 (37.4%) were vitamin B12 deficient, and 44 (4.6%) were folate deficient. Two-hundred and seventy-one women (28%) developed GDM. Folate and vitamin B12 concentrations were not associated with neonatal DNA methylation. Higher folate was positively associated with 1-h plasma glucose after OGTT (β = 0.031, 95% CI 0.001-0.061, p = 0.045). There was no relationship between vitamin B12 and glucose concentrations post OGTT or between folate or vitamin B12 and GDM. In summary, we found no evidence to link folate and vitamin B12 status with the differential methylation of neonatal DNA previously observed in association with dysglycaemia. We add to the evidence that folate status may be related to maternal glucose homoeostasis although replication in other maternal cohorts is required for validation.
Collapse
Affiliation(s)
- Wenneke van Weelden
- Amsterdam University Medical Center – location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul T. Seed
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London
| | - Elie Antoun
- Human Development and Health, Faculty of Medicine, University of Southampton, UK
| | - Keith M. Godfrey
- Human Development and Health, Faculty of Medicine, University of Southampton, UK
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Negusse T. Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, UK
| | - Karen A. Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Kathryn V. Dalrymple
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London
| | - Agata Sobczyńska-Malefora
- Nutristasis Unit, Viapath, St. Thomas’ Hospital, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Rebecca C. Painter
- Department of Obstetrics and Gynaecology, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucilla Poston
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London
| | - Sara L. White
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London
| | - Angela C. Flynn
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London
| |
Collapse
|