1
|
Courreges CJF, Davenport ECM, Bilanges B, Rebollo-Gomez E, Hukelmann J, Schoenfelder P, Edgar JR, Sansom D, Scudamore CL, Roychoudhuri R, Garden OA, Vanhaesebroeck B, Okkenhaug K. Lack of phosphatidylinositol 3-kinase VPS34 in regulatory T cells leads to a fatal lymphoproliferative disorder without affecting their development. Front Immunol 2024; 15:1374621. [PMID: 39664390 PMCID: PMC11631860 DOI: 10.3389/fimmu.2024.1374621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Regulatory T (Treg) cells are essential for the maintenance of immunological tolerance, yet the molecular components required for their maintenance and effector functions remain incompletely defined. Inactivation of VPS34 in Treg cells led to an early, lethal phenotype, with massive effector T cell activation and inflammation, like mice lacking Treg cells completely. However, VPS34-deficient Treg cells developed normally, populated the peripheral lymphoid organs and effectively supressed conventional T cells in vitro. Our data suggest that VPS34 is required for the maintaining normal numbers of mature Treg. Functionally, we observed that lack of VPS34 activity impairs cargo processing upon transendocytosis, that defective autophagy may contribute to, but is not sufficient to explain this lethal phenotype, and that loss of VPS34 activity induces a state of heightened metabolic activity that may interfere with metabolic networks required for maintenance or suppressive functions of Treg cells.
Collapse
Affiliation(s)
- Christina J. F. Courreges
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth C. M. Davenport
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Royal Veterinary College, London, United Kingdom
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Jens Hukelmann
- The School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Priya Schoenfelder
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - James R. Edgar
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | - David Sansom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | | | - Rahul Roychoudhuri
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | | | | | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Liu T, Yuan J, Dai C, Chen MX, Fan J, Humphreys BD, Fulton DJR, Kleven DT, Fan X, Dong Z, Chen JK. Pik3c3 expression profiling in the mouse kidney and its role in proximal tubule cell physiology. Am J Physiol Cell Physiol 2024; 327:C1094-C1110. [PMID: 39250817 PMCID: PMC11481994 DOI: 10.1152/ajpcell.00564.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, coimmunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology. NEW & NOTEWORTHY This is the first report defining the class 3 phosphatidylinositol 3-kinase (Pik3c3) expression profile in the kidney. Pik3c3 is nearly absent in renal interstitial cells, glomerular mesangial cells, and endothelial cells. Remarkably, glomerular podocytes express the highest Pik3c3 level in the kidney. However, the proximal tubule exhibits the highest expression level among all renal tubules. This study also unveils the pivotal role of Pik3c3 in regulating EGFR degradation and signaling termination in RPTCs, furthering our understanding of Pik3c3 in renal cell physiology.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jialing Yuan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Caihong Dai
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mystie X Chen
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Jerry Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Lakeside High School, Evans, Georgia, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Daniel T Kleven
- Athens Regional Pathology, Piedmont Athens Regional Hospital, Athens, Georgia, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
3
|
Tahoun M, Sadaka AS. Deregulated expression of autophagy genes; PIK3C3 and RAB7A in COVID-19 patients. Hum Immunol 2024; 85:110801. [PMID: 38609772 DOI: 10.1016/j.humimm.2024.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The role of autophagy in coronaviruses infection and replication has a lot of debate. Autophagy involves the catalytic breakdown of intracellular components to be subsequently recycled by the lysosome. The aim of the study was to evaluate autophagy genes; PIK3C3 and RAB7A expressions in COVID-19 patients, and identify if PIK3C3 and RAB7A can be used as markers for monitoring COVID-19 patients. METHODS A case-control study was carried out on 50 patients and 50 healthy controls. Genes expression was performed using quantitative real-time polymerase chain reaction. RESULTS Compared to controls, PIK3C3 and RAB7A gene expression levels were significantly lower in patients (p < 0.001) with approximately with 9.4 and 2.3 decreased fold in PIK3C3 and RAB7A respectively. The ROC curve of PIK3C3 and RAB7A expressions showed sensitivity of 84 % and 74 % and specificity of 98 % and 78 % respectively. There was a positive correlation between PIK3C3 expression and WBCs, absolute neutrophil count, interleukin-6, D-dimer, and ALT among patients and between RAB7A expression and WBCs, CRP, IL-6, D-dimer and ALT in patients. CONCLUSIONS The study showed reduction of PIK3C3 and RAB7A expressions in COVID-19 patients. However, further studies are recommended to clarify their roles in the disease pathogenies as autophagy genes.
Collapse
Affiliation(s)
- Mona Tahoun
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Egypt.
| | - Ahmed S Sadaka
- Chest Diseases Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
4
|
Chen L, Gao T, Zhou P, Xia W, Yao H, Xu S, Xu J. Recent advances of vacuolar protein-sorting 34 inhibitors targeting autophagy. Bioorg Chem 2024; 143:107039. [PMID: 38134519 DOI: 10.1016/j.bioorg.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Autophagy is a ubiquitous pathological/physiological antioxidant cellular reaction in eukaryotic cells. Vacuolar protein sorting 34 (Vps34 or PIK3C3), which plays a crucial role in autophagy, has received much attention. As the only Class III phosphatidylinositol-3 kinase in mammals, Vps34 participates in vesicular transport, nutrient signaling and autophagy. Dysfunctionality of Vps34 induces carcinogenesis, and abnormal autophagy mediated by dysfunction of Vps34 is closely related to the pathological progression of various human diseases, which makes Vps34 a novel target for tumor immunotherapy. In this review, we summarize the molecular mechanisms underlying macroautophagy, and further discuss the structure-activity relationship of Vps34 inhibitors that have been reported in the past decade as well as their potential roles in anticancer immunotherapy to better understand the antitumor mechanism underlying the effects of these inhibitors.
Collapse
Affiliation(s)
- Long Chen
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tian Gao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Pijun Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenxuan Xia
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hong Yao
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| | - Jinyi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Shenzhen Research Institute of China Pharmaceutical University, Nanshan District, Shenzhen 518052, PR China.
| |
Collapse
|
5
|
Priem D, Huyghe J, Bertrand MJM. LC3-independent autophagy is vital to prevent TNF cytotoxicity. Autophagy 2023; 19:2585-2589. [PMID: 37014272 PMCID: PMC10392734 DOI: 10.1080/15548627.2023.2197760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The (macro)autophagy field is facing a paradigm shift after the recent discovery that cytosolic cargoes can still be selectively targeted to phagophores (the precursors to autophagosomes) even in the absence of LC3 or other Atg8-protein family members. Several in vitro studies have indeed reported on the existence of an unconventional selective autophagic pathway that involves the in-situ formation of an autophagosome around the cargo through the direct selective autophagy receptor-mediated recruitment of RB1CC1/FIP200, thereby bypassing the requirement of LC3. In an article recently published in Science, we demonstrate the physiological importance of this unconventional autophagic pathway in the context of TNF (tumor necrosis factor) signaling. We show that it promotes the degradation of the cytotoxic TNFRSF1A/TNFR1 (TNF receptor superfamily member 1A) complex II that assembles upon TNF sensing and thereby protects mice from TNFRSF1A-driven embryonic lethality and skin inflammation.Abbreviations: ATG: autophagy related; CASP: caspase; FIR: RB1CC1/FIP200-interacting region; LIR: LC3-interacting region; M1: linear; PAS: phagophore assembly site; PtdIns3K: phosphatidylinositol 3-kinase; TNF: tumor necrosis factor; TNFRSF1A: TNF receptor superfamily member 1A.
Collapse
Affiliation(s)
- Dario Priem
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jon Huyghe
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mathieu JM Bertrand
- Cell Death and Inflammation Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Hu Z, Luo Y, Liu Y, Luo Y, Wang L, Gou S, Peng Y, Wei R, Jia D, Wang Y, Gao S, Zhang Y. Partial inhibition of class III PI3K VPS-34 ameliorates motor aging and prolongs health span. PLoS Biol 2023; 21:e3002165. [PMID: 37432924 DOI: 10.1371/journal.pbio.3002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/13/2023] [Indexed: 07/13/2023] Open
Abstract
Global increase of life expectancy is rarely accompanied by increased health span, calling for a greater understanding of age-associated behavioral decline. Motor independence is strongly associated with the quality of life of elderly people, yet the regulators for motor aging have not been systematically explored. Here, we designed a fast and efficient genome-wide screening assay in Caenorhabditis elegans and identified 34 consistent genes as potential regulators of motor aging. Among the top hits, we found VPS-34, the class III phosphatidylinositol 3-kinase that phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI(3)P), regulates motor function in aged but not young worms. It primarily functions in aged motor neurons by inhibiting PI(3)P-PI-PI(4)P conversion to reduce neurotransmission at the neuromuscular junction (NMJ). Genetic and pharmacological inhibition of VPS-34 improve neurotransmission and muscle integrity, ameliorating motor aging in both worms and mice. Thus, our genome-wide screening revealed an evolutionarily conserved, actionable target to delay motor aging and prolong health span.
Collapse
Affiliation(s)
- Zhongliang Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangce Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuling Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research. Cancers (Basel) 2023; 15:cancers15030784. [PMID: 36765741 PMCID: PMC9913247 DOI: 10.3390/cancers15030784] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. PI3K is a family of eight enzymes divided into three classes with various functions in physiology and largely deregulated in cancer. Here, we will review the recent evidence obtained during the last 5 years on the roles of PI3K class I, II and III isoforms in tumor biology and on the anti-tumoral action of PI3K inhibitors in preclinical cancer models. The dependency of tumors to PI3K isoforms is dictated by both genetics and context (e.g., the microenvironment). The understanding of class II/III isoforms in cancer development and progression remains scarce. Nonetheless, the limited available data are consistent and reveal that there is an interdependency between the pathways controlled by all PI3K class members in their role to promote cancer cell proliferation, survival, growth, migration and metabolism. It is unknown whether this feature contributes to partial treatment failure with isoform-selective PI3K inhibitors. Hence, a better understanding of class II/III functions to efficiently inhibit their positive and negative interactions with class I PI3Ks is needed. This research will provide the proof-of-concept to develop combination treatment strategies targeting several PI3K isoforms simultaneously.
Collapse
|
8
|
Lee MJ, Park JS, Jo SB, Joe YA. Enhancing Anti-Cancer Therapy with Selective Autophagy Inhibitors by Targeting Protective Autophagy. Biomol Ther (Seoul) 2023; 31:1-15. [PMID: 36579459 PMCID: PMC9810440 DOI: 10.4062/biomolther.2022.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a process of eliminating damaged or unnecessary proteins and organelles, thereby maintaining intracellular homeostasis. Deregulation of autophagy is associated with several diseases including cancer. Contradictory dual roles of autophagy have been well established in cancer. Cytoprotective mechanism of autophagy has been extensively investigated for overcoming resistance to cancer therapies including radiotherapy, targeted therapy, immunotherapy, and chemotherapy. Selective autophagy inhibitors that directly target autophagic process have been developed for cancer treatment. Efficacies of autophagy inhibitors have been tested in various pre-clinical cancer animal models. Combination therapies of autophagy inhibitors with chemotherapeutics are being evaluated in clinal trials. In this review, we will focus on genetical and pharmacological perturbations of autophagy-related proteins in different steps of autophagic process and their therapeutic benefits. We will also summarize combination therapies of autophagy inhibitors with chemotherapies and their outcomes in pre-clinical and clinical studies. Understanding of current knowledge of development, progress, and application of cytoprotective autophagy inhibitors in combination therapies will open new possibilities for overcoming drug resistance and improving clinical outcomes.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Sung Park
- Department of Neurosurgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Bin Jo
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Ae Joe
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-3147-8406, Fax: +82-2-593-2522
| |
Collapse
|
9
|
The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13:2558. [PMID: 35538064 PMCID: PMC9091224 DOI: 10.1038/s41467-022-30050-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.
Collapse
|
10
|
Wang J, Khan SU, Cao P, Chen X, Wang F, Zou D, Li H, Zhao H, Xu K, Jiao D, Yang C, Zhu F, Zhang Y, Su Y, Cheng W, Jia B, Qing Y, Jamal MA, Zhao HY, Wei HJ. Construction of PIK3C3 Transgenic Pig and Its Pathogenesis of Liver Damage. Life (Basel) 2022; 12:630. [PMID: 35629298 PMCID: PMC9146193 DOI: 10.3390/life12050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/26/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
As a member of the PIKs family, PIK3C3 participates in autophagy and plays a central role in liver function. Several studies demonstrated that the complete suppression of PIK3C3 in mammals can cause hepatomegaly and hepatosteatosis. However, the function of PIK3C3 overexpression on the liver and other organs is still unknown. In this study, we successfully generated PIK3C3 transgenic pigs through somatic cell nuclear transfer (SCNT) by designing a specific vector for the overexpression of PIK3C3. Plasmid identification was performed through enzyme digestion and transfected into the fetal fibroblasts derived from Diannan miniature pigs. After 2 weeks of culturing, six positive colonies obtained from a total of 14 cell colonies were identified through PCR. One positive cell line was selected as the donor cell line for SCNT for the construction of PIK3C3transgenic pigs. Thirty single blastocysts were collected and identified as PIK3C3 transgenic-positive blastocysts. Two surrogates became pregnant after transferring the reconstructed embryos into four surrogates. Fetal fibroblasts of PIK3C3-positive fetuses identified through PCR were used as donor cells for SCNT to generate PIK3C3 transgenic pigs. To further explore the function of PIK3C3 overexpression, genotyping and phenotyping of the fetuses and piglets obtained were performed by PCR, immunohistochemical, HE, and apoptosis staining. The results showed that inflammatory infiltration and vacuolar formation in hepatocytes and apoptotic cells, and the mRNA expression of NF-κB, TGF-β1, TLR4, TNF-α, and IL-6 significantly increased in the livers of PIK3C3 transgenic pigs when compared with wild-type (WT) pigs. Immunofluorescence staining showed that LC3B and LAMP-1-positive cells increased in the livers of PIK3C3 transgenic pigs. In the EBSS-induced autophagy of the porcine fibroblast cells (PFCs), the accumulated LC3II protein was cleared faster in PIK3C3 transgenic (PFCs) thanWT (PFCs). In conclusion, PIK3C3 overexpression promoted autophagy in the liver and associated molecular mechanisms related to the activation of ULK1, AMBR1, DRAM1, and MTOR, causing liver damage in pigs. Therefore, the construction of PIK3C3 transgenic pigs may provide a new experimental animal resource for liver diseases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Sami Ullah Khan
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Pan Cao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Chen
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fengchong Wang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Di Zou
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Honghui Li
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Kaixiang Xu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chang Yang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Feiyan Zhu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yaxuan Zhang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yanhua Su
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Wenmin Cheng
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Baoyu Jia
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Qing
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Muhammad Ameen Jamal
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Kunming 650201, China; (J.W.); (S.U.K.); (P.C.); (X.C.); (F.W.); (D.Z.); (H.L.); (H.Z.); (K.X.); (D.J.); (C.Y.); (F.Z.); (Y.Z.); (Y.S.); (W.C.); (B.J.); (Y.Q.); (M.A.J.)
- Xenotransplantation Research Engineering Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Class III PI3K Biology. Curr Top Microbiol Immunol 2022; 436:69-93. [DOI: 10.1007/978-3-031-06566-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
13
|
Moss JJ, Wirth M, Tooze SA, Lane JD, Hammond CL. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J 2021; 35:e22002. [PMID: 34708458 DOI: 10.1096/fj.202101167r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17 days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
The Role of Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3 in the Pathogenesis of Human Cancer. Int J Mol Sci 2021; 22:ijms222010964. [PMID: 34681622 PMCID: PMC8535862 DOI: 10.3390/ijms222010964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), the mammalian ortholog of yeast vesicular protein sorting 34 (Vps34), belongs to the phosphoinositide 3-kinase (PI3K) family. PIK3C3 can phosphorylate phosphatidylinositol (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), a phospholipid central to autophagy. Inhibition of PIK3C3 successfully inhibits autophagy. Autophagy maintains cell survival when modifications occur in the cellular environment and helps tumor cells resist metabolic stress and cancer treatment. In addition, PIK3C3 could induce oncogenic transformation and enhance tumor cell proliferation, growth, and invasion through mechanisms independent of autophagy. This review addresses the structural and functional features, tissue distribution, and expression pattern of PIK3C3 in a variety of human tumors and highlights the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and cancer therapy are discussed. Altogether, the discovery of pharmacological inhibitors of PIK3C3 could reveal novel strategies for improving treatment outcomes for PIK3C3-mediated human diseases.
Collapse
|
15
|
Kang SM, Kim DH. A Structural Approach into Drug Discovery Based on Autophagy. Life (Basel) 2021; 11:life11060526. [PMID: 34199860 PMCID: PMC8226661 DOI: 10.3390/life11060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Autophagy is a lysosome-dependent intracellular degradation machinery that plays an essential role in the regulation of cellular homeostasis. As many studies have revealed that autophagy is related to cancer, neurodegenerative diseases, metabolic diseases, and so on, and it is considered as a promising drug target. Recent advances in structural determination and computational technologies provide important structural information on essential autophagy-related proteins. Combined with high-throughput screening methods, structure-activity relationship studies have led to the discovery of molecules that modulate autophagy. In this review, we summarize the recent structural studies on autophagy-related proteins and the discovery of modulators, indicating that targeting autophagy can be utilized as an effective strategy for novel drug development.
Collapse
Affiliation(s)
- Sung-Min Kang
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-8195
| |
Collapse
|
16
|
Cui Z, Liu L, Kwame Amevor F, Zhu Q, Wang Y, Li D, Shu G, Tian Y, Zhao X. High Expression of miR-204 in Chicken Atrophic Ovaries Promotes Granulosa Cell Apoptosis and Inhibits Autophagy. Front Cell Dev Biol 2020; 8:580072. [PMID: 33251211 PMCID: PMC7676916 DOI: 10.3389/fcell.2020.580072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Chicken atrophic ovaries have decreased volume and are indicative of ovarian failure, presence of a tumor, or interrupted ovarian blood supply. Ovarian tumor is accompanied by an increase in follicular atresia, granulosa cell (GC) apoptosis, and autophagy. In a previous study, we found using high throughput sequencing that miR-204 is highly expressed in chicken atrophic ovaries. Thus, in the present study, we further investigated its function in GC apoptosis and autophagy. We found that overexpression of miR-204 reduced mRNA and protein levels of proliferation-related genes and increased apoptosis-related genes. Cell counting kit-8 (CCK-8), 5-ethynyl-2-deoxyuridine (EdU), and flow cytometry assays revealed that miR-204 inhibited GC proliferation and promoted apoptosis. Furthermore, we confirmed with reporter gene assays that Forkhead box K2 (FOXK2) was directly targeted by miR-204. FOXK2, as a downstream regulator of phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signal pathways, promoted GC proliferation and inhibited apoptosis. Subsequently, we observed that miR-204 was involved in GC autophagy by targeting Transient Receptor Potential Melastatin 3 (TRPM3). The luciferase activities of the two binding sites of TRPM3 were decreased in response to treatment with a miR-204 mimic, and the autophagic flux was increased after miR-204 inhibition. However, overexpression of miR-204 had opposite results in autophagosomes and autolysosomes. miR-204 inhibits GC autophagy by suppressing the protein expression of TRPM3/AMP-activated protein kinase (AMPK)/ULK signaling pathway components. Inhibition of miR-204 enhanced autophagy by accumulating and degrading the protein levels of LC3-II (Microtubule Associated Protein Light Chain 3B) and p62 (Protein of 62 kDa), respectively, whereas miR-204 overexpression was associated with contrary results. Immunofluorescence staining showed that there was a significant reduction in the fluorescent intensity of LC3B, whereas p62 protein was increased after TRPM3 silencing. Collectively, our results indicate that miR-204 is highly expressed in chicken atrophic ovaries, which promotes GC apoptosis via repressing FOXK2 through the PI3K/AKT/mTOR pathway and inhibits autophagy by impeding the TRPM3/AMPK/ULK pathway.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Antileukemic activity of the VPS34-IN1 inhibitor in acute myeloid leukemia. Oncogenesis 2020; 9:94. [PMID: 33093450 PMCID: PMC7581748 DOI: 10.1038/s41389-020-00278-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis. Vacuolar protein sorting 34 (VPS34) is a member of the phosphatidylinositol-3-kinase lipid kinase family that controls the canonical autophagy pathway and vesicular trafficking. Using a recently developed specific inhibitor (VPS34-IN1), we found that VPS34 inhibition induces apoptosis in AML cells but not in normal CD34+ hematopoietic cells. Complete and acute inhibition of VPS34 was required for the antileukemic activity of VPS34-IN1. This inhibitor also has pleiotropic effects against various cellular functions related to class III PI3K in AML cells that may explain their survival impairment. VPS34-IN1 inhibits basal and L-asparaginase-induced autophagy in AML cells. A synergistic cell death activity of this drug was also demonstrated. VPS34-IN1 was additionally found to impair vesicular trafficking and mTORC1 signaling. From an unbiased approach based on phosphoproteomic analysis, we identified that VPS34-IN1 specifically inhibits STAT5 phosphorylation downstream of FLT3-ITD signaling in AML. The identification of the mechanisms controlling FLT3-ITD signaling by VPS34 represents an important insight into the oncogenesis of AML and could lead to new therapeutic strategies.
Collapse
|
18
|
Soto-Avellaneda A, Morrison BE. Signaling and other functions of lipids in autophagy: a review. Lipids Health Dis 2020; 19:214. [PMID: 32998777 PMCID: PMC7525950 DOI: 10.1186/s12944-020-01389-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The process of autophagy is integral to cellular function. In this process, proteins, organelles, and metabolites are engulfed in a lipid vesicle and trafficked to a lysosome for degradation. Its central role in protein and organelle homeostasis has piqued interest for autophagy dysfunction as a driver of pathology for a number of diseases including cancer, muscular disorders, neurological disorders, and non-alcoholic fatty liver disease. For much of its history, the study of autophagy has centered around proteins, however, due to advances in mass spectrometry and refined methodologies, the role of lipids in this essential cellular process has become more apparent. This review discusses the diverse endogenous lipid compounds shown to mediate autophagy. Downstream lipid signaling pathways are also reviewed in the context of autophagy regulation. Specific focus is placed upon the Mammalian Target of Rapamycin (mTOR) and Peroxisome Proliferator-Activated Receptor (PPAR) signaling pathways as integration hubs for lipid regulation of autophagy.
Collapse
Affiliation(s)
| | - Brad E Morrison
- Biomolecular Sciences Graduate programs, Boise State University, Boise, ID, 83725, USA.
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
19
|
Kobylarz MJ, Goodwin JM, Kang ZB, Annand JW, Hevi S, O’Mahony E, McAllister G, Reece-Hoyes J, Wang Q, Alford J, Russ C, Lindeman A, Beibel M, Roma G, Carbone W, Knehr J, Loureiro J, Antczak C, Wiederschain D, Murphy LO, Menon S, Nyfeler B. An iron-dependent metabolic vulnerability underlies VPS34-dependence in RKO cancer cells. PLoS One 2020; 15:e0235551. [PMID: 32833964 PMCID: PMC7446895 DOI: 10.1371/journal.pone.0235551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.
Collapse
Affiliation(s)
- Marek J. Kobylarz
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Jonathan M. Goodwin
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Zhao B. Kang
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - John W. Annand
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Sarah Hevi
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Ellen O’Mahony
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Gregory McAllister
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - John Reece-Hoyes
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Qiong Wang
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - John Alford
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Carsten Russ
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Alicia Lindeman
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Walter Carbone
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Judith Knehr
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Joseph Loureiro
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Christophe Antczak
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Dmitri Wiederschain
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Leon O. Murphy
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
| | - Suchithra Menon
- Novartis Institutes for Biomedical Research, Cambridge, MA, United States of America
- * E-mail: (SM); (BN)
| | - Beat Nyfeler
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail: (SM); (BN)
| |
Collapse
|
20
|
Bertović I, Kurelić R, Milošević I, Bender M, Krauss M, Haucke V, Jurak Begonja A. Vps34 derived phosphatidylinositol 3-monophosphate modulates megakaryocyte maturation and proplatelet production through late endosomes/lysosomes. J Thromb Haemost 2020; 18:1756-1772. [PMID: 32056354 DOI: 10.1111/jth.14764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Development of platelet precursor cells, megakaryocytes (MKs), implies an increase in their size; formation of the elaborate demarcation membrane system (DMS); and extension of branched cytoplasmic structures, proplatelets, that will release platelets. The membrane source(s) for MK expansion and proplatelet formation have remained elusive. OBJECTIVE We hypothesized that traffic of membranes regulated by phosphatidylinositol 3-monophosphate (PI3P) contributes to MK maturation and proplatelet formation. RESULTS In immature MKs, PI3P produced by the lipid kinase Vps34 is confined to perinuclear early endosomes (EE), while in mature MKs PI3P shifts to late endosomes and lysosomes (LE/Lys). PI3P partially colocalized with the plasma membrane marker phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) and with LE/Lys in mature MKs, suggests that PI3P-containing LE/Lys membranes contribute to MK expansion and proplatelet formation. Consistently, we found that sequestration of PI3P, specific pharmacological inhibition of Vps34-mediated PI3P production, or depletion of PI3P by PI3-phosphatase (MTM1)-mediated hydrolysis potently blocked proplatelet formation. Moreover, Vps34 inhibition led to the intracellular accumulation of enlarged LE/Lys, and decreased expression of surface LE/Lys markers. Inhibiting Vps34 at earlier MK stages caused aberrant DMS development. Finally, inhibition of LE/Lys membrane fusion by a dominant negative mutant of the small GTPase Rab7 or pharmacological inhibition of PI3P conversion into PI(3,5)P2 led to enlarged LE/Lys, reduced surface levels of LE/Lys markers, and decreased proplatelet formation. CONCLUSION Our results suggest that PI3P-positive LE/Lys contribute to the membrane growth and proplatelet formation in MKs by their translocation to the cell periphery and fusion with the plasma membrane.
Collapse
Affiliation(s)
- Ivana Bertović
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Roberta Kurelić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ira Milošević
- European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine, University Hospital, and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | | |
Collapse
|
21
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
22
|
Grieco G, Wang T, Delcorte O, Spourquet C, Janssens V, Strickaert A, Gaide Chevronnay HP, Liao XH, Bilanges B, Refetoff S, Vanhaesebroeck B, Maenhaut C, Courtoy PJ, Pierreux CE. Class III PI3K Vps34 Controls Thyroid Hormone Production by Regulating Thyroglobulin Iodination, Lysosomal Proteolysis, and Tissue Homeostasis. Thyroid 2020; 30:133-146. [PMID: 31650902 PMCID: PMC6983755 DOI: 10.1089/thy.2019.0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na+/I- symporter (NIS), SLC26A7, and Na+/K+-ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional Vps34 inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. Methods:Vps34 was inactivated using a Pax8-driven Cre recombinase system. The impact of Vps34 inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by 125I injection and plasma analysis. Results:Vps34 conditional knockout (Vps34cKO) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at ∼1 month of age. We therefore analyzed thyroid Vps34cKO at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS+ colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 ± 0.62 μg/dL) and huge thyrotropin plasma levels (19,300 ± 10,500 mU/L); (iii) impaired 125I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. Conclusions: We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.
Collapse
Affiliation(s)
- Giuseppina Grieco
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Tongsong Wang
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Ophélie Delcorte
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Catherine Spourquet
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Virginie Janssens
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Aurélie Strickaert
- Thyroid Cancer Group, Faculty of Medecine, Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles, Brussels, Belgium
| | | | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Benoît Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, London, United Kingdom
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois
- Department of Pediatrics and Genetics, The University of Chicago, Chicago, Illinois
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, London, United Kingdom
| | - Carine Maenhaut
- Thyroid Cancer Group, Faculty of Medecine, Institute of Interdisciplinary Research (IRIBHM), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre J. Courtoy
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
| | - Christophe E. Pierreux
- Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, Brussels, Belgium
- Address correspondence to: Christophe E. Pierreux, PhD, Cell Biology Unit, de Duve Institute and Université Catholique de Louvain, 75, Avenue Hippocrate, Brussels B-1200, Belgium
| |
Collapse
|
23
|
Bellio M, Caux M, Vauclard A, Chicanne G, Gratacap MP, Terrisse AD, Severin S, Payrastre B. Phosphatidylinositol 3 monophosphate metabolizing enzymes in blood platelet production and in thrombosis. Adv Biol Regul 2019; 75:100664. [PMID: 31604685 DOI: 10.1016/j.jbior.2019.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023]
Abstract
Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, β and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.
Collapse
Affiliation(s)
- Marie Bellio
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Manuella Caux
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alicia Vauclard
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Gaëtan Chicanne
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marie-Pierre Gratacap
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Anne-Dominique Terrisse
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sonia Severin
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Laboratoire d'Hématologie, Hopital Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
24
|
Suomi F, McWilliams T. Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signal 2019; 3:NS20180134. [PMID: 32269837 PMCID: PMC7104325 DOI: 10.1042/ns20180134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/06/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy refers to the lysosomal degradation of damaged or superfluous components and is essential for metabolic plasticity and tissue integrity. This evolutionarily conserved process is particularly vital to mammalian post-mitotic cells such as neurons, which face unique logistical challenges and must sustain homoeostasis over decades. Defective autophagy has pathophysiological importance, especially for human neurodegeneration. The present-day definition of autophagy broadly encompasses two distinct yet related phenomena: non-selective and selective autophagy. In this minireview, we focus on established and emerging concepts in the field, paying particular attention to the physiological significance of macroautophagy and the burgeoning world of selective autophagy pathways in the context of the vertebrate nervous system. By highlighting established basics and recent breakthroughs, we aim to provide a useful conceptual framework for neuroscientists interested in autophagy, in addition to autophagy enthusiasts with an eye on the nervous system.
Collapse
Affiliation(s)
- Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| |
Collapse
|
25
|
Tettamanti G, Carata E, Montali A, Dini L, Fimia GM. Autophagy in development and regeneration: role in tissue remodelling and cell survival. EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1601271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- G. Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - E. Carata
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - A. Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - L. Dini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - G. M. Fimia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”, Rome, Italy
| |
Collapse
|
26
|
Iershov A, Nemazanyy I, Alkhoury C, Girard M, Barth E, Cagnard N, Montagner A, Chretien D, Rugarli EI, Guillou H, Pende M, Panasyuk G. The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat Commun 2019; 10:1566. [PMID: 30952952 PMCID: PMC6451001 DOI: 10.1038/s41467-019-09598-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
The class 3 phosphoinositide 3-kinase (PI3K) is required for lysosomal degradation by autophagy and vesicular trafficking, assuring nutrient availability. Mitochondrial lipid catabolism is another energy source. Autophagy and mitochondrial metabolism are transcriptionally controlled by nutrient sensing nuclear receptors. However, the class 3 PI3K contribution to this regulation is unknown. We show that liver-specific inactivation of Vps15, the essential regulatory subunit of the class 3 PI3K, elicits mitochondrial depletion and failure to oxidize fatty acids. Mechanistically, transcriptional activity of Peroxisome Proliferator Activated Receptor alpha (PPARα), a nuclear receptor orchestrating lipid catabolism, is blunted in Vps15-deficient livers. We find PPARα repressors Histone Deacetylase 3 (Hdac3) and Nuclear receptor co-repressor 1 (NCoR1) accumulated in Vps15-deficient livers due to defective autophagy. Activation of PPARα or inhibition of Hdac3 restored mitochondrial biogenesis and lipid oxidation in Vps15-deficient hepatocytes. These findings reveal roles for the class 3 PI3K and autophagy in transcriptional coordination of mitochondrial metabolism.
Collapse
Affiliation(s)
- Anton Iershov
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Ivan Nemazanyy
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, 75014, Paris, France
| | - Chantal Alkhoury
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Muriel Girard
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, 75015, France
| | - Esther Barth
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | - Nicolas Cagnard
- Plateforme Bio-informatique, Université Paris Descartes, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, 75015, France
| | | | - Dominique Chretien
- INSERM UMR1141, Hôpital Robert Debré, Paris, 75019, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Paris, 75019, France
| | - Elena I Rugarli
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674, Cologne, Germany
| | - Herve Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, 31027, France
| | - Mario Pende
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades (INEM), 75014, Paris, France.
- INSERM U1151/CNRS UMR 8253, 75014, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| |
Collapse
|
27
|
Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ, Cosford NDP. Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol Sci 2018; 39:1021-1032. [PMID: 30454769 PMCID: PMC6349222 DOI: 10.1016/j.tips.2018.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
During times of stress, autophagy is a cellular process that enables cells to reclaim damaged components by a controlled recycling pathway. This mechanism for cellular catabolism is dysregulated in cancer, with evidence indicating that cancer cells rely on autophagy in the hypoxic and nutrient-poor microenvironment of solid tumors. Mounting evidence suggests that autophagy has a role in the resistance of tumors to standard-of-care (SOC) therapies. Therefore, there is significant interest in the discovery of small molecules that can safely modulate autophagy. In this review, we describe recent advances in the identification of new pharmacological compounds that modulate autophagy, with a focus on their mode of action, value as probe compounds, and validation as potential therapeutics.
Collapse
Affiliation(s)
- Allison S Limpert
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; These authors contributed equally
| | - Lester J Lambert
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; These authors contributed equally
| | - Nicole A Bakas
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nicole Bata
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sonja N Brun
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Reuben J Shaw
- Department of Molecular and Cell Biology, The Salk Institute for Biological Studies, San Diego, La Jolla, CA, USA
| | - Nicholas D P Cosford
- NCI Designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Wang L, Ye X, Zhao T. The physiological roles of autophagy in the mammalian life cycle. Biol Rev Camb Philos Soc 2018; 94:503-516. [PMID: 30239126 PMCID: PMC7379196 DOI: 10.1111/brv.12464] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
Autophagy is primarily an efficient intracellular catabolic pathway used for degradation of abnormal cellular protein aggregates and damaged organelles. Although autophagy was initially proposed to be a cellular stress responder, increasing evidence suggests that it carries out normal physiological roles in multiple biological processes. To date, autophagy has been identified in most organs and at many different developmental stages, indicating that it is not only essential for cellular homeostasis and renovation, but is also important for organ development. Herein, we summarize our current understanding of the functions of autophagy (which here refers to macroautophagy) in the mammalian life cycle.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiongjun Ye
- Department of Urology, Peking University People's Hospital, 100034 Beijing, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
29
|
Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018; 8:14133. [PMID: 30237523 PMCID: PMC6148293 DOI: 10.1038/s41598-018-32389-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.
Collapse
|
30
|
Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish. Nat Commun 2018; 9:2639. [PMID: 29980668 PMCID: PMC6035235 DOI: 10.1038/s41467-018-05105-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phosphatidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized distribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model. The functions of the class III PI3-kinase (PIK3C3) in gut homeostasis and innate immunity are poorly understood. Here the authors show that PIK3C3-deficient zebrafishes develop intestinal injury and inflammation due to mislocalization of cell junction proteins.
Collapse
|
31
|
Zhang J, Wang G, Zhou Y, Chen Y, Ouyang L, Liu B. Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy. Cell Mol Life Sci 2018; 75:1803-1826. [PMID: 29417176 PMCID: PMC11105210 DOI: 10.1007/s00018-018-2759-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 02/05/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuxin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
32
|
Abstract
Autophagy is a highly conserved process and is essential for the maintenance of cellular homeostasis. Autophagy occurs at a basal level in all cells, but it can be up-regulated during stress, starvation, or infection. Misregulation of autophagy has been linked to various disorders, including cancer, neurodegeneration, and immune diseases. Here, we discuss the essential proteins acting in the formation of an autophagosome, with a focus on the ULK and VPS34 kinase complexes, phosphatidylinositol 3-phosphate effector proteins, and the transmembrane autophagy-related protein ATG9. The function and regulation of these and other autophagy-related proteins acting during formation will be addressed, in particular during amino acid starvation.
Collapse
Affiliation(s)
- Thomas J Mercer
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Andrea Gubas
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Sharon A Tooze
- From the Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
33
|
Bilanges B, Alliouachene S, Pearce W, Morelli D, Szabadkai G, Chung YL, Chicanne G, Valet C, Hill JM, Voshol PJ, Collinson L, Peddie C, Ali K, Ghazaly E, Rajeeve V, Trichas G, Srinivas S, Chaussade C, Salamon RS, Backer JM, Scudamore CL, Whitehead MA, Keaney EP, Murphy LO, Semple RK, Payrastre B, Tooze SA, Vanhaesebroeck B. Vps34 PI 3-kinase inactivation enhances insulin sensitivity through reprogramming of mitochondrial metabolism. Nat Commun 2017; 8:1804. [PMID: 29180704 PMCID: PMC5703854 DOI: 10.1038/s41467-017-01969-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Vps34 PI3K is thought to be the main producer of phosphatidylinositol-3-monophosphate, a lipid that controls intracellular vesicular trafficking. The organismal impact of systemic inhibition of Vps34 kinase activity is not completely understood. Here we show that heterozygous Vps34 kinase-dead mice are healthy and display a robustly enhanced insulin sensitivity and glucose tolerance, phenotypes mimicked by a selective Vps34 inhibitor in wild-type mice. The underlying mechanism of insulin sensitization is multifactorial and not through the canonical insulin/Akt pathway. Vps34 inhibition alters cellular energy metabolism, activating the AMPK pathway in liver and muscle. In liver, Vps34 inactivation mildly dampens autophagy, limiting substrate availability for mitochondrial respiration and reducing gluconeogenesis. In muscle, Vps34 inactivation triggers a metabolic switch from oxidative phosphorylation towards glycolysis and enhanced glucose uptake. Our study identifies Vps34 as a new drug target for insulin resistance in Type-2 diabetes, in which the unmet therapeutic need remains substantial.
Collapse
Affiliation(s)
- Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| | - Samira Alliouachene
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Wayne Pearce
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Daniele Morelli
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biomedical Sciences, University of Padua, Padua, 58/B via Ugo, Bassi, 35121, Italy
| | - Yuen-Li Chung
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research London, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Gaëtan Chicanne
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432, Toulouse Cedex 4, France
| | - Colin Valet
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432, Toulouse Cedex 4, France
| | - Julia M Hill
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter J Voshol
- Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Lucy Collinson
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Christopher Peddie
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Khaled Ali
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Essam Ghazaly
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Vinothini Rajeeve
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Georgios Trichas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shankar Srinivas
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Claire Chaussade
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Rachel S Salamon
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Cheryl L Scudamore
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell, OX11 0RD, UK
| | - Maria A Whitehead
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Erin P Keaney
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leon O Murphy
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Robert K Semple
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Bernard Payrastre
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432, Toulouse Cedex 4, France
| | - Sharon A Tooze
- The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
34
|
Abstract
Discovery of yeast autophagy-related (ATG) genes and subsequent identification of their homologs in other organisms have enabled researchers to investigate physiological functions of macroautophagy/autophagy using genetic techniques. Specific identification of autophagy-related structures is important to evaluate autophagic activity, and specific ablation of autophagy-related genes is a critical means to determine the requirements of autophagy. Here, we review currently available mouse models, particularly focusing on autophagy (and mitophagy) indicator models and systemic autophagy-related gene-knockout mouse models.
Collapse
Affiliation(s)
- Akiko Kuma
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
- CONTACT Akiko Kuma Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji Chuo-ku, Tokyo 104-0045 Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
A dual role for the class III PI3K, Vps34, in platelet production and thrombus growth. Blood 2017; 130:2032-2042. [PMID: 28903944 DOI: 10.1182/blood-2017-04-781641] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
To uncover the role of Vps34, the sole class III phosphoinositide 3-kinase (PI3K), in megakaryocytes (MKs) and platelets, we created a mouse model with Vps34 deletion in the MK/platelet lineage (Pf4-Cre/Vps34lox/lox). Deletion of Vps34 in MKs led to the loss of its regulator protein, Vps15, and was associated with microthrombocytopenia and platelet granule abnormalities. Although Vps34 deficiency did not affect MK polyploidisation or proplatelet formation, it dampened MK granule biogenesis and directional migration toward an SDF1α gradient, leading to ectopic platelet release within the bone marrow. In MKs, the level of phosphatidylinositol 3-monophosphate (PI3P) was significantly reduced by Vps34 deletion, resulting in endocytic/trafficking defects. In platelets, the basal level of PI3P was only slightly affected by Vps34 loss, whereas the stimulation-dependent pool of PI3P was significantly decreased. Accordingly, a significant increase in the specific activity of Vps34 lipid kinase was observed after acute platelet stimulation. Similar to Vps34-deficient platelets, ex vivo treatment of wild-type mouse or human platelets with the Vps34-specific inhibitors, SAR405 and VPS34-IN1, induced abnormal secretion and affected thrombus growth at arterial shear rate, indicating a role for Vps34 kinase activity in platelet activation, independent from its role in MKs. In vivo, Vps34 deficiency had no impact on tail bleeding time, but significantly reduced platelet prothrombotic capacity after carotid injury. This study uncovers a dual role for Vps34 as a regulator of platelet production by MKs and as an unexpected regulator of platelet activation and arterial thrombus formation dynamics.
Collapse
|
36
|
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2017; 143:3050-60. [PMID: 27578176 DOI: 10.1242/dev.137075] [Citation(s) in RCA: 737] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Collapse
Affiliation(s)
- Jason S L Yu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
37
|
Inaguma Y, Matsumoto A, Noda M, Tabata H, Maeda A, Goto M, Usui D, Jimbo EF, Kikkawa K, Ohtsuki M, Momoi MY, Osaka H, Yamagata T, Nagata KI. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders. J Neurochem 2016; 139:245-255. [PMID: 27607605 DOI: 10.1111/jnc.13832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 01/04/2023]
Abstract
Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future subject since a deletion mutation in PIK3C3 was detected in a patient with specific learning disorders (SLD).
Collapse
Affiliation(s)
- Yutaka Inaguma
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Ayumi Matsumoto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | | | - Masahide Goto
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Eriko F Jimbo
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Kiyoshi Kikkawa
- Department of Pediatrics, Kochi Health Science Center, Kochi, Japan
| | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mariko Y Momoi
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi medical university, Tochigi, Japan
| | | | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan. .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
38
|
Candiello E, Kratzke M, Wenzel D, Cassel D, Schu P. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway. Sci Rep 2016; 6:29950. [PMID: 27411398 PMCID: PMC4944158 DOI: 10.1038/srep29950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022] Open
Abstract
The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein
complex is expressed as three isoforms. Tissues express σ1A and one of
the σ1B and σ1C isoforms. Brain is the tissue with the
highest σ1A and σ1B expression. σ1B-deficiency
leads to severe mental retardation, accumulation of early endosomes in synapses and
fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and
AP-1/σ1B regulate maturation of these early endosomes into
multivesicular body late endosomes, thereby controlling synaptic vesicle protein
transport into a degradative pathway. σ1A binds ArfGAP1, and with higher
affinity brain-specific ArfGAP1, which bind Rabex-5.
AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal
Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity,
which is essential for multivesicular body endosome formation. Formation of
AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B
binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes
differentially regulate endosome maturation and coordinate protein recycling and
degradation, revealing a novel molecular mechanism by which they regulate protein
transport besides their established function in clathrin-coated-vesicle
formation.
Collapse
Affiliation(s)
- Ermes Candiello
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Manuel Kratzke
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Dirk Wenzel
- Electron microscopy, Max-Planck-Institut for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Dan Cassel
- Israel Institute of Technology, Department Biology, Haifa 32000, Israel
| | - Peter Schu
- Georg-August University Göttingen, Department for Cellular Biochemistry, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
39
|
Munson MJ, Ganley IG. Determination of VPS34/PIK3C3 Activity in vitro Utilising 32P-γATP. Bio Protoc 2016; 6:e1904. [PMID: 28127575 DOI: 10.21769/bioprotoc.1904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
VPS34 is the only class III phosphatidylinositol-3-kinase (PI3K) in mammalian cells and produces the vast majority of cellular phosphatidylinositol-3-phosphate [PI(3)P]. PI(3)P is a key signalling lipid that plays many membrane trafficking roles in processes such as endocytosis and autophagy. VPS34 is a key cellular regulator, loss of function can have catastrophic effects and is embryonic lethal (Zhou et al., 2011). The levels of cellular PI(3)P can be determined by fluorescent staining techniques and can be used to monitor effects upon VPS34 activity, however it is important to verify that any changes are mediated by VPS34, particularly as alternate pathways of PI(3)P production are possible such as via class II PI3Ks (Devereaux et al., 2013). Assaying VPS34 activity directly in vitro can be a key stage in delineating the action of a particular stimulus.
Collapse
Affiliation(s)
- Michael J Munson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
40
|
Valet C, Severin S, Chicanne G, Laurent PA, Gaits-Iacovoni F, Gratacap MP, Payrastre B. The role of class I, II and III PI 3-kinases in platelet production and activation and their implication in thrombosis. Adv Biol Regul 2015; 61:33-41. [PMID: 26714793 DOI: 10.1016/j.jbior.2015.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
Abstract
Blood platelets play a pivotal role in haemostasis and are strongly involved in arterial thrombosis, a leading cause of death worldwide. Besides their critical role in pathophysiology, platelets represent a valuable model to investigate, both in vitro and in vivo, the biological roles of different branches of the phosphoinositide metabolism, which is highly active in platelets. While the phospholipase C (PLC) pathway has a crucial role in platelet activation, it is now well established that at least one class I phosphoinositide 3-kinase (PI3K) is also mandatory for proper platelet functions. Except class II PI3Kγ, all other isoforms of PI3Ks (class I α, β, γ, δ; class II α, β and class III) are expressed in platelets. Class I PI3Ks have been extensively studied in different models over the past few decades and several isoforms are promising drug targets to treat cancer and immune diseases. In platelet activation, it has been shown that while class I PI3Kδ plays a minor role, class I PI3Kβ has an important function particularly in thrombus growth and stability under high shear stress conditions found in stenotic arteries. This class I PI3K is a potentially interesting target for antithrombotic strategies. The role of class I PI3Kα remains ill defined in platelets. Herein, we will discuss our recent data showing the potential impact of inhibitors of this kinase on thrombus formation. The role of class II PI3Kα and β as well as class III PI3K (Vps34) in platelet production and function is just emerging. Based on our data and those very recently published in the literature, we will discuss the impact of these three PI3K isoforms in platelet production and functions and in thrombosis.
Collapse
Affiliation(s)
- Colin Valet
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Sonia Severin
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | - Gaëtan Chicanne
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France
| | | | | | | | - Bernard Payrastre
- Inserm U1048, I2MC and Université Paul Sabatier, 31432, Toulouse Cedex 04, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059, Toulouse Cedex 03, France.
| |
Collapse
|
41
|
Yoon MS. Vps34 and PLD1 take center stage in nutrient signaling: their dual roles in regulating autophagy. Cell Commun Signal 2015; 13:44. [PMID: 26589724 PMCID: PMC4654845 DOI: 10.1186/s12964-015-0122-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/18/2015] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical pathway leading to lysosomal degradation of cellular components in response to changes in nutrient availability. Autophagy includes the biogenesis of autophagosomes and their sequential maturation through fusion with endo-lysosomes. The class III PI3 kinase Vps34 and its product phosphatidylinositol-3-phosphate (PI(3)P) play a critical role in this process, and enable the amino acid-mediated activation of mammalian target of rapamycin (mTOR), a suppressor of autophagy. Recent studies have shown that phospholipase PLD1, a downstream regulator of Vps34, is also closely involved in both mTOR activation and autophagy. This mini review summarizes recent findings in the regulation of Vps34 and PLD1 and highlights the role of these lipid-metabolizing enzymes in both mTOR activation and autophagy.
Collapse
Affiliation(s)
- Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Korea.
| |
Collapse
|
42
|
Alliouachene S, Bilanges B, Chicanne G, Anderson KE, Pearce W, Ali K, Valet C, Posor Y, Low PC, Chaussade C, Scudamore CL, Salamon RS, Backer JM, Stephens L, Hawkins PT, Payrastre B, Vanhaesebroeck B. Inactivation of the Class II PI3K-C2β Potentiates Insulin Signaling and Sensitivity. Cell Rep 2015; 13:1881-94. [PMID: 26655903 PMCID: PMC4675724 DOI: 10.1016/j.celrep.2015.10.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/25/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
In contrast to the class I phosphoinositide 3-kinases (PI3Ks), the organismal roles of the kinase activity of the class II PI3Ks are less clear. Here, we report that class II PI3K-C2β kinase-dead mice are viable and healthy but display an unanticipated enhanced insulin sensitivity and glucose tolerance, as well as protection against high-fat-diet-induced liver steatosis. Despite having a broad tissue distribution, systemic PI3K-C2β inhibition selectively enhances insulin signaling only in metabolic tissues. In a primary hepatocyte model, basal PI3P lipid levels are reduced by 60% upon PI3K-C2β inhibition. This results in an expansion of the very early APPL1-positive endosomal compartment and altered insulin receptor trafficking, correlating with an amplification of insulin-induced, class I PI3K-dependent Akt signaling, without impacting MAPK activity. These data reveal PI3K-C2β as a critical regulator of endosomal trafficking, specifically in insulin signaling, and identify PI3K-C2β as a potential drug target for insulin sensitization.
Collapse
Affiliation(s)
- Samira Alliouachene
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Gaëtan Chicanne
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432 Toulouse Cedex 4, France
| | - Karen E Anderson
- Inositide Laboratory, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Wayne Pearce
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Khaled Ali
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Colin Valet
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432 Toulouse Cedex 4, France
| | - York Posor
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Pei Ching Low
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Claire Chaussade
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Cheryl L Scudamore
- Mary Lyon Centre, MRC Harwell, Harwell Science and Innovation Campus, Harwell OX11 0RD, UK
| | - Rachel S Salamon
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Len Stephens
- Inositide Laboratory, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Phill T Hawkins
- Inositide Laboratory, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Bernard Payrastre
- Inserm/UPS UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires, 1 Avenue Jean Poulhès BP 84225, 31432 Toulouse Cedex 4, France
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
43
|
Morris DH, Yip CK, Shi Y, Chait BT, Wang QJ. BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS. ACTA ACUST UNITED AC 2015; 10:398-426. [PMID: 26692106 DOI: 10.1007/s11515-015-1374-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autophagy is an important lysosomal degradation pathway that aids in the maintenance of cellular homeostasis by breaking down and recycling intracellular contents. Dysregulation of autophagy is linked to a growing number of human diseases. The Beclin 1-Vps34 protein-protein interaction network is critical for autophagy regulation and is therefore essential to cellular integrity. Manipulation of autophagy, in particular via modulation of the action of the Beclin 1-Vps34 complexes, is considered a promising route to combat autophagy-related diseases. Here we summarize recent findings on the core components and structural architecture of the Beclin 1-Vps34 complexes, and how these findings provide valuable insights into the molecular mechanisms that underlie the multiple functions of these complexes and for devising therapeutic strategies.
Collapse
Affiliation(s)
- Deanna H Morris
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065
| | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 ; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
44
|
Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G. Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 2015; 27:1-8. [PMID: 26427799 DOI: 10.1016/j.jnutbio.2015.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Recent findings from human and animal studies indicate that maternal undernutrition or overnutrition affects covalent modifications of the fetal genome and its associated histones that can be carried forward to subsequent generations. An adverse outcome of maternal malnutrition is the development of metabolic syndrome, which is defined as a cluster of disorders including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hypertension and insulin resistance. The transgenerational impacts of maternal nutrition are known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The underlying mechanisms include chromatin remodeling, DNA methylation (occurring at the 5'-position of cytosine residues within CpG dinucleotides), histone modifications (acetylation, methylation, phosphorylation, ubiquitination and sumoylation) and expression and activity of small noncoding RNAs. The enzymes catalyzing these reactions include S-adenosylmethionine-dependent DNA and protein methyltransferases, DNA demethylases, histone acetylase (lysine acetyltransferase), general control nonderepressible 5 (GCN5)-related N-acetyltransferase (a superfamily of acetyltransferase) and histone deacetylase. Amino acids (e.g., glycine, histidine, methionine and serine) and vitamins (B6, B12 and folate) play key roles in provision of methyl donors for DNA and protein methylation. Therefore, these nutrients and related metabolic pathways are of interest in dietary treatment of metabolic syndrome. Intervention strategies include targeting epigenetically disturbed metabolic pathways through dietary supplementation with nutrients (particularly functional amino acids and vitamins) to regulate one-carbon-unit metabolism, antioxidative reactions and gene expression, as well as protein methylation and acetylation. These mechanism-based approaches may effectively improve health and well-being of affected offspring.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; Department of Animal Science and Center for Animal Genomics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
45
|
Morphological characterization of Class III phosphoinositide 3-kinase during mouse brain development. Med Mol Morphol 2015; 49:28-33. [DOI: 10.1007/s00795-015-0116-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
46
|
Bedzhov I, Graham SJL, Leung CY, Zernicka-Goetz M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0538. [PMID: 25349447 PMCID: PMC4216461 DOI: 10.1098/rstb.2013.0538] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A critical point in mammalian development is when the early embryo implants into its mother's uterus. This event has historically been difficult to study due to the fact that it occurs within the maternal tissue and therefore is hidden from view. In this review, we discuss how the mouse embryo is prepared for implantation and the molecular mechanisms involved in directing and coordinating this crucial event. Prior to implantation, the cells of the embryo are specified as precursors of future embryonic and extra-embryonic lineages. These preimplantation cell fate decisions rely on a combination of factors including cell polarity, position and cell–cell signalling and are influenced by the heterogeneity between early embryo cells. At the point of implantation, signalling events between the embryo and mother, and between the embryonic and extraembryonic compartments of the embryo itself, orchestrate a total reorganization of the embryo, coupled with a burst of cell proliferation. New developments in embryo culture and imaging techniques have recently revealed the growth and morphogenesis of the embryo at the time of implantation, leading to a new model for the blastocyst to egg cylinder transition. In this model, pluripotent cells that will give rise to the fetus self-organize into a polarized three-dimensional rosette-like structure that initiates egg cylinder formation.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J L Graham
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
47
|
Orogo AM, Gustafsson ÅB. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ Res 2015; 116:489-503. [PMID: 25634972 DOI: 10.1161/circresaha.116.303791] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy is an evolutionarily conserved process by which long-lived proteins and organelles are sequestered by autophagosomes and subsequently degraded by lysosomes for recycling. Autophagy is important for maintaining cardiac homeostasis and is a survival mechanism that is upregulated during stress or starvation. Accumulating evidence suggests that dysregulated or reduced autophagy is associated with heart failure and aging. Thus, modulating autophagy represents an attractive future therapeutic target for treating cardiovascular disease. Activation of autophagy is generally considered to be cardioprotective, whereas excessive autophagy can lead to cell death and cardiac atrophy. It is important to understand how autophagy is regulated to identify ideal therapeutic targets for treating disease. Here, we discuss the key proteins in the core autophagy machinery and describe upstream regulators that respond to extracellular and intracellular signals to tightly coordinate autophagic activity. We review various genetic and pharmacological studies that demonstrate the important role of autophagy in the heart and consider the advantages and limitations of approaches that modulate autophagy.
Collapse
Affiliation(s)
- Amabel M Orogo
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla
| | - Åsa B Gustafsson
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla.
| |
Collapse
|
48
|
Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 2015; 129:363-81. [PMID: 25556159 PMCID: PMC4331606 DOI: 10.1007/s00401-014-1379-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly. This brain neuropathology is characterized by a progressive synaptic dysfunction and neuronal loss, which lead to decline in memory and other cognitive functions. Histopathologically, AD manifests via synaptic abnormalities, neuronal degeneration as well as the deposition of extracellular amyloid plaques and intraneuronal neurofibrillary tangles. While the exact pathogenic contribution of these two AD hallmarks and their abundant constituents [aggregation-prone amyloid β (Aβ) peptide species and hyperphosphorylated tau protein, respectively] remain debated, a growing body of evidence suggests that their development may be paralleled or even preceded by the alterations/dysfunctions in the endolysosomal and the autophagic system. In AD-affected neurons, abnormalities in these cellular pathways are readily observed already at early stages of disease development, and even though many studies agree that defective lysosomal degradation may relate to or even underlie some of these deficits, specific upstream molecular defects are still deliberated. In this review we summarize various pathogenic events that may lead to these cellular abnormalities, in light of our current understanding of molecular mechanisms that govern AD progression. In addition, we also highlight the increasing evidence supporting mutual functional dependence of the endolysosomal trafficking and autophagy, in particular focusing on those molecules and processes which may be of significance to AD.
Collapse
|
49
|
Bedzhov I, Zernicka-Goetz M. Cell death and morphogenesis during early mouse development: are they interconnected? Bioessays 2015; 37:372-8. [PMID: 25640415 PMCID: PMC4409078 DOI: 10.1002/bies.201400147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Shortly after implantation the embryonic lineage transforms from a coherent ball of cells into polarized cup shaped epithelium. Recently we elucidated a previously unknown apoptosis-independent morphogenic event that reorganizes the pluripotent lineage. Polarization cues from the surrounding basement membrane rearrange the epiblast into a polarized rosette-like structure, where subsequently a central lumen is established. Thus, we provided a new model revising the current concept of apoptosis-dependent epiblast morphogenesis. Cell death however has to be tightly regulated during embryogenesis to ensure developmental success. Here, we follow the stages of early mouse development and take a glimpse at the critical signaling and morphogenic events that determine cells destiny and reshape the embryonic lineage.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
50
|
Yu X, Long YC, Shen HM. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 2015; 11:1711-28. [PMID: 26018563 PMCID: PMC4824607 DOI: 10.1080/15548627.2015.1043076] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases.
Collapse
Affiliation(s)
- Xinlei Yu
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Yun Chau Long
- a Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| | - Han-Ming Shen
- b Department of Physiology; Yong Loo Lin School of Medicine, National University of Singapore ; Singapore
| |
Collapse
|