1
|
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EWF, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6:333. [PMID: 34482361 PMCID: PMC8418605 DOI: 10.1038/s41392-021-00702-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA. Mechanistically, LMP1 upregulates STAT5A and recruits HDAC1/2 to the CEBPA locus to reduce its histone acetylation. HDAC inhibition restored CEBPA expression, reversing cellular dedifferentiation and stem-like status in mouse xenograft models. These findings provide a novel mechanistic epigenetic-based insight into virus-induced cellular plasticity and propose a promising concept of differentiation therapy in solid tumor by using HDAC inhibitors to target cellular plasticity.
Collapse
Affiliation(s)
- Jiajun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Wenjun Fan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Youping Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiangbo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meiling Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xuan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yan Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Mengjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Chunli Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Zhijie Kang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jinsong Yan
- Department of Hematology; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology, The Affiliated Second Hospital of Dalian Medical University, Dalian, China.
| | - Yixin Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Mingyuan Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China.
- Sun Yat-sen Institute of Hematology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Yarza R, Bover M, Agulló-Ortuño MT, Iglesias-Docampo LC. Current approach and novel perspectives in nasopharyngeal carcinoma: the role of targeting proteasome dysregulation as a molecular landmark in nasopharyngeal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:202. [PMID: 34154654 PMCID: PMC8215824 DOI: 10.1186/s13046-021-02010-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) represents a molecularly paradigmatic tumor given the complex diversity of environmental as well as host dependent factors that are closely implicated in tissue transformation and carcinogenesis. Epstein Barr Virus (EBV) plays a key role in tissue invasion, hyperplasia and malignant transformation. Therefore, EBV related oncoviral proteins such as Latent Membrane Protein family (LMP1, LMP2), Epstein Barr Nuclear Antigen 1 (EBNA1) and EBV related glycoprotein B (gB) are responsible for inducing intracellular signalling aberrations leading to sustained proliferation and further acquisition of NPC related invasive nature and metastatic potential.Dysregulation of proteasome signaling seems to be centrally implicated in oncoviral protein stabilization as well as in modulating tumor microenvironment. Different studies in vitro and in vivo suggest a potential role of proteasome inhibitors in the therapeutic setting of NPC. Furthermore, alterations affecting proteasome signalling in NPC have been associated to tumor growth and invasion, distant metastasis, immune exclusion and resistance as well as to clinical poor prognosis. So on, recent studies have shown the efficacy of immunotherapy as a suitable therapeutic approach to NPC. Nevertheless, novel strategies seem to look for combinatorial regimens aiming to potentiate immune recognition as well as to restore both primary and acquired immune resistance.In this work, our goal is to thoroughly review the molecular implications of proteasome dysregulation in the molecular pathogenesis of NPC, together with their direct relationship with EBV related oncoviral proteins and their role in promoting immune evasion and resistance. We also aim to hypothesize about the feasibility of the use of proteasome inhibitors as part of immunotherapy-including combinatorial regimens for their potential role in reversing immune resistance and favouring tumor recognition and eventual tumor death.
Collapse
Affiliation(s)
- Ramon Yarza
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain. .,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.
| | - Mateo Bover
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Maria Teresa Agulló-Ortuño
- Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain. .,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain. .,Biomedical Research Networking Centre: Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain. .,Facultad de Fisioterapia y Enfermería, Universidad de Castilla La Mancha (UCLM), Toledo, Spain.
| | - Lara Carmen Iglesias-Docampo
- Medical Oncology Division, Hospital Universitarioss 12 de Octubre, Avda. Córdoba s/n, E-28041, Madrid, Spain.,Clinical and Translational Laboratory, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Lung Cancer Group, Clinical Research Program (H12O-CNIO), Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
3
|
Wild-type IDH2 contributes to Epstein-Barr virus-dependent metabolic alterations and tumorigenesis. Mol Metab 2020; 36:100966. [PMID: 32224436 PMCID: PMC7109632 DOI: 10.1016/j.molmet.2020.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Objective Epstein–Barr virus (EBV) is a well-recognized oncogenic virus that can induce host cell metabolic reprogramming and tumorigenesis by targeting vital metabolic enzymes or regulators. This study aims to explore the role of wild-type isocitrate dehydrogenase 2 (IDH2) in metabolic reprogramming and tumorigenesis induced by EBV-encoded latent membrane protein 1 (LMP1). Methods Mechanistic dissection of wild-type IDH2 in EBV-LMP1-induced tumorigenesis was investigated using western blotting, real-time polymerase chain reaction (PCR), immunochemistry, chromatin immunoprecipitation (ChIP), and luciferase assay. The role of wild-type IDH2 was examined by cell viability assays/Sytox Green staining in vitro and xenograft assays in vivo. Results IDH2 over-expression is a prognostic indicator of poorer disease-free survival for patients with head and neck squamous cell carcinoma (HNSCC). IDH2 expression is also upregulated in nasopharyngeal carcinoma (NPC, a subtype of HNSCC) tissues, which is positively correlated with EBV-LMP1 expression. EBV-LMP1 contributes to NPC cell viability and xenograft tumor growth mediated through wild-type IDH2. IDH2-dependent changes in intracellular α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG) contribute to EBV-LMP1-induced tumorigenesis in vitro and in vivo. Elevated serum 2-HG level is associated with high EBV DNA and viral capsid antigen-immunoglobulin A (VCA-IgA) levels in patients with NPC. A significantly positive correlation exists between serum 2-HG level and regional lymph node metastases of NPC. EBV-LMP1 enhances the binding of c-Myc with the IDH2 promoter and transcriptionally activates wild-type IDH2 through c-Myc. Targeting IDH2 decreased intracellular 2-HG levels and survival of EBV-LMP1-positive tumor cells in vitro and in vivo. Conclusions Our results demonstrate that the EBV-LMP1/c-Myc/IDH2WT signaling axis is critical for EBV-dependent metabolic changes and tumorigenesis, which may provide new insights into EBV-related cancer diagnosis and therapy.
Collapse
|
4
|
Shi F, Zhou M, Shang L, Du Q, Li Y, Xie L, Liu X, Tang M, Luo X, Fan J, Zhou J, Gao Q, Qiu S, Wu W, Zhang X, Bode AM, Cao Y. EBV(LMP1)-induced metabolic reprogramming inhibits necroptosis through the hypermethylation of the RIP3 promoter. Theranostics 2019; 9:2424-2438. [PMID: 31131045 PMCID: PMC6525991 DOI: 10.7150/thno.30941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
EBV infection is a recognized epigenetic driver of carcinogenesis. We previously showed that EBV could protect cancer cells from TNF-induced necroptosis. This study aims to explore the epigenetic mechanisms allowing cancer cells with EBV infection to escape from RIP3-dependent necroptosis. Methods: Data from the TCGA database were used to evaluate the prognostic value of RIP3 promoter methylation and its expression. Western blotting, real-time PCR, and immunochemistry were conducted to investigate the relationship between LMP1 and RIP3 in cell lines and NPC tissues. BSP, MSP and hMeDIP assays were used to examine the methylation level. Induction of necroptosis was detected by cell viability assay, p-MLKL, and Sytox Green staining. Results: RIP3 promoter hypermethylation is an independent prognostic factor of poorer disease-free and overall survival in HNSCC patients, respectively. RIP3 is down-regulated in NPC (a subtype of HNSCC). EBV(LMP1) suppresses RIP3 expression by hypermethylation of the RIP3 promoter. RIP3 protein expression was inversely correlated with LMP1 expression in NPC tissues. Restoring RIP3 expression in EBV(LMP1)-positive cells inhibits xenograft tumor growth. The accumulation of fumarate and reduction of α-KG in EBV(LMP1)-positive cells led to RIP3 silencing due to the inactivation of TETs. Decreased FH activity caused fumarate accumulation, which might be associated with its acetylation. Incubating cells with fumarate protected NPC cells from TNF-induced necroptosis. Conclusion: These results demonstrate a pathway by which EBV(LMP1)-associated metabolite changes inhibited necroptosis signaling by DNA methylation, and shed light on the mechanism underlying EBV-related carcinogenesis, which may provide new options for cancer diagnosis and therapy.
Collapse
|
5
|
Cheerathodi MR, Meckes DG. The Epstein-Barr virus LMP1 interactome: biological implications and therapeutic targets. Future Virol 2018; 13:863-887. [PMID: 34079586 DOI: 10.2217/fvl-2018-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
The oncogenic potential of Epstein-Barr virus (EBV) is mostly attributed to latent membrane protein 1 (LMP1), which is essential and sufficient for transformation of fibroblast and primary lymphocytes. LMP1 expression results in the activation of multiple signaling cascades like NF-ΚB and MAP kinases that trigger cell survival and proliferative pathways. LMP1 specific signaling events are mediated through the recruitment of a number of interacting proteins to various signaling domains. Based on these properties, LMP1 is an attractive target to develop effective therapeutics to treat EBV-related malignancies. In this review, we focus on LMP1 interacting proteins, associated signaling events, and potential targets that could be exploited for therapeutic strategies.
Collapse
Affiliation(s)
- Mujeeb R Cheerathodi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306
| |
Collapse
|
6
|
Al-Thawadi H, Ghabreau L, Aboulkassim T, Yasmeen A, Vranic S, Batist G, Al Moustafa AE. Co-Incidence of Epstein-Barr Virus and High-Risk Human Papillomaviruses in Cervical Cancer of Syrian Women. Front Oncol 2018; 8:250. [PMID: 30035100 PMCID: PMC6043788 DOI: 10.3389/fonc.2018.00250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) has been recently shown to be co-present with high-risk human papillomaviruses (HPVs) in human cervical cancer; thus, these oncoviruses play an important role in the initiation and/or progression of this cancer. Accordingly, our group has recently viewed the presence and genotyping distribution of high-risk HPVs in cervical cancer in Syrian women; our data pointed out that HPVs are present in 42/44 samples (95%). Herein, we aim to explore the co-prevalence of EBV and high-risk HPVs in 44 cervical cancer tissues from Syrian women using polymerase chain reaction, immunohistochemistry, and tissue microarray analyses. We found that EBV and high-risk HPVs are co-present in 15/44 (34%) of the samples. However, none of the samples was exclusively EBV-positive. Additionally, we report that the co-expression of LMP1 and E6 genes of EBV and high-risk HPVs, respectively, is associated with poorly differentiated squamous cell carcinomas phenotype; this is accompanied by a strong and diffuse overexpression of Id-1 (93% positivity), which is an important regulator of cell invasion and metastasis. These data imply that EBV and HPVs are co-present in cervical cancer samples in the Middle East area including Syria and their co-presence is associated with a more aggressive cancer phenotype. Future investigations are needed to elucidate the exact role of EBV and HPVs cooperation in cervical carcinogenesis.
Collapse
Affiliation(s)
| | - Lina Ghabreau
- Faculty of Medicine, Pathology Department, University of Aleppo, Aleppo, Syria.,Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria
| | - Tahar Aboulkassim
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | - Gerald Batist
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.,Oncology Department, McGill University, Montreal, QC, Canada
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria.,Oncology Department, McGill University, Montreal, QC, Canada.,College of Medicine and Biomedical Research Centre of Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Hong SW, Kim SM, Jin DH, Kim YS, Hur DY. RPS27a enhances EBV-encoded LMP1-mediated proliferation and invasion by stabilizing of LMP1. Biochem Biophys Res Commun 2017; 491:303-309. [PMID: 28735865 DOI: 10.1016/j.bbrc.2017.07.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is an oncoviral protein that plays a pivotal role in EBV-induced oncogenic transformation. The function of LMP1 in EBV-induced oncogenesis has been well studied. However, the molecular mechanisms underlying LMP1 protein stability remain poorly understood. In this study, we found that ribosomal protein s27a (RPS27a) regulates LMP1 stability by a tandem affinity purification analysis. RPS27a interacts directly with LMP1 in vitro and in vivo. Furthermore, overexpression of RPS27a increases the half-life of LMP1 in 293T cells, whereas downregulation of RPS27a using lentiviral shRNA technology accelerates the decrease in LMP1 protein level in EBV-transformed B cells. We show that LMP1 ubiquitination via the proteasome is completely inhibited by overexpression of RPS27a. RPS27a also enhances LMP1-mediated proliferation and invasion, suggesting that RPS27a interacts with LMP1 and stabilizes it by suppressing proteasome-mediated ubiquitination. These results suggest that RSP27a could be a potential target in EBV-infected LMP1-positive cancer cells.
Collapse
Affiliation(s)
- Seung-Woo Hong
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Pusan 47392, Republic of Korea
| | - Seung-Mi Kim
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Pusan 47392, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Yeong Seok Kim
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Pusan 47392, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Pusan 47392, Republic of Korea.
| |
Collapse
|
8
|
Ikeda JI, Wada N, Nojima S, Tahara S, Tsuruta Y, Oya K, Morii E. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin's lymphoma. Mol Clin Oncol 2016; 5:562-566. [PMID: 27900085 DOI: 10.3892/mco.2016.1012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer-initiating cells (CICs) are specialized cells that have the ability to self-renew and are multipotent. We recently demonstrated that Forkhead box O3a (FoxO3a)-expressing cells exhibited a CIC-like potential in Hodgkin's lymphoma (HL). A proportion of HL patients are infected with Epstein-Barr virus (EBV). EBV-encoded latent membrane protein (LMP) 1 downregulates FoxO3a, suggesting that FoxO3a expression may be abolished in EBV-positive HL. Inhibitors of DNA-binding (ID) proteins are highly conserved transcription factors mediating stem cell functions. To the best of our knowledge, no study has investigated possible associations among ID1, FoxO3a and LMP1 expression in HL to date. We immunohistochemically evaluated the expression of the three abovementioned factors in HL patients. The ID1 expression level was inversely correlated with that of FoxO3a (P=0.00035). LMP1-positive HL cells abundantly expressed ID1 (P=0.029), but not FoxO3a (P=0.00085). Thus, our previous observation that FoxO3a may serve as a marker of CICs may not be applicable in EBV-positive HL patients, but rather ID1 may be a candidate CIC marker in this type of HL.
Collapse
Affiliation(s)
- Jun-Ichiro Ikeda
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoko Tsuruta
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kaori Oya
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. J Virol 2016; 90:3873-3889. [PMID: 26819314 DOI: 10.1128/jvi.03227-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1.
Collapse
|
10
|
Abstract
Almost exactly twenty years after the discovery of Epstein-Barr virus (EBV), the latent membrane protein 1 (LMP1) entered the EBV stage, and soon thereafter, it was recognized as the primary transforming gene product of the virus. LMP1 is expressed in most EBV-associated lymphoproliferative diseases and malignancies, and it critically contributes to pathogenesis and disease phenotypes. Thirty years of LMP1 research revealed its high potential as a deregulator of cellular signal transduction pathways leading to target cell proliferation and the simultaneous subversion of cell death programs. However, LMP1 has multiple roles beyond cell transformation and immortalization, ranging from cytokine and chemokine induction, immune modulation, the global alteration of gene and microRNA expression patterns to the regulation of tumor angiogenesis, cell-cell contact, cell migration, and invasive growth of tumor cells. By acting like a constitutively active receptor, LMP1 recruits cellular signaling molecules associated with tumor necrosis factor receptors such as tumor necrosis factor receptor-associated factor (TRAF) proteins and TRADD to mimic signals of the costimulatory CD40 receptor in the EBV-infected B lymphocyte. LMP1 activates NF-κB, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways. Here, we review LMP1's molecular and biological functions, highlighting the interface between LMP1 and the cellular signal transduction network as an important factor of virus-host interaction and a potential therapeutic target.
Collapse
|
11
|
Jiang Y, Yan B, Lai W, Shi Y, Xiao D, Jia J, Liu S, Li H, Lu J, Li Z, Chen L, Chen X, Sun L, Muegge K, Cao Y, Tao Y. Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 2015; 34:6079-91. [PMID: 25745994 PMCID: PMC4564361 DOI: 10.1038/onc.2015.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus (EBV) causes human lymphoid malignancies, and the EBV product latent membrane protein 1 (LMP1) has been identified as an oncogene in epithelial carcinomas such as nasopharyngeal carcinoma (NPC). EBV can epigenetically reprogram lymphocyte-specific processes and induce cell immortalization. However, the interplay between LMP1 and the NPC host cell remains largely unknown. Here, we report that LMP1 is important to establish the Hox gene expression signature in NPC cell lines and tumor biopsies. LMP1 induces repression of several Hox genes in part via stalling of RNA polymerase II (RNA Pol II). Pol II stalling can be overcome by irradiation involving the epigenetic regulator TET3. Furthermore, we report that HoxC8, one of the genes silenced by LMP1, has a role in tumor growth. Ectopic expression of HoxC8 inhibits NPC cell growth in vitro and in vivo, modulates glycolysis and regulates the expression of tricarboxylic acid (TCA) cycle-related genes. We propose that viral latency products may repress via stalling key mediators that in turn modulate glycolysis.
Collapse
Affiliation(s)
- Yiqun Jiang
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Bin Yan
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Weiwei Lai
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Ying Shi
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 China
| | - Jiantao Jia
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008 China
| | - Hongde Li
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Jinchen Lu
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Ling Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Xue Chen
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Lunqun Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| | - Yongguang Tao
- Cancer Research Institute, Central South University, Changsha, Hunan, 410078 China
- Center for Molecular Imaging, Central South University, Changsha, Hunan, 410078 China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Hunan, 410078 China
- Key Laboratory of Carcinogenesis, Ministry of Health, Hunan, 410078 China
| |
Collapse
|
12
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [PMID: 24095032 DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
13
|
Gourzones C, Busson P, Raab-Traub N. Epstein-Barr Virus and the Pathogenesis of Nasopharyngeal Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013. [DOI: 10.1007/978-1-4614-5947-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
14
|
Zhao Y, Chen X, Jing M, Du H, Zeng Y. Expression of miRNA-146a in nasopharyngeal carcinoma is upregulated by Epstein-Barr virus latent membrane protein 1. Oncol Rep 2012; 28:1237-42. [PMID: 22843060 DOI: 10.3892/or.2012.1933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2012] [Accepted: 05/24/2012] [Indexed: 11/06/2022] Open
Abstract
We aimed to investigate the relationship between miRNA-146a and latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) in nasopharyngeal carcinoma (NPC). The expression levels of LMP1 in 40 cases of NPC, 28 cases of chronic nasopharyngitis and NPC cell lines CNE1 and CNE1-GL (in which LMP1 was stably transfected) were detected by immunohistochemical staining. The expression of miRNA-146a in 16 cases of NPC, 13 cases of chronic nasopharyngitis and cell lines was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. A plasmid containing the luciferase gene under the control of miRNA-146a promoter (pri-miRNA-146a) was constructed and transfected into NPC cells, and the luciferase activity was detected. LMP1 was positive in 17.9% (5/28) of chronic nasopharyngitis cases and 62.5% (25/40) of NPC cases (p<0.01). The miRNA-146a levels in NPC were significantly higher than that in chronic nasopharyngitis (p<0.01), and were higher in CNE1-GL cells than those in CNE1 cells (p<0.01). The expression of miRNA-146a in human NPC was elevated by EBV-associated antigen LMP1, probably through the activation of the miRNA-146a promoter.
Collapse
Affiliation(s)
- Yinghai Zhao
- Department of Pathology, Guangdong Medical College, Zhanjiang 524023, PR China
| | | | | | | | | |
Collapse
|