1
|
Mackelprang RD, Filali-Mouhim A, Richardson B, Lefebvre F, Katabira E, Ronald A, Gray G, Cohen KW, Klatt NR, Pecor T, Celum C, McElrath MJ, Hughes SM, Hladik F, Cameron MJ, Lingappa JR. Upregulation of IFN-stimulated genes persists beyond the transitory broad immunologic changes of acute HIV-1 infection. iScience 2023; 26:106454. [PMID: 37020953 PMCID: PMC10067744 DOI: 10.1016/j.isci.2023.106454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2022] [Revised: 09/15/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic immune activation during HIV-1 infection contributes to morbidity and mortality in people living with HIV. To elucidate the underlying biological pathways, we evaluated whole blood gene expression trajectories from before, through acute, and into chronic HIV-1 infection. Interferon-stimulated genes, including MX1, IFI27 and ISG15, were upregulated during acute infection, remained elevated into chronic infection, and were strongly correlated with plasma HIV-1 RNA as well as TNF-α and CXCL10 cytokine levels. In contrast, genes involved in cellular immune responses, such as CD8A, were upregulated during acute infection before reaching a peak and returning to near pre-infection levels in chronic infection. Our results indicate that chronic immune activation during HIV-1 infection is characterized by persistent elevation of a narrow set of interferon-stimulated genes and innate cytokines. These findings raise the prospect of devising a targeted intervention to restore healthy immune homeostasis in people living with HIV-1.
Collapse
|
2
|
Li Y, Lefebvre F, Nakku-Joloba E, Ronald A, Gray G, de Bruyn G, Kiarie J, Celum C, Cameron MJ, Lingappa JR, Mackelprang RD. Upregulation of PTPRC and Interferon Response Pathways in HIV-1 Seroconverters Prior to Infection. J Infect Dis 2023; 227:714-719. [PMID: 36637125 PMCID: PMC9978315 DOI: 10.1093/infdis/jiac498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) exposed seronegative (HESN) individuals may have unique characteristics that alter susceptibility to HIV-1 infection. However, identifying truly exposed HESN is challenging. We utilized stored data and biospecimens from HIV-1 serodifferent couple cohorts, in which couples' HIV-1 exposures were quantified based on unprotected sex frequency and viral load of the partner with HIV-1. We compared peripheral blood gene expression between 15 HESN and 18 seroconverters prior to infection. We found PTPRC (encoding CD45 antigen) and interferon-response pathways had significantly higher expression among individuals who went on to become seropositive and thus may be a signature for increased acquisition risk.
Collapse
Affiliation(s)
- Yunqi Li
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, USA
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics-Montréal Node, Montreal, Quebec, Canada
| | | | - Allan Ronald
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Glenda Gray
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - James Kiarie
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Suchard MS, Martinson N, Malfeld S, de Assis Rosa D, Mackelprang RD, Lingappa J, Hou X, Rees H, Delany-Moretlwe S, Goldfein H, Ranchod H, Coetzee D, Otwombe K, Morris L, Tiemessen CT, Savulescu DM. Alloimmunity to Class 2 Human Leucocyte Antigens May Reduce HIV-1 Acquisition - A Nested Case-Control Study in HIV-1 Serodiscordant Couples. Front Immunol 2022; 13:813412. [PMID: 35401581 PMCID: PMC8987441 DOI: 10.3389/fimmu.2022.813412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Enveloped viruses, including the Human Immunodeficiency Virus-1 (HIV), incorporate host proteins such as human leucocyte antigens (HLA) into their envelope. Pre-existing antibodies against HLA, termed HLA antibodies, may bind to these surface proteins and reduce viral infectivity. Related evidence includes macaque studies which suggest that xenoimmunization with HLA antigens may protect against simian immunodeficiency virus infection. Since HIV gp120 shows homology with class 2 HLA, including shared affinity for binding to CD4, class 2 HLA antibodies may influence HIV acquisition via binding to gp120 on the viral envelope. We conducted a nested case-control study on HIV serodiscordant couples, comparing the frequency of HLA antibodies among highly exposed persistently seronegative controls with those who went on to acquire HIV (HIV-seroconverters). We first performed low resolution HLA typing on 143 individuals who were HIV-infected at enrollment (index partners) and their corresponding sexual partners (115 highly exposed persistently seronegative individuals and 28 HIV-seroconverters). We then measured HLA class 1 and 2 antibodies in the highly exposed persistently seronegative individuals and HIV-seroconverters at early and late timepoints. We analyzed whether such antibodies were directed at HLA specificities of their HIV-infected index partners, and whether autoantibodies or complement-fixing class 2 HLA antibodies were present. Seventy-nine percent of highly exposed persistently seronegative individuals had HLA antibodies; 56% against class 1 and 50% against class 2 alleles. Half of the group of highly exposed persistently seronegative individuals, prior to seroconversion, expressed class 2 HLA antibodies, compared with only 29% of controls (p=0.05). HIV infection was a sensitizing event leading to de novo development of antibodies against HLA-A and HLA-B loci, but not against class 2 loci. HLA autoantibodies were present in 27% of highly exposed persistently seronegative individuals. Complement-fixing class 2 HLA antibodies did not differ significantly between highly exposed persistently seronegative individuals and seroconverters. In multivariable regression, presence of class 2 HLA antibodies at early timepoints was associated with reduced odds of HIV acquisition (odds ratio 0.330, confidence interval 0.112-0.976, p=0.045). These epidemiological data suggest that pre-existing class 2 HLA antibodies were associated with reduced odds of HIV acquisition.
Collapse
Affiliation(s)
- Melinda S. Suchard
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal Health Research Unit (PHRU), University of The Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Centre for TB Research, Baltimore, MD, United States
| | - Susan Malfeld
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Debbie de Assis Rosa
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Romel D. Mackelprang
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Jairam Lingappa
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Medicine and Department of Paediatrics, University of Washington, Seattle, WA, United States
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Helen Rees
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Sinead Delany-Moretlwe
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Hadassa Goldfein
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Heena Ranchod
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Coetzee
- Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal Health Research Unit (PHRU), University of The Witwatersrand, Johannesburg, South Africa
- Epidemiology and Biostatistics Department, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Virology Department, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Virology Department, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dana M. Savulescu
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
4
|
Ribeiro-Dias F, Oliveira I. A Critical Overview of Interleukin 32 in Leishmaniases. Front Immunol 2022; 13:849340. [PMID: 35309341 PMCID: PMC8927017 DOI: 10.3389/fimmu.2022.849340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interleukin-32 (IL-32) has several immune regulatory properties, which have driven its investigation in the context of various diseases. IL-32 expression is reported to be induced in the lesions of patients with American tegumentary leishmaniasis (ATL) by the New World Leishmania spp. that are responsible for causing ATL and visceral leishmaniasis (VL). IL-32 expression may elevate the inflammatory process through the induction of pro-inflammatory cytokines and also via mechanisms directed to kill the parasites. The genetic variants of IL-32 might be associated with the resistance or susceptibility to ATL, while different isoforms of IL-32 could be associated with distinct T helper lymphocyte profiles. IL-32 also determines the transcriptional profile in the bone marrow progenitor cells to mediate the trained immunity induced by β-glucan and BCG, thereby contributing to the resistance against Leishmania. IL-32γ is essential for the vitamin D-dependent microbicidal pathway for parasite control. In this context, the present review report briefly discusses the data retrieved from the studies conducted on IL-32 in leishmaniasis in humans and mice to highlight the current challenges to understanding the role of IL-32 in leishmaniasis.
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
5
|
Wullt B, Butler DSC, Ambite I, Kinsolving J, Krintel C, Svanborg C. Immunomodulation-A Molecular Solution to Treating Patients with Severe Bladder Pain Syndrome? EUR UROL SUPPL 2021; 31:49-58. [PMID: 34467240 PMCID: PMC8385293 DOI: 10.1016/j.euros.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patients with bladder pain syndrome experience debilitating pain and extreme frequency of urination. Numerous therapeutic approaches have been tested, but as the molecular basis of disease has remained unclear, specific therapies are not available. Objective Recently, a systematic gene deletion strategy identified interleukin-1 (IL-1) hyperactivation as a cause of severe cystitis in a murine model. Treatment with an IL-1 receptor antagonist (IL-1RA) restored health in genetically susceptible mice, linking IL-1–dependent inflammation to pain and pathology in the bladder mucosa. The study objective was to investigate whether IL-1RA treatment might be beneficial in patients with bladder pain syndrome. Design, setting, and participants Patients diagnosed with bladder pain syndrome were invited to participate and subjected to daily IL-1RA injections for 1 wk, followed by a treatment break. Patients with other urological disorders accompanied by pain were included as controls. Outcome measurements and statistical analysis When symptoms returned, treatment was resumed and responding patients were maintained on treatment long term, with individualized dosing regimens. Symptom scores were recorded and molecular effects were quantified by neuropeptide and gene expression analysis. DNA samples were subjected to exome genotyping. Results and limitations IL-1RA treatment reduced bladder pain and the frequency of urination in 13/17 patients (p < 0.001). Substance P levels in urine were lowered, and responders returned to a more normal lifestyle. Neuroinflammatory-dependent and IL-1–dependent gene networks were inhibited, as well as regulators of innate immunity. Genotyping revealed disease-associated IL1R1, NLRP3, and IL1RN DNA sequence variants in the responders. Controls did not benefit from IL-1RA treatment, except for one patent with cystitis cystica. Conclusions In this clinical study, IL-1RA treatment is proposed to reduce chronic bladder pain, immediately and in the long term. Despite the limited number of study patients, the potent acute effect and lasting symptom relief indicate that this therapeutic approach may be worth exploring in controlled clinical trials. Patient summary Treatment with an interleukin-1 (IL-1) receptor antagonist is proposed for treating bladder pain syndrome, as it can result in symptom relief and increase quality of life. Reduced neuroinflammation and IL-1 signaling provided molecular evidence of the treatment effects.
Collapse
Affiliation(s)
- Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel S C Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julia Kinsolving
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Krintel
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Richert-Spuhler LE, Mar CM, Shinde P, Wu F, Hong T, Greene E, Hou S, Thomas K, Gottardo R, Mugo N, de Bruyn G, Celum C, Baeten JM, Lingappa JR, Lund JM. CD101 genetic variants modify regulatory and conventional T cell phenotypes and functions. Cell Rep Med 2021; 2:100322. [PMID: 34195685 PMCID: PMC8233694 DOI: 10.1016/j.xcrm.2021.100322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of circulating inflammatory cell types and show that CD101 variants are associated with increased proinflammatory cytokine production by circulating T cells. One category of CD101 variants is associated with a reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alterations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101 variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased prevalence and altered function of T cell subsets.
Collapse
Affiliation(s)
- Laura E. Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Corinne M. Mar
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Paurvi Shinde
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Feinan Wu
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ting Hong
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Evan Greene
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sharon Hou
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Katherine Thomas
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nelly Mugo
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
7
|
Tang J. Immunogenetic determinants of heterosexual HIV-1 transmission: key findings and lessons from two distinct African cohorts. Genes Immun 2021; 22:65-74. [PMID: 33934119 PMCID: PMC8225584 DOI: 10.1038/s41435-021-00130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Immunogenetic studies in the past three decades have uncovered a broad range of human genetic factors that seem to influence heterosexual HIV-1 transmission in one way or another. In our own work that jointly evaluated both genetic and nongenetic factors in two African cohorts of cohabiting, HIV-1-discordant couples (donor and recipient pairs) at risk of transmission during quarterly follow-up intervals, relatively consistent findings have been seen with three loci (IL19, HLA-A, and HLA-B), although the effect size (i.e., odds ratio or hazards ratio) of each specific variant was quite modest. These studies offered two critical lessons that should benefit future research on sexually transmitted infections. First, in donor partners, immunogenetic factors (e.g., HLA-B*57 and HLA-A*36:01) that operate directly through HIV-1 viral load or indirectly through genital coinfections are equally important. Second, thousands of single-nucleotide polymorphisms previously recognized as "causal" factors for human autoimmune disorders did not appear to make much difference, which is somewhat puzzling as these variants are predicted or known to influence the expression of many immune response genes. Replicating these observations in additional cohorts is no longer feasible as the field has shifted its focus to early diagnosis, universal treatment, and active management of comorbidities.
Collapse
Affiliation(s)
- Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
IL32: The multifaceted and unconventional cytokine. Hum Immunol 2021; 82:659-667. [PMID: 34024634 DOI: 10.1016/j.humimm.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin 32 is a unique intracellular cytokine which affects many cellular and physiological functions like cell death and survival, inflammation and response to pathogens. With numerous transcripts, more than one biologically active isoforms, IL32 drives its effect in diverse cellular functions. A cytokine restricted to higher mammals, it is known to fine tune multiple pathways involved in metabolic processes or infection. It modulates the immune response against diverse pathogens like Leishmania, Mycobacterium and HIV. IL32 has been associated with cancers of inflammatory nature too. It also plays an important role in chronic inflammatory diseases like RA, lung and airway disease like COPD. In this review we have discussed about identification and characterization of this non classical cytokine IL32, its structure and function at gene as well as at protein level, isoforms and their diverse functions. Role of IL32 in multiple diseases and particularly mycobacterial disease has been highlighted here. We have also summarised the genetic variants present in the IL32 gene and it's promoter region. Association of these variants, with cellular phenotype, patho-physiological conditions in different disease have also been discussed here.
Collapse
|
9
|
Abstract
Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Broadly neutralizing human antibodies (bNAbs) with exceptional activity against HIV-1 are currently being tested in HIV-1 prevention trials. The selection of anti-HIV-1 bNAbs for clinical development was primarily guided by their in vitro neutralizing activity against HIV-1 Env pseudotyped viruses. Here we report on the neutralizing activity of 9 anti-HIV-1 bNAbs now in clinical development against 126 Clade A, C, D PBMC-derived primary African isolates. The neutralizing potency and breadth of the bNAbs tested was significantly reduced compared to pseudotyped viruses panels. The difference in sensitivity between pseudotyped viruses and primary isolates varied from 3- to nearly 100-fold depending on the bNAb and the HIV-1 clade. Thus, the neutralizing activity of bNAbs against primary African isolates differs from their activity against pseudovirus panels. The data have significant implications for interpreting the results of ongoing HIV-1 prevention trials.IMPORTANCE HIV remains a major public health problem worldwide, and new therapies and preventive strategies are necessary for controlling the epidemic. Broadly neutralizing antibodies (bNAbs) have been developed in the past decade to fill this gap. The neutralizing activity of these antibodies against diverse HIV strains has mostly been measured using Env-pseudotyped viruses, which overestimate bNAb coverage and potency. In this study we measured the neutralizing activity of nine bNAbs against clade A, C, and D HIV isolates derived from cells of African patients living with HIV and produced in peripheral blood mononuclear cells. We found that the coverage and potency of bNAbs were often significantly lower than what was predicted by Env-psuedotyped viruses, and that this decrease was related to the bNAb biding site class. This data is important for the planning and analysis of clinical trials that seek to evaluate bNAbs for the treatment and prevention of HIV infection in Africa.
Collapse
|
10
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Cheng H, Sewda A, Marquez-Luna C, White SR, Whitney BM, Williams-Nguyen J, Nance RM, Lee WJ, Kitahata MM, Saag MS, Willig A, Eron JJ, Mathews WC, Hunt PW, Moore RD, Webel A, Mayer KH, Delaney JA, Crane PK, Crane HM, Hao K, Peter I. Genetic architecture of cardiometabolic risks in people living with HIV. BMC Med 2020; 18:288. [PMID: 33109212 PMCID: PMC7592520 DOI: 10.1186/s12916-020-01762-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/09/2020] [Accepted: 08/24/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Advances in antiretroviral therapies have greatly improved the survival of people living with human immunodeficiency virus (HIV) infection (PLWH); yet, PLWH have a higher risk of cardiovascular disease than those without HIV. While numerous genetic loci have been linked to cardiometabolic risk in the general population, genetic predictors of the excessive risk in PLWH are largely unknown. METHODS We screened for common and HIV-specific genetic variants associated with variation in lipid levels in 6284 PLWH (3095 European Americans [EA] and 3189 African Americans [AA]), from the Centers for AIDS Research Network of Integrated Clinical Systems cohort. Genetic hits found exclusively in the PLWH cohort were tested for association with other traits. We then assessed the predictive value of a series of polygenic risk scores (PRS) recapitulating the genetic burden for lipid levels, type 2 diabetes (T2D), and myocardial infarction (MI) in EA and AA PLWH. RESULTS We confirmed the impact of previously reported lipid-related susceptibility loci in PLWH. Furthermore, we identified PLWH-specific variants in genes involved in immune cell regulation and previously linked to HIV control, body composition, smoking, and alcohol consumption. Moreover, PLWH at the top of European-based PRS for T2D distribution demonstrated a > 2-fold increased risk of T2D compared to the remaining 95% in EA PLWH but to a much lesser degree in AA. Importantly, while PRS for MI was not predictive of MI risk in AA PLWH, multiethnic PRS significantly improved risk stratification for T2D and MI. CONCLUSIONS Our findings suggest that genetic loci involved in the regulation of the immune system and predisposition to risky behaviors contribute to dyslipidemia in the presence of HIV infection. Moreover, we demonstrate the utility of the European-based and multiethnic PRS for stratification of PLWH at a high risk of cardiometabolic diseases who may benefit from preventive therapies.
Collapse
Affiliation(s)
- Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America
| | - Anshuman Sewda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America.,Institute of Health Management Research, IIHMR University, Jaipur, Rajasthan, India
| | - Carla Marquez-Luna
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Sierra R White
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America
| | - Bridget M Whitney
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States of America
| | - Jessica Williams-Nguyen
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States of America
| | - Robin M Nance
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America.,Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Won Jun Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America
| | - Mari M Kitahata
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States of America.,Center for AIDS Research, University of Washington, Seattle, WA, United States of America
| | - Michael S Saag
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda Willig
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Joseph J Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States of America
| | - W Christopher Mathews
- Department of Medicine, University of California San Diego, San Diego, CA, United States of America
| | - Peter W Hunt
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Richard D Moore
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America.,Department of Epidemiology,
- Johns Hopkins University, Baltimore, MD, United States of America
| | - Allison Webel
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, United States of America
| | - Kenneth H Mayer
- The Fenway Institute at Fenway Health, Boston, MA, United States of America
| | - Joseph A Delaney
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States of America
| | - Paul K Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Heidi M Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States of America.,Center for AIDS Research, University of Washington, Seattle, WA, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States of America.
| |
Collapse
|
12
|
An assessment of toll-like receptor 7 and 8 gene polymorphisms with susceptibility to HIV-1 infection, AIDS development and response to antiretroviral therapy. Immunol Lett 2020; 227:88-95. [PMID: 32888973 DOI: 10.1016/j.imlet.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
Toll-like receptors (TLRs) play an important role in activating the innate immune response, inducing inflammation and initiating the adaptive immune response. In this study, we assess the influence of TLR7 and TLR8 gene polymorphisms on HIV-1 susceptibility, AIDS development, and treatment outcomes. The TLR7 and TLR8 single nucleotide polymorphisms (SNPs) were genotyped through real-time PCR in 222 patients living with HIV-1 and 141 healthy controls. Frequencies of the TLR7-IVS2-151 G/A and TLR7-IVS1 + 1817 G/T genotypes and alleles were not significantly increased in patients with HIV-1 infection compared to healthy controls both in males and females. Whereas, males carrying TLR8 Met allele were twice susceptible to HIV-1 infection compared to subjects with A allele (OR = 2.04, 95 % CI 1.10-3.76; p = 0.021). Interestingly, for TLR8-129 G/C, both males and females carrying G allele and GG genotype, respectively were significantly associated with HIV-1 infection (p < 0.0001). Moreover, the TLR7 IVS1 + 1817 G/T and the TLR8 rs3764880 were associated with protection to progress the AIDS stage in male and female, respectively (p < 0.05). Males carrying TLR7 IVS2-151-A allele showed a significant increased level of HIV-1 viral load pre-treatment, in comparison with individuals carrying the G allele (p-value = 0.036). Additionally, males carrying TLR8 Met allele showed statistically higher HIV viral load at baseline (p-value = 0.04) and after treatment (p-value = 0.013). Regarding CD4 + T cell counts, no significant association was found with TLR7 and TLR8 SNPs before and after antiretroviral treatment. This data demonstrates that TLR8 polymorphisms could affect HIV-1 infection. Moreover, an association between TLR7 IVS2-151-A and TLR8 Met alleles and plasma HIV viral load level was found.
Collapse
|
13
|
Abstract
BACKGROUND 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG), which catalyzes the synthesis of 25-hydroxycholesterol (25HC). 25HC intervenes in metabolic and infectious processes and controls cholesterol homeostasis and influences viral entry into host cells. We verified whether natural resistance to HIV-1 infection in HIV-1-exposed seronegative (HESN) individuals is at least partially mediated by particularities in sterol biosynthesis. METHODS Peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MDMs) isolated from 15 sexually exposed HESN and 15 healthy controls were in vitro HIV-1-infected and analyzed for: percentage of IFNα-producing plasmacytoid dendritic cells (pDCs); cholesterol signaling and inflammatory response RNA expression; resistance to HIV-1 infection. MDMs from five healthy controls were in vitro HIV-1-infected in the absence/presence of exogenously added 25HC. RESULTS IFNα-producing pDCs were augmented in HESN compared with healthy controls both in unstimulated and in in vitro HIV-1-infected PBMCs (P < 0.001). An increased expression of CH25H and of a number of genes involved in cholesterol metabolism (ABCA1, ABCG1, CYP7B1, LXRα, OSBP, PPARγ, SCARB1) was observed as well; this, was associated with a reduced susceptibility to in-vitro HIV-1-infection of PBMCs and MDMs (P < 0.01). Notably, addition of 25HC to MDMs resulted in increased cholesterol efflux and augmented resistance to in-vitro HIV-1-infection. CONCLUSION Results herein show that in HESN sterol metabolism might be particularly efficient. This could be related to the activation of the IFNα pathway and results into a reduced susceptibility to in-vitro HIV-1 infection. These results suggest a possible basis for therapeutic interventions to modulate HIV-1 infection.
Collapse
|
14
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Singh P, Rajput R, Mehra N, Vajpayee M. Analysis of HLA association among North Indian HIV positive individuals with and without tuberculosis. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022] Open
|
16
|
Gingras SN, Tang D, Tuff J, McLaren PJ. Minding the gap in HIV host genetics: opportunities and challenges. Hum Genet 2020; 139:865-875. [PMID: 32409920 PMCID: PMC7272494 DOI: 10.1007/s00439-020-02177-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have been successful in identifying and confirming novel genetic variants that are associated with diverse HIV phenotypes. However, these studies have predominantly focused on European cohorts. HLA molecules have been consistently associated with HIV outcomes, some of which have been found to be population specific, underscoring the need for diversity in GWAS. Recently, there has been a concerted effort to address this gap that leads to health care (disease prevention, diagnosis, treatment) disparities with marginal improvement. As precision medicine becomes more utilized, non-European individuals will be more and more disadvantaged, as the genetic variants identified in genomic research based on European populations may not accurately reflect that of non-European individuals. Leveraging pre-existing, large, multiethnic cohorts, such as the UK Biobank, 23andMe, and the National Institute of Health's All of Us Research Program, can contribute in raising genomic research in non-European populations and ultimately lead to better health outcomes.
Collapse
Affiliation(s)
- Shanelle N. Gingras
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - David Tang
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Jeffrey Tuff
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Paul J. McLaren
- JC Wilt Infectious Diseases Research Centre, National HIV and Retrovirology Lab, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
17
|
Fenizia C, Saulle I, Clerici M, Biasin M. Genetic and epigenetic regulation of natural resistance to HIV-1 infection: new approaches to unveil the HESN secret. Expert Rev Clin Immunol 2020; 16:429-445. [PMID: 32085689 DOI: 10.1080/1744666x.2020.1732820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Introduction: Since the identification of HIV, several studies reported the unusual case of small groups of subjects showing natural resistance to HIV infection. These subjects are referred to as HIV-1-exposed seronegative (HESN) individuals and include people located in different areas, with diverse ethnic backgrounds and routes of exposure. The mechanism/s responsible for protection from infection in HESN individuals are basically indefinite and most likely are multifactorial.Areas covered: Host factors, including genetic background as well as natural and acquired immunity, have all been associated with this phenomenon. Recently, epigenetic factors have been investigated as possible determinants of reduced susceptibility to HIV infection. With the advent of the OMICS era, the availability of techniques such as GWAS, RNAseq, and exome-sequencing in both bulk cell populations and single cells will likely lead to great strides in the understanding of the HESN mystery.Expert opinion: The employment of increasingly sophisticated techniques is allowing the gathering of enormous amounts of data. The integration of such information will provide important hints that could lead to the identification of viral and host correlates of protection against HIV infection, allowing the development of more effective preventative and therapeutic regimens.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
18
|
Bialek K, Czarny P, Watala C, Wigner P, Talarowska M, Galecki P, Szemraj J, Sliwinski T. Novel association between TGFA, TGFB1, IRF1, PTGS2 and IKBKB single-nucleotide polymorphisms and occurrence, severity and treatment response of major depressive disorder. PeerJ 2020; 8:e8676. [PMID: 32140313 PMCID: PMC7047865 DOI: 10.7717/peerj.8676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
Background Activation of the immune system might affect the severity of depressive episodes as well as response to the antidepressant treatment. The purpose of this study was to investigate whether the occurrence of variant alleles of analyzed SNPs are involved in prevalence and progression of depression. Moreover, selected genes and SNPs have not been investigated in context of the disease severity and treatment. Therefore, six polymorphisms were selected: g.41354391A>G-TGFB1 (rs1800469), g.132484229C>A-IRF (rs2070729), g.186643058A>G-PTGS2 (rs5275), g.186640617C>T-PTGS2 (rs4648308), g.70677994G>A-TGFA (rs2166975) and g.42140549G>T-IKBKB (rs5029748). Methods A total of 360 (180 patients and 180 controls) DNA samples were genotyped using TaqMan probes. Results We observed that A/G of the rs2166975 TGFA, A/C of rs2070729 IRF1 and G/T of rs5029748 IKBKB were associated with an increased risk of depression development while the T/T of rs5029748 IKBKB, T/T of rs4648308 PTGS2 and G/G of rs2166975 TGFA reduced this risk. We also stratified the study group according to gender and found that genotype A/G and allele G of the rs2166975 TGFA, G/T of rs5029748 IKBKB as well as C allele of rs4648308 PTGS2, homozygote A/A and allele A of rs5275 PTGS2 were associated with increased risk of depression development in men while homozygote G/G of rs5275 PTGS2 decreased this risk. Moreover, C/T of rs4648308 PTGS2 and A/G of rs5275 PTGS2 was positively correlated with the risk of the disease occurrence in women. Furthermore, a gene-gene analysis revealed a link between studied polymorphisms and depression. In addition, A/A of rs1800469 TGFB1 was associated with earlier age of onset of the disease while G/G of this SNP increased severity of the depressive episode. Interestingly, A/C of rs2070729 IRF1 and T/T of rs5029748 IKBKB may modulate the effectiveness of selective serotonin reuptake inhibitors therapy. In conclusion, studied SNPs may modulate the risk of occurrence, age of onset, severity of the disease and response to the antidepressant treatment.
Collapse
Affiliation(s)
- Katarzyna Bialek
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Monika Talarowska
- Institute of Psychology, Department of Personality and Individual Differences, University of Lodz, Lodz, Poland
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Powell TR, Duarte RRR, Hotopf M, Hatch SL, de Mulder Rougvie M, Breen GD, Lewis CM, Nixon DF. The behavioral, cellular and immune mediators of HIV-1 acquisition: New insights from population genetics. Sci Rep 2020; 10:3304. [PMID: 32094379 PMCID: PMC7039899 DOI: 10.1038/s41598-020-59256-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Millions are exposed to the human immunodeficiency virus type 1 (HIV-1) every year, but not all acquire the virus, suggesting a potential role for host genetics in the moderation of HIV-1 acquisition. Here, we analyzed summary statistics from the largest genome-wide association study of HIV-1 acquisition to-date, consisting of 6,334 infected patients and 7,247 population controls, to advance our understanding of the genetic mechanisms implicated in this trait. We found that HIV-1 acquisition is polygenic and heritable, with SNP heritability estimates explaining 28-42% of the variance in this trait at a population level. Genetic correlations alongside UK Biobank data revealed associations with smoking, prospective memory and socioeconomic traits. Gene-level enrichment analysis identified EF-hand calcium binding domain 14 as a novel susceptibility gene for HIV-1 acquisition. We also observed that susceptibility variants for HIV-1 acquisition were significantly enriched for genes expressed in T-cells, but also in striatal and hippocampal neurons. Finally, we tested how polygenic risk scores for HIV-1 acquisition influence blood levels of 35 inflammatory markers in 406 HIV-1-negative individuals. We found that higher genetic risk for HIV-1 acquisition was associated with lower levels of C-C motif chemokine ligand 17. Our findings corroborate a complex model for HIV-1 acquisition, whereby susceptibility is partly heritable and moderated by specific behavioral, cellular and immunological parameters.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK. .,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Rodrigo R R Duarte
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Matthew Hotopf
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stephani L Hatch
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Gerome D Breen
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cathryn M Lewis
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Douglas F Nixon
- Division of Infectious Diseases, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
20
|
Thami PK, Chimusa ER. Population Structure and Implications on the Genetic Architecture of HIV-1 Phenotypes Within Southern Africa. Front Genet 2019; 10:905. [PMID: 31611910 PMCID: PMC6777512 DOI: 10.3389/fgene.2019.00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The interesting history of Southern Africa has put the region in the spotlight for population medical genetics. Major events including the Bantu expansion and European colonialism have imprinted unique genetic signatures within autochthonous populations of Southern Africa, this resulting in differential allele frequencies across the region. This genetic structure has potential implications on susceptibility and resistance to infectious diseases such as human immunodeficiency virus (HIV) infection. Southern Africa is the region affected worst by HIV. Here, we discuss advances made in genome-wide association studies (GWAS) of HIV-1 in the past 12 years and dissect population diversity within Southern Africa. Our findings accentuate that a plethora of factors such as migration, language and culture, admixture, and natural selection have profiled the genetics of the people of Southern Africa. Genetic structure has been observed among the Khoe-San, among Bantu speakers, and between the Khoe-San, Coloureds, and Bantu speakers. Moreover, Southern African populations have complex admixture scenarios. Few GWAS of HIV-1 have been conducted in Southern Africa, with only one of these identifying two novel variants (HCG22rs2535307 and CCNG1kgp22385164) significantly associated with HIV-1 acquisition and progression. High genetic diversity, multi-wave genetic mixture and low linkage disequilibrium of Southern African populations constitute a challenge in identifying genetic variants with modest risk or protective effect against HIV-1. We therefore posit that it is compelling to assess genome-wide contribution of ancestry to HIV-1 infection. We further suggest robust methods that can pin-point population-specific variants that may contribute to the control of HIV-1 in Southern Africa.
Collapse
Affiliation(s)
- Prisca K Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.,Research Laboratory, Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
21
|
Le Clerc S, Limou S, Zagury JF. Large-Scale "OMICS" Studies to Explore the Physiopatholgy of HIV-1 Infection. Front Genet 2019; 10:799. [PMID: 31572435 PMCID: PMC6754074 DOI: 10.3389/fgene.2019.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
In this review, we present the main large-scale experimental studies that have been performed in the HIV/AIDS field. These “omics” studies are based on several technologies including genotyping, RNA interference, and transcriptome or epigenome analysis. Due to the direct connection with disease evolution, there has been a large focus on genotyping cohorts of well-characterized patients through genome-wide association studies (GWASs), but there have also been several invitro studies such as small interfering RNA (siRNA) interference or transcriptome analyses of HIV-1–infected cells. After describing the major results obtained with these omics technologies—including some with a high relevance for HIV-1 treatment—we discuss the next steps that the community needs to embrace in order to derive new actionable therapeutic or diagnostic targets. Only integrative approaches that combine all big data results and consider their complex interactions will allow us to capture the global picture of HIV molecular pathogenesis. This novel challenge will require large collaborative efforts and represents a huge open field for innovative bioinformatics approaches.
Collapse
Affiliation(s)
- Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation en Urologie et Néphrologie (ITUN), CHU de Nantes, Nantes, France.,Computer Sciences and Mathematics Department, Ecole Centrale de Nantes, Nantes, France
| | - Jean-François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| |
Collapse
|
22
|
Comparisons of Human Immunodeficiency Virus Type 1 Envelope Variants in Blood and Genital Fluids near the Time of Male-to-Female Transmission. J Virol 2019; 93:JVI.01769-18. [PMID: 30996101 DOI: 10.1128/jvi.01769-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2018] [Accepted: 03/15/2019] [Indexed: 11/20/2022] Open
Abstract
To better understand the transmission of human immunodeficiency virus type 1 (HIV-1), the genetic characteristics of blood and genital viruses from males were compared to those of the imputed founding virus population in their female partners. Initially serodiscordant heterosexual African couples with sequence-confirmed male-to-female HIV-1 transmission and blood and genital specimens collected near the time of transmission were studied. Single viral templates from blood plasma and genital tract RNA and DNA were sequenced across HIV-1 env gp160. Eight of 29 couples examined yielded viral sequences from both tissues. Analysis of these couples' sequences demonstrated, with one exception, that the women's founding viral populations arose from a single viral variant and were CCR5 tropic, even though CXCR4 variants were detected within four males. The median genetic distance of the imputed most recent common ancestor of the women's founder viruses showed that they were closer to the semen viruses than to the blood viruses of their transmitting male partner, but this finding was biased by detection of a greater number of viral clades in the blood. Using multiple assays, the blood and genital viruses were consistently found to be compartmentalized in only two of eight men. No distinct amino acid signatures in the men's viruses were found to link to the women's founders, nor did the women's env sequences have shorter variable loops or fewer N-linked glycosylation sites. The lack of selective factors, except for coreceptor tropism, is consistent with others' findings in male-to-female and high-risk transmissions. The infrequent compartmentalization between the transmitters' blood and semen viruses suggests that cell-free blood virus likely includes HIV-1 sequences representative of those of viruses in semen.IMPORTANCE Mucosal transmissions account for the majority of HIV-1 infections. Identification of the viral characteristics associated with transmission would facilitate vaccine design. This study of HIV strains from transmitting males and their seroconverting female partners found that the males' genital tract viruses were rarely distinct from the blood variants. The imputed founder viruses in women were genetically similar to both the blood and genital tract variants of their male partners, indicating a lack of evidence for genital tract-specific lineages. These findings suggest that targeting vaccine responses to variants found in blood are likely to also protect from genital tract variants.
Collapse
|
23
|
Heffron R, Stalter R, Pyra M, Nanda K, Erikson DW, Hladik F, Blue SW, Davis NL, Mugo N, Kourtis AP, Lingappa JR, Baeten JM. HIV risk associated with serum medroxyprogesterone acetate levels among women in East and southern Africa. AIDS 2019; 33:735-744. [PMID: 30585845 PMCID: PMC6399047 DOI: 10.1097/qad.0000000000002123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Some observational studies have found increased HIV risk associated with self-reported use of injectable depot medroxyprogesterone acetate. Testing blood samples for medroxyprogesterone acetate (MPA), the progestin in depot medroxyprogesterone acetate, permits validation of self-reported data, and exploration of whether potential HIV risk is correlated with MPA levels, which are highest soon after injection. METHODS We conducted a case-control study testing archived serum from women who participated in three longitudinal studies of HIV prevention in East and southern Africa. Case samples, from women who acquired HIV, were from visits that occurred at or immediately prior to the first evidence of HIV infection. Secondary analyses restricted to case samples collected within 15 and 30 days of the estimated date of HIV infection. Matched control samples were from women who remained HIV uninfected. We used multivariable conditional logistic regression to compare exogenous hormone levels, quantified through mass spectrometry, among cases and controls. RESULTS When restricted to cases with samples collected within 15 days or less of estimated date of HIV infection, MPA detection was more frequent among women who acquired HIV (adjusted odds ratio = 2.75, 95% confidence interval 1.22-6.19). In this subset, the increase in HIV risk was only among samples with MPA detected at a low level of 0.02-0.50 ng/ml: 36.7% of cases and 9.4% of controls, adjusted odds ratio = 6.03, 95% confidence interval 2.50-14.54. CONCLUSION Detection of MPA at low levels close to the estimated time of HIV acquisition was significantly more frequent among women who acquired HIV. Studies are needed that explore biological mechanisms elicited by any MPA level and HIV risk.
Collapse
Affiliation(s)
| | | | - Maria Pyra
- University of Washington, Seattle, Washington
| | - Kavita Nanda
- Global Health, Population and Nutrition, FHI360, Durham, North Carolina
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Hillsboro, Oregon
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Steven W Blue
- Endocrine Technologies Core, Oregon National Primate Research Center, Hillsboro, Oregon
| | - Nicole L Davis
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nelly Mugo
- University of Washington, Seattle, Washington
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Athena P Kourtis
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | |
Collapse
|
24
|
Davi C, Pastor A, Oliveira T, Neto FBDL, Braga-Neto U, Bigham AW, Bamshad M, Marques ETA, Acioli-Santos B. Severe Dengue Prognosis Using Human Genome Data and Machine Learning. IEEE Trans Biomed Eng 2019; 66:2861-2868. [PMID: 30716030 DOI: 10.1109/tbme.2019.2897285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Dengue has become one of the most important worldwide arthropod-borne diseases. Dengue phenotypes are based on laboratorial and clinical exams, which are known to be inaccurate. OBJECTIVE We present a machine learning approach for the prediction of dengue fever severity based solely on human genome data. METHODS One hundred and two Brazilian dengue patients and controls were genotyped for 322 innate immunity single nucleotide polymorphisms (SNPs). Our model uses a support vector machine algorithm to find the optimal loci classification subset and then an artificial neural network (ANN) is used to classify patients into dengue fever or severe dengue. RESULTS The ANN trained on 13 key immune SNPs selected under dominant or recessive models produced median values of accuracy greater than 86%, and sensitivity and specificity over 98% and 51%, respectively. CONCLUSION The proposed classification method, using only genome markers, can be used to identify individuals at high risk for developing the severe dengue phenotype even in uninfected conditions. SIGNIFICANCE Our results suggest that the genetic context is a key element in phenotype definition in dengue. The methodology proposed here is extendable to other Mendelian based and genetically influenced diseases.
Collapse
|
25
|
Kleinstein SE, Shea PR, Allen AS, Koelle DM, Wald A, Goldstein DB. Genome-wide association study (GWAS) of human host factors influencing viral severity of herpes simplex virus type 2 (HSV-2). Genes Immun 2019; 20:112-120. [PMID: 29535370 PMCID: PMC6113125 DOI: 10.1038/s41435-018-0013-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is an incurable viral infection with severity ranging from asymptomatic to frequent recurrences. The viral shedding rate has been shown as a reproducible HSV-2 severity end point that correlates with lesion rates. We used a genome-wide association study (GWAS) to investigate the role of common human genetic variation in HSV-2 severity. We performed a GWAS on 223 HSV-2-positive participants of European ancestry. Severity was measured by viral shedding rate, as defined by the percent of days PCR+ for HSV-2 DNA over at least 30 days. Analyses were performed under linear regression models, adjusted for age, sex, and ancestry. There were no genome-wide significant (p < 5E-08) associations with HSV-2 viral shedding rate. The top nonsignificant SNP (rs75932292, p = 6.77E-08) associated with HSV-2 viral shedding was intergenic, with the nearest known biologically interesting gene (ABCA1) ~130 kbp downstream. Several other SNPs approaching significance were in or near genes with viral or neurological associations, including four SNPs in KIF1B. The current study is the first comprehensive genome-wide investigation of human genetic variation in virologic severity of established HSV-2 infection. However, no significant associations were observed with HSV-2 virologic severity, leaving the exact role of human variation in HSV-2 severity unclear.
Collapse
Affiliation(s)
- Sarah E Kleinstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27708, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Benaroya Research Institute, Seattle, WA, 98101, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
26
|
Omae Y, Tokunaga K. Genetics of Infectious Diseases. GENOME-WIDE ASSOCIATION STUDIES 2019:145-174. [DOI: 10.1007/978-981-13-8177-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2025]
|
27
|
Corona E, Wang L, Ko D, Patel CJ. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility. PLoS One 2018; 13:e0196676. [PMID: 29799843 PMCID: PMC5969750 DOI: 10.1371/journal.pone.0196676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/14/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.
Collapse
Affiliation(s)
- Erik Corona
- Department of Biomedical Informatics, RTI International, Durham, NC, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
28
|
Tsiara CG, Nikolopoulos GK, Dimou NL, Pantavou KG, Bagos PG, Mensah B, Talias M, Braliou GG, Paraskeva D, Bonovas S, Hatzakis A. Interleukin gene polymorphisms and susceptibility to HIV-1 infection: a meta-analysis. J Genet 2018; 97:235-251. [PMID: 29666343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Some subjects are repeatedly exposed to human immunodeficiency virus (HIV), yet they remain uninfected. This suggests the existence of host-resistance mechanisms. The current study synthesizes the evidence regarding the association between interleukin (IL) gene polymorphisms and HIV susceptibility. Medline, Scopus and the Web of Science databases were systematically searched, and a meta-analysis of case-control studies was conducted. Univariate and bivariate methods were used. The literature search identified 42 eligible studies involving 15,727 subjects. Evidence was obtained on eight single-nucleotide polymorphisms (SNPs): IL1A -889 C>T (rs1800587), IL1B +3953/4 C>T (rs1143634), IL4 -589/90 C>T (rs2243250), IL6 -174 G>C (rs1800795), IL10 -592 C>A (rs1800872), IL10-1082 A>G (rs1800896), IL12B -1188 A>C (rs3212227) and IL28B C>T (rs12979860). The IL1B +3953/4 C>T variant appears to increase the risk of HIV acquisition, under the assumption of a recessive genetic model (odds ratio (OR): 4.47, 95% CI: 2.35-8.52). The AA homozygotes of the IL10 -592 C>A SNP had an increased, marginally nonsignificant, risk (OR: 1.39, 95% CI: 0.97-2.01). It reached, however, significance in sub analyses (OR: 1.49, 95% CI: 1.04-2.12). Finally, the well-studied hepatitis C virus (HCV) infection IL28B (rs12979860) CT/TT genotypes were associated with a 27% decrease in HIV infection risk, especially in populations infected with HCV (OR: 0.73, 95% CI: 0.57-0.95). Interleukin signalling is perhaps important in HIV infection and some interleukin genetic variants may affect the risk of HIV acquisition. Approaches targeting specific genes and genome wide association studies should be conducted to decipher the effect of these polymorphisms.
Collapse
Affiliation(s)
- Chrissa G Tsiara
- Hellenic Centre for Disease Control and Prevention, 15123 Athens, Greece. ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palstra RJ, de Crignis E, Röling MD, van Staveren T, Kan TW, van Ijcken W, Mueller YM, Katsikis PD, Mahmoudi T. Allele-specific long-distance regulation dictates IL-32 isoform switching and mediates susceptibility to HIV-1. SCIENCE ADVANCES 2018; 4:e1701729. [PMID: 29507875 PMCID: PMC5833994 DOI: 10.1126/sciadv.1701729] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
We integrated data obtained from HIV-1 genome-wide association studies with T cell-derived epigenome data and found that the noncoding intergenic variant rs4349147, which is statistically associated with HIV-1 acquisition, is located in a CD4+ T cell-specific deoxyribonuclease I hypersensitive region, suggesting regulatory potential for this variant. Deletion of the rs4349147 element in Jurkat cells strongly reduced expression of interleukin-32 (IL-32), approximately 10-kb upstream, and chromosome conformation capture assays identified a chromatin loop between rs4349147 and the IL-32 promoter validating its function as a long-distance enhancer. We generated single rs4349147-A or rs4349147-G allele clones and demonstrated that IL-32 enhancer activity and interaction with the IL-32 promoter are strongly allele dependent; rs4349147 -/A cells display reduced IL-32 expression and altered chromatin conformation as compared to rs4349147 G/- cells. Moreover, RNA sequencing demonstrated that rs4349147 G/- cells express a lower relative ratio of IL-32α to non-α isoforms than rs4349147 -/A cells and display increased expression of lymphocyte activation factors rendering them more prone to infection with HIV-1. In agreement, in primary CD4+ T cells, both treatment with recombinant IL-32γ (rIL-32γ) but not rIL-32α, and exogenous lentiviral overexpression of IL-32γ or IL-32β but not IL-32α resulted in a proinflammatory T cell cytokine environment concomitant with increased susceptibility to HIV infection. Our data demonstrate that rs4349147-G promotes transcription of non-IL-32α isoforms, generating a proinflammatory environment more conducive to HIV infection. This study provides a mechanistic link between a HIV-associated noncoding DNA variant and the expression of different IL-32 isoforms that display discrete anti-HIV properties.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Michael D. Röling
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Thomas van Staveren
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Erasmus Center for Biomics, Erasmus University Medical Center, Ee-671, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Center, Na-1218, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Center, Na-1218, PO Box 2040, 3000CA Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee-634, PO Box 2040, 3000CA Rotterdam, Netherlands
| |
Collapse
|
30
|
McClelland RS, Lingappa JR, Srinivasan S, Kinuthia J, John-Stewart GC, Jaoko W, Richardson BA, Yuhas K, Fiedler TL, Mandaliya KN, Munch MM, Mugo NR, Cohen CR, Baeten JM, Celum C, Overbaugh J, Fredricks DN. Evaluation of the association between the concentrations of key vaginal bacteria and the increased risk of HIV acquisition in African women from five cohorts: a nested case-control study. THE LANCET. INFECTIOUS DISEASES 2018; 18:554-564. [PMID: 29396006 DOI: 10.1016/s1473-3099(18)30058-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2017] [Revised: 11/06/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Disruptions of vaginal microbiota might increase women's susceptibility to HIV infection. Advances in molecular microbiology have enabled detailed examination of associations between vaginal bacteria and HIV acquisition. Therefore, this study aimed to evaluate the association between the concentrations of specific vaginal bacteria and increased risk of HIV acquisition in African women. METHODS We did a nested case-control study of participants from eastern and southern Africa. Data from five cohorts of African women (female sex workers, pregnant and post-partum women, and women in serodiscordant relationships) were used to form a nested case-control analysis between women who acquired HIV infection versus those who remained seronegative. Deep sequence analysis of broad-range 16S rRNA gene PCR products was applied to a subset of 55 cases and 55 controls. From these data, 20 taxa were selected for bacterium-specific real-time PCR assays, which were examined in the full cohort as a four-category exposure (undetectable, first tertile, second tertile, and third tertile of concentrations). Conditional logistic regression was used to generate odds ratios (ORs) and 95% CIs. Regression models were stratified by cohort, and adjusted ORs (aORs) were generated from a multivariable model controlling for confounding variables. The Shannon Diversity Index was used to measure bacterial diversity. The primary analyses were the associations between bacterial concentrations and risk of HIV acquisition. FINDINGS Between November, 2004, and August, 2014, we identified 87 women who acquired HIV infection (cases) and 262 controls who did not acquire HIV infection. Vaginal bacterial community diversity was higher in women who acquired HIV infection (median 1·3, IQR 0·4-2·3) than in seronegative controls (0·7, 0·1-1·5; p=0·03). Seven of the 20 taxa showed significant concentration-dependent associations with increased odds of HIV acquisition: Parvimonas species type 1 (first tertile aOR 1·67, 95% CI 0·61-4·57; second tertile 3·01, 1·13-7·99; third tertile 4·64, 1·73-12·46; p=0·005) and type 2 (first tertile 3·52, 1·63-7·61; second tertile 0·85, 0·36-2·02; third tertile 2·18, 1·01-4·72; p=0·004), Gemella asaccharolytica (first tertile 2·09, 1·01-4·36; second tertile 2·02, 0·98-4·17; third tertile 3·03, 1·46-6·30; p=0·010), Mycoplasma hominis (first tertile 1·46, 0·69-3·11; second tertile 1·40, 0·66-2·98; third tertile 2·76, 1·36-5·63; p=0·048), Leptotrichia/Sneathia (first tertile 2·04, 1·02-4·10; second tertile 1·45, 0·70-3·00; third tertile 2·59, 1·26-5·34; p=0·046), Eggerthella species type 1 (first tertile 1·79, 0·88-3·64; second tertile 2·62, 1·31-5·22; third tertile 1·53, 0·72-3·28; p=0·041), and vaginal Megasphaera species (first tertile 3·15, 1·45-6·81; second tertile 1·43, 0·65-3·14; third tertile 1·32, 0·57-3·05; p=0·038). INTERPRETATION Differences in the vaginal microbial diversity and concentrations of key bacteria were associated with greater risk of HIV acquisition in women. Defining vaginal bacterial taxa associated with HIV risk could point to mechanisms that influence HIV susceptibility and provide important targets for future prevention research. FUNDING National Institute of Child Health and Human Development.
Collapse
Affiliation(s)
- R Scott McClelland
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya.
| | - Jairam R Lingappa
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Grace C John-Stewart
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Barbra A Richardson
- Department of Biostatistics, University of Washington, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Krista Yuhas
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Tina L Fiedler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Matthew M Munch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nelly R Mugo
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California at San Francisco, San Francisco, CA, USA
| | - Jared M Baeten
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Connie Celum
- Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Julie Overbaugh
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - David N Fredricks
- Department of Medicine, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
31
|
Genetic and immune determinants of immune activation in HIV-exposed seronegative individuals and their role in protection against HIV infection. INFECTION GENETICS AND EVOLUTION 2017; 66:325-334. [PMID: 29258786 DOI: 10.1016/j.meegid.2017.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/04/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Soon thereafter infection is established, hosts strive for an efficient eradication of microorganisms, with as limited tissue damage as possible, and durable immunological protection against re-infection. On the other hand, pathogens have developed countermeasures to escape host surveillance and to warrant diffusion to other hosts. In this molecular arms race the final results relies on multiple variables, including the genetic and immunologic e correlates of protection available for the host. In the field of HIV-infection, natural protection has been repeatedly associated to the presence of an immune activation state, at least in some cohorts of HESN (HIV-exposed seronegative). Indeed, these subjects, who naturally resist HIV-infection despite repeated exposure to the virus, are characterized by an increased expression of activation markers on circulating cells and greater production of immunological effector molecules both in basal condition and upon specific-stimulation. Although these results are not univocally shared, several publications emphasize the existence of a correlation between polymorphisms in genes associated with increased immune activation and the HESN phenotype. In this review, we will describe some of the genetic variants associated with protection against HIV infection. Understanding the basis of HIV resistance in HESN is mandatory to develop new preventative and therapeutic interventions.
Collapse
|
32
|
Mackelprang RD, Bamshad MJ, Chong JX, Hou X, Buckingham KJ, Shively K, deBruyn G, Mugo NR, Mullins JI, McElrath MJ, Baeten JM, Celum C, Emond MJ, Lingappa JR. Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog 2017; 13:e1006703. [PMID: 29108000 PMCID: PMC5690691 DOI: 10.1371/journal.ppat.1006703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2017] [Revised: 11/16/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022] Open
Abstract
Host genetic variation modifying HIV-1 acquisition risk can inform development of HIV-1 prevention strategies. However, associations between rare or intermediate-frequency variants and HIV-1 acquisition are not well studied. We tested for the association between variation in genic regions and extreme HIV-1 acquisition phenotypes in 100 sub-Saharan Africans with whole genome sequencing data. Missense variants in immunoglobulin-like regions of CD101 and, among women, one missense/5' UTR variant in UBE2V1, were associated with increased HIV-1 acquisition risk (p = 1.9x10-4 and p = 3.7x10-3, respectively, for replication). Both of these genes are known to impact host inflammatory pathways. Effect sizes increased with exposure to HIV-1 after adjusting for the independent effect of increasing exposure on acquisition risk. TRIAL REGISTRATION ClinicalTrials.gov NCT00194519; NCT00557245.
Collapse
Affiliation(s)
- Romel D. Mackelprang
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Jessica X. Chong
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, United States of America
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Kathryn Shively
- Department of Pediatrics, University of Washington, Seattle, United States of America
| | - Guy deBruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, United States of America
- Partners in Health Research and Development, Kenya Medical Research Institute, Thika, Kenya
| | - James I. Mullins
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Microbiology, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
| | - M. Juliana McElrath
- Department of Medicine, University of Washington, Seattle, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, United States of America
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, United States of America
- Department of Pediatrics, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, United States of America
- * E-mail:
| | | |
Collapse
|
33
|
Counseling Framework for HIV-Serodiscordant Couples on the Integrated Use of Antiretroviral Therapy and Pre-exposure Prophylaxis for HIV Prevention. J Acquir Immune Defic Syndr 2017; 74 Suppl 1:S15-S22. [PMID: 27930607 PMCID: PMC5147040 DOI: 10.1097/qai.0000000000001210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Background: For HIV-serodiscordant couples, integrated delivery of antiretroviral therapy (ART) for HIV-positive partners and time-limited pre-exposure prophylaxis (PrEP) for negative partners virtually eliminates HIV transmission. Standardized messaging, sensitive to the barriers and motivators to HIV treatment and prevention, is needed for widespread scale-up of this approach. Methods: Within the Partners Demonstration Project, a prospective interventional project among 1013 serodiscordant couples in Kenya and Uganda, we offered ART to eligible HIV-positive partners and PrEP to HIV-negative partners before ART initiation and through the HIV-positive partner's first 6 months of ART use. We conducted individual and group discussions with counseling staff to elicit the health communication framework and key messages about ART and PrEP that were delivered to couples. Results: Counseling sessions for serodiscordant couples about PrEP and ART included discussions of HIV serodiscordance, PrEP and ART initiation and integrated use, and PrEP discontinuation. ART messages emphasized daily, lifelong use for treatment and prevention, adherence, viral suppression, resistance, side effects, and safety of ART during pregnancy. PrEP messages emphasized daily dosing, time-limited PrEP use until the HIV-positive partner sustained 6 months of high adherence to ART, adherence, safety during conception, side effects, and other risks for HIV. Conclusions: Counseling messages for HIV-serodiscordant couples are integral to the delivery of time-limited PrEP as a “bridge” to ART-driven viral suppression. Their incorporation into programmatic scale-up will maximize intervention impact on the global epidemic.
Collapse
|
34
|
Eybpoosh S, Haghdoost AA, Mostafavi E, Bahrampour A, Azadmanesh K, Zolala F. Molecular epidemiology of infectious diseases. Electron Physician 2017; 9:5149-5158. [PMID: 28979755 PMCID: PMC5614305 DOI: 10.19082/5149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
Molecular epidemiology (ME) is a branch of epidemiology developed by merging molecular biology into epidemiological studies. In this paper, the authors try to discuss the ways that molecular epidemiology studies identify infectious diseases' causation and pathogenesis, and unravel infectious agents' sources, reservoirs, circulation pattern, transmission pattern, transmission probability, and transmission order. They bring real-world examples of research works in each area to make each study design more understandable. They also address some research areas and study design aspects that need further attention in future. They close with some thoughts about future directions in this field and emphasize on the need for training competent molecular epidemiology specialists that are capable of dealing with rapid advances in the field.
Collapse
Affiliation(s)
- Sana Eybpoosh
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Farzaneh Zolala
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
35
|
Naranbhai V, Carrington M. Host genetic variation and HIV disease: from mapping to mechanism. Immunogenetics 2017; 69:489-498. [PMID: 28695282 PMCID: PMC5537324 DOI: 10.1007/s00251-017-1000-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 12/12/2022]
Abstract
This review aims to provide a summary of current knowledge of host genetic effects on human immunodeficiency virus (HIV) disease. Mapping of simple single nucleotide polymorphisms (SNP) has been largely successful in HIV, but more complex genetic associations involving haplotypic or epigenetic variation, for example, remain elusive. Mechanistic insights explaining SNP associations are incomplete, but continue to be forthcoming. The number of robust immunogenetic correlates of HIV is modest and their discovery mostly predates the genome-wide era. Nevertheless, genome-wide evaluations have nicely validated the impact of HLA and CCR5 variants on HIV disease, and importantly, made clear the many false positive associations that were previously suggested by studies using the candidate gene approach. We describe how multiple HIV outcome measures such as acquisition, viral control, and immune decline have been studied in adults and in children, but that collectively these identify only the two replicable loci responsible for modifying HIV disease, CCR5, and HLA. Recent heritability estimates in this disease corroborate the modest impact of genetic determinants and their oligogenic nature. While the mechanism of protection afforded by genetic variants that diminish CCR5 expression is clear, new aspects of HLA class I-mediated protection continue to be uncovered. We describe how these genetic findings have enhanced insights into immunobiology, been clinically translated into CCR5 antagonists, allowed prioritization of antigens for vaccination efforts, and identified targets for genome-editing interventions. Finally, we describe how studies of genetically complex parts of the genome using new tools may begin revealing additional correlates.
Collapse
Affiliation(s)
- Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| |
Collapse
|
36
|
Diversity and inclusion in genomic research: why the uneven progress? J Community Genet 2017; 8:255-266. [PMID: 28770442 PMCID: PMC5614884 DOI: 10.1007/s12687-017-0316-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Conducting genomic research in diverse populations has led to numerous advances in our understanding of human history, biology, and health disparities, in addition to discoveries of vital clinical significance. Conducting genomic research in diverse populations is also important in ensuring that the genomic revolution does not exacerbate health disparities by facilitating discoveries that will disproportionately benefit well-represented populations. Despite the general agreement on the need for genomic research in diverse populations in terms of equity and scientific progress, genomic research remains largely focused on populations of European descent. In this article, we describe the rationale for conducting genomic research in diverse populations by reviewing examples of advances facilitated by their inclusion. We also explore some of the factors that perpetuate the disproportionate attention on well-represented populations. Finally, we discuss ongoing efforts to ameliorate this continuing bias. Collaborative and intensive efforts at all levels of research, from the funding of studies to the publication of their findings, will be necessary to ensure that genomic research does not conserve historical inequalities or curtail the contribution that genomics could make to the health of all humanity.
Collapse
|
37
|
Objective Measurement of Inaccurate Condom Use Reporting Among Women Using Depot Medroxyprogesterone Acetate for Contraception. AIDS Behav 2017; 21:2173-2179. [PMID: 27699594 DOI: 10.1007/s10461-016-1563-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
Abstract
Observational analyses have suggested that women using the injectable contraceptive depot medroxyprogesterone acetate (DMPA) may have heightened risk of acquiring HIV. However, those analyses were potentially confounded by sexual behavior, with possible differential condom use and reporting by women using DMPA versus no contraception. In a cross-sectional study, we measured the presence of a biomarker of recent condomless sex (Y chromosomal [Yc] DNA) in vaginal swabs from HIV-uninfected African women who had an HIV-infected partner and reported 100 % condom use. Half of the samples tested were from women reporting DMPA and half were from women using no contraception. Among 428 specimens tested (213 from DMPA users and 215 from women using no contraception), 32.0 % had Yc DNA detected, with a mean of 193 copies/10,000 human cells (range 0.1-8201). The frequency of detection did not differ by contraceptive use: 34.2 % of DMPA users versus 29.8 % of women using no contraception, adjusted odds ratio 1.3 (95 % confidence interval 0.9-2.0). These results suggest that inaccurate reporting of condom use by DMPA users may not account for the heightened risk of HIV acquisition among DMPA users in some observational studies.
Collapse
|
38
|
HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity. PLoS One 2016; 11:e0150835. [PMID: 27100290 PMCID: PMC4839606 DOI: 10.1371/journal.pone.0150835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count).
Collapse
|
39
|
Thørner LW, Erikstrup C, Harritshøj LH, Larsen MH, Kronborg G, Pedersen C, Larsen CS, Pedersen G, Gerstoft J, Obel N, Ullum H. Impact of polymorphisms in the HCP5 and HLA-C, and ZNRD1 genes on HIV viral load. INFECTION GENETICS AND EVOLUTION 2016; 41:185-190. [PMID: 27083073 DOI: 10.1016/j.meegid.2016.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 03/30/2016] [Indexed: 01/16/2023]
Abstract
AIMS Single nucleotide polymorphisms (SNPs) in the human leucocyte antigen (HLA) complex P5 (HCP5), HLA-C, and near the zinc ribbon domain containing 1 (ZNRD1) have been shown to influence viral load (VL) set point in HIV-infected individuals with a known seroconversion onset. We aimed to determine the influence of HCP5 rs2395029, HLA-C rs9264942, and ZNRD1 rs3869068 on VL in antiretroviral-naïve individuals and on time to the first VL<51 copies/ml and on CD4(+) T-cell recovery after initiation of combination antiretroviral therapy (cART). MATERIAL AND METHODS We genotyped the rs2395029 (A>C), rs9264942 (T>C), and rs3869068 (C>T) SNPs in 1897 Caucasians from The Danish HIV Cohort Study - a prospective, nationwide, population-based study of HIV-infected individuals in Denmark. General linear models evaluated the effect of SNPs on VL in antiretroviral-naïve individuals 0-18months after diagnosis and on CD4(+) T-cell recovery during cART. Cox proportional hazard regression analysis assessed the association with time to first VL<51 copies/ml. All models were assuming additive genetic effects. RESULTS The rs2395029, rs9264942, and rs3869068 minor alleles were associated with lower VL in antiretroviral-naïve individuals (rs2395029: [mean VL (copies/ml)], A/A: 70,795 [61,660-79,433], A/C: 33,884 [19,498-58,884], P=0.002; rs9264942: TT: 81,283 [67,608-97,724], T/C: 63,096 [54,954-75,858], CC: 38,905 [25,119-58,884], P<0.0001; rs3869068, CC: 72,444 [63,096-83,176], C/T: 45,709 [33,113-64,565], TT: 58,884 [20,417-169,824], P=0.01). Moreover, the C-alleles of rs2395029 and rs9264942 were associated with shorter time to VL<51 copies/ml: (HR [95% confidence interval], 1.67 [1.09-1.72], P=0.008; 1.16 [1.06-1.28], P=0.002; 1.30 [1.08-1.53], P=0.005, respectively, adjusted for last VL before cART). None of the SNPs predicted CD4(+) T-cell recovery during cART. CONCLUSIONS The minor alleles of rs2395029, rs9264942, and rs3689068 associate with lower VL among antiretroviral-naïve individuals and with shorter time to first VL<51copies/ml during cART even after adjustment for VL before cART.
Collapse
Affiliation(s)
- Lise Wegner Thørner
- Dept. of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Christian Erikstrup
- Dept. of Clinical Immunology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Lene Holm Harritshøj
- Dept. of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Margit Hørup Larsen
- Dept. of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gitte Kronborg
- Dept. of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Court Pedersen
- Dept. of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | - Gitte Pedersen
- Dept. of Infectious Diseases, Aarhus University Hospital, Aalborg, Denmark
| | - Jan Gerstoft
- Dept. of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Obel
- Dept. of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Ullum
- Dept. of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
40
|
Host Response in HIV Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
41
|
Sironi M, Biasin M, Pontremoli C, Cagliani R, Saulle I, Trabattoni D, Vichi F, Lo Caputo S, Mazzotta F, Aguilar-Jimenez W, Rugeles MT, Cedeno S, Sanchez J, Brander C, Clerici M. Variants in the CYP7B1 gene region do not affect natural resistance to HIV-1 infection. Retrovirology 2015; 12:80. [PMID: 26399852 PMCID: PMC4581478 DOI: 10.1186/s12977-015-0206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
Background The genetic bases of natural resistance to HIV-1 infection remain largely unknown. Recently, two genome-wide association studies suggested a role for variants within or in the vicinity of the CYP7B1 gene in modulating HIV susceptibility. CYP7B1 is an appealing candidate for this due to its contribution to antiviral immune responses. We analyzed the frequency of two previously described CYP7B1 variants (rs6996198 and rs10808739) in three independent cohorts of HIV-1 infected subjects and HIV-1 exposed seronegative individuals (HESN). Findings rs6996198 and rs10808739 were genotyped in three case/control cohorts of sexually-exposed HESN and HIV-1-infected individuals from Italy, Peru and Colombia. Comparison of the allele and genotype frequencies of the two SNPs under different models showed that the only significant difference was seen for rs6996198 in the Peruvian sample (nominal p = 0.048, dominant model). For this variant, a random-effect meta-analysis yielded non-significant results (dominant model, p = 0.78) and revealed substantial heterogeneity among cohorts. No significant effect of the rs10808739 allelic status on HIV-1 infection susceptibility (additive model, p = 0.30) emerged from the meta-analysis. Conclusions Although our study had limited power to detect association due to the small sample size, comparisons among the three cohorts revealed very similar allelic and genotypic frequencies in HESN and HIV-1 positive subjects. Overall, these data indicate that the two GWAS-defined variants in the CYP7B1 region do not strongly influence HIV-1 infection susceptibility.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Chiara Pontremoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy.
| | | | | | | | | | - Maria Teresa Rugeles
- Immunovirology Group, School of Medicine, University of Antioquia UdeA, Medellín, Colombia.
| | - Samandhy Cedeno
- AIDS Research Institute-IrsiCaixa-HIVACAT, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. .,University of Vic and Central Catalonia, Vic, Spain.
| | - Jorge Sanchez
- Asociación Civil Impacta Salud y Educación, Lima, Peru.
| | - Christian Brander
- AIDS Research Institute-IrsiCaixa-HIVACAT, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. .,University of Vic and Central Catalonia, Vic, Spain.
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy. .,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy.
| |
Collapse
|
42
|
Mackelprang RD, Scoville CW, Cohen CR, Ondondo RO, Bigham AW, Celum C, Campbell MS, Essex M, Wald A, Kiarie J, Ronald A, Gray G, Lingappa JR. Toll-like receptor gene variants and bacterial vaginosis among HIV-1 infected and uninfected African women. Genes Immun 2015; 16:362-365. [PMID: 25928881 PMCID: PMC4523061 DOI: 10.1038/gene.2015.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2014] [Revised: 02/15/2015] [Accepted: 03/04/2015] [Indexed: 11/11/2022]
Abstract
Bacterial vaginosis (BV) is a common vaginal syndrome associated with altered microflora that increases the risk of preterm delivery and acquisition of sexually transmitted diseases. The cause of BV is unknown although toll-like receptors (TLRs), that are central to innate immune responses, may be important. We evaluated associations between TLR SNPs and BV among HIV-1 infected and uninfected African women. Logistic regression was used to assess associations between SNPs (N=99) in TLRs 2-4, 7-9 and BV (as classified by Nugent's criteria). Among HIV-1 uninfected women, TLR7 rs5743737 and TLR7 rs1634323 were associated with a decreased risk of BV while TLR7 rs179012 was associated with an increased risk. TLR2 SNP rs3804099 was associated with a decreased risk of BV among HIV-1 infected women. Our findings indicate that there may be differences in TLR association with BV among HIV-1 infected and HIV-1 uninfected women.
Collapse
Affiliation(s)
| | | | - Craig R Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco; Bixby Center for Global Reproductive Health
| | - Raphael Omusebe Ondondo
- Kenya Medical Research Institute (KEMRI), Nairobi, Kenya; Masinde Muliro University of Science and Technology (MMUST), Kakamega, Kenya; Consortium for National Health Research (CNHR), Nairobi, Kenya
| | | | - Connie Celum
- Department of Global Health & Medicine, University of Washington
| | - Mary S Campbell
- Department of Medicine, Division of Allergy & Infectious Diseases, University of Washington
| | - Max Essex
- Department of Immunology & Infectious Diseases, Harvard TH Chan School of Public Health
| | - Anna Wald
- Department of Medicine, Laboratory Medicine and Epidemiology, University of Washington; Member, Fred Hutchinson Cancer Research Center
| | - James Kiarie
- Department of Obstetrics and Gynecology, University of Nairobi
| | - Allan Ronald
- Departments of Medical Microbiology and Internal Medicine, University of Manitoba
| | | | - Jairam R Lingappa
- Department of Global Health & Medicine, University of Washington 325 Ninth Ave, Seattle, WA 98104
| | | |
Collapse
|
43
|
Johnson EO, Hancock DB, Gaddis NC, Levy JL, Page G, Novak SP, Glasheen C, Saccone NL, Rice JP, Moreau MP, Doheny KF, Romm JM, Brooks AI, Aouizerat BE, Bierut LJ, Kral AH. Novel genetic locus implicated for HIV-1 acquisition with putative regulatory links to HIV replication and infectivity: a genome-wide association study. PLoS One 2015; 10:e0118149. [PMID: 25786224 PMCID: PMC4364715 DOI: 10.1371/journal.pone.0118149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
Fifty percent of variability in HIV-1 susceptibility is attributable to host genetics. Thus identifying genetic associations is essential to understanding pathogenesis of HIV-1 and important for targeting drug development. To date, however, CCR5 remains the only gene conclusively associated with HIV acquisition. To identify novel host genetic determinants of HIV-1 acquisition, we conducted a genome-wide association study among a high-risk sample of 3,136 injection drug users (IDUs) from the Urban Health Study (UHS). In addition to being IDUs, HIV-controls were frequency-matched to cases on environmental exposures to enhance detection of genetic effects. We tested independent replication in the Women's Interagency HIV Study (N=2,533). We also examined publicly available gene expression data to link SNPs associated with HIV acquisition to known mechanisms affecting HIV replication/infectivity. Analysis of the UHS nominated eight genetic regions for replication testing. SNP rs4878712 in FRMPD1 met multiple testing correction for independent replication (P=1.38x10(-4)), although the UHS-WIHS meta-analysis p-value did not reach genome-wide significance (P=4.47x10(-7) vs. P<5.0x10(-8)) Gene expression analyses provided promising biological support for the protective G allele at rs4878712 lowering risk of HIV: (1) the G allele was associated with reduced expression of FBXO10 (r=-0.49, P=6.9x10(-5)); (2) FBXO10 is a component of the Skp1-Cul1-F-box protein E3 ubiquitin ligase complex that targets Bcl-2 protein for degradation; (3) lower FBXO10 expression was associated with higher BCL2 expression (r=-0.49, P=8x10(-5)); (4) higher basal levels of Bcl-2 are known to reduce HIV replication and infectivity in human and animal in vitro studies. These results suggest new potential biological pathways by which host genetics affect susceptibility to HIV upon exposure for follow-up in subsequent studies.
Collapse
Affiliation(s)
- Eric O. Johnson
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Dana B. Hancock
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Nathan C. Gaddis
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Joshua L. Levy
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Grier Page
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Scott P. Novak
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Cristie Glasheen
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| | - Nancy L. Saccone
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - John P. Rice
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Michael P. Moreau
- Rutgers University Cell and DNA Repository (RUCDR), Piscataway, NJ, United States of America
| | - Kimberly F. Doheny
- Center for Inherited Disease Research (CIDR), Johns Hopkins University, Baltimore, MD, United States of America
| | - Jane M. Romm
- Center for Inherited Disease Research (CIDR), Johns Hopkins University, Baltimore, MD, United States of America
| | - Andrew I. Brooks
- Rutgers University Cell and DNA Repository (RUCDR), Piscataway, NJ, United States of America
| | - Bradley E. Aouizerat
- School of Nursing, University of California San Francisco, San Francisco, CA, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States of America
| | - Laura J. Bierut
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Alex H. Kral
- RTI International, Research Triangle Park, NC, Atlanta, GA, San Francisco, CA, United States of America
| |
Collapse
|
44
|
Mackelprang RD, Carrington M, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, Fife K, Campbell MS, Kapiga S, Gao X, Mullins JI, Lingappa JR. Host genetic and viral determinants of HIV-1 RNA set point among HIV-1 seroconverters from sub-saharan Africa. J Virol 2015; 89:2104-11. [PMID: 25473042 PMCID: PMC4338863 DOI: 10.1128/jvi.01573-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We quantified the collective impact of source partner HIV-1 RNA levels, human leukocyte antigen (HLA) alleles, and innate responses through Toll-like receptor (TLR) alleles on the HIV-1 set point. Data came from HIV-1 seroconverters in African HIV-1 serodiscordant couple cohorts. Linear regression was used to determine associations with set point and R(2) to estimate variation explained by covariates. The strongest predictors of set point were HLA alleles (B*53:01, B*14:01, and B*27:03) and plasma HIV-1 levels of the transmitting partner, which explained 13% and 10% of variation in set point, respectively. HLA-A concordance between partners and TLR polymorphisms (TLR2 rs3804100 and TLR7 rs179012) also were associated with set point, explaining 6% and 5% of the variation, respectively. Overall, these factors and genital factors of the transmitter (i.e., male circumcision, bacterial vaginosis, and use of acyclovir) explained 46% of variation in set point. We found that both innate and adaptive immune responses, together with plasma HIV-1 levels of the transmitting partner, explain almost half of the variation in viral load set point. IMPORTANCE After HIV-1 infection, uncontrolled virus replication leads to a rapid increase in HIV-1 concentrations. Once host immune responses develop, however, HIV-1 levels reach a peak and subsequently decline until they reach a stable level that may persist for years. This stable HIV-1 set point represents an equilibrium between the virus and host responses and is predictive of later disease progression and transmission potential. Understanding how host and virus factors interact to determine HIV-1 set point may elucidate novel mechanisms or biological pathways for treating HIV-1 infection. We identified host and virus factors that predict HIV-1 set point in people who recently acquired HIV-1, finding that both innate and adaptive immune responses, along with factors that likely influence HIV-1 virulence and inoculum, explain ∼46% of the variation in HIV-1 set point.
Collapse
Affiliation(s)
- Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Katherine K Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - James P Hughes
- Department of Biostatistics, University of Washington, Seattle, Washington, USA Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Carey Farquhar
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kenneth Fife
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana, USA Department of Pathology, Indiana University, Indianapolis, Indiana, USA
| | - Mary S Campbell
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Saida Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, Maryland, USA
| | - James I Mullins
- Department of Medicine, University of Washington, Seattle, Washington, USA Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun 2015; 16:213-20. [PMID: 25633979 PMCID: PMC4409473 DOI: 10.1038/gene.2014.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Numerous reports have suggested that immunogenetic factors may influence HIV-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20, and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single nucleotide polymorphisms (SNPs) passed quality control procedures. When HIV-1-exposed seronegative subjects (n = 486) were compared with newly seroconverted individuals (n = 313) and seroprevalent subjects (n = 478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio = 0.64, P = 1.7 × 10−4, and q = 0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.
Collapse
|
46
|
Demirkan A, Henneman P, Verhoeven A, Dharuri H, Amin N, van Klinken JB, Karssen LC, de Vries B, Meissner A, Göraler S, van den Maagdenberg AMJM, Deelder AM, C ’t Hoen PA, van Duijn CM, van Dijk KW. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet 2015; 11:e1004835. [PMID: 25569235 PMCID: PMC4287344 DOI: 10.1371/journal.pgen.1004835] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value = 1.27×10−32), PRODH with proline (P-value = 1.11×10−19), SLC16A9 with carnitine level (P-value = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value = 1.65×10−8) and 2p12 locus with valine (P-value = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits. Human metabolic individuality is under strict control of genetic and environmental factors. In our study, we aimed to find the genetic determinants of circulating molecules in sera of large set of individuals representing the general population. First, we performed a hypothesis-free genome wide screen in this population to identify genetic regions of interest. Our study confirmed four known gene metabolite connections, but also pointed to four novel ones. Genome-wide screens enriched for common intergenic variants may miss causal genetic variations directly changing the protein sequence. To investigate this further, we zoomed into regions of interest and tested whether the association signals obtained in the first stage were direct, or whether they represent causal variations, which were not captured in the initial panel. These subsequent tests showed that protein coding and regulatory variations are involved in metabolite levels. For two genomic regions we also found that genes harbour more than one causal variant influencing metabolite levels independent of each other. We also observed strong connection between markers of cardio-metabolic health and metabolites. Taken together, our novel loci are of interest for further research to investigate the causal relation to for instance type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Ayşe Demirkan
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Henneman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Harish Dharuri
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jan Bert van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Axel Meissner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sibel Göraler
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - André M. Deelder
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A. C ’t Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
47
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
48
|
Kahle EM, Bolton M, Hughes JP, Donnell D, Celum C, Lingappa JR, Ronald A, Cohen CR, de Bruyn G, Fong Y, Katabira E, McElrath MJ, Baeten JM. Plasma cytokine levels and risk of HIV type 1 (HIV-1) transmission and acquisition: a nested case-control study among HIV-1-serodiscordant couples. J Infect Dis 2014; 211:1451-60. [PMID: 25389306 DOI: 10.1093/infdis/jiu621] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A heightened proinflammatory state has been hypothesized to enhance human immunodeficiency virus type 1 (HIV-1) transmission - both susceptibility of HIV-1-exposed persons and infectiousness of HIV-1-infected persons. METHODS Using prospective data from heterosexual African couples with HIV-1 serodiscordance, we conducted a nested case-control analysis to assess the relationship between cytokine concentrations and the risk of HIV-1 acquisition. Case couples (n = 120) were initially serodiscordant couples in which HIV-1 was transmitted to the seronegative partner during the study; control couples (n = 321) were serodiscordant couples in which HIV-1 was not transmitted to the seronegative partner. Differences in a panel of 30 cytokines were measured using plasma specimens from both HIV-1-susceptible and HIV-1-infected partners. Plasma was collected before seroconversion for cases. RESULTS For both HIV-1-infected and HIV-1-susceptible partners, cases and controls had significantly different mean responses in cytokine panels (P < .001, by the Hotelling T(2) test), suggesting a broadly different pattern of immune activation for couples in which HIV-1 was transmitted, compared with couples without transmission. Individually, log10 mean concentrations of interleukin 10 (IL-10) and CXCL10 were significantly higher for both HIV-1-susceptible and HIV-1-infected case partners, compared with HIV-1-susceptible and HIV-1-infected control partners (P < .01 for all comparisons). In multivariate analysis, HIV-1 transmission was significantly associated with elevated CXCL10 concentrations in HIV-1-susceptible partners (P = .001) and with elevated IL-10 concentrations in HIV-1-infected partners (P = .02). CONCLUSIONS Immune activation, as measured by levels of cytokine markers, particularly elevated levels of IL-10 and CXCL1, are associated with increased HIV-1 susceptibility and infectiousness.
Collapse
Affiliation(s)
| | - Michael Bolton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | | | - Deborah Donnell
- Department of Epidemiology Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Connie Celum
- Department of Epidemiology Department of Global Health Department of Medicine
| | - Jairam R Lingappa
- Department of Global Health Department of Medicine Department of Pediatrics, University of Washington
| | - Allan Ronald
- Department of Medicine, University of Manitoba, Winnepeg, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - M Juliana McElrath
- Department of Global Health Department of Medicine Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Jared M Baeten
- Department of Epidemiology Department of Global Health Department of Medicine
| | | |
Collapse
|
49
|
DeBoer J, Jagadish T, Haverland NA, Madson CJ, Ciborowski P, Belshan M. Alterations in the nuclear proteome of HIV-1 infected T-cells. Virology 2014; 468-470:409-420. [PMID: 25240327 DOI: 10.1016/j.virol.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 08/27/2014] [Indexed: 01/17/2023]
Abstract
Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein-protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection.
Collapse
Affiliation(s)
- Jason DeBoer
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nicole A Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christian J Madson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA; The Nebraska Center for Virology, University of Nebraska, Lincoln 68583, USA.
| |
Collapse
|
50
|
Abel L, Alcaïs A, Schurr E. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr Opin Immunol 2014; 30:72-8. [PMID: 25083600 DOI: 10.1016/j.coi.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2014] [Revised: 06/17/2014] [Accepted: 07/06/2014] [Indexed: 01/01/2023]
Abstract
Infectious diseases are the result of the exposure of susceptible hosts to pathogenic microbes. Genetic factors are important determinants of host susceptibility and efforts are being made to establish the molecular identity of such genetic susceptibility variants by genome-wide association studies. Results obtained to date partly confirm already known genetic vulnerabilities, but also point to new and unexpected mechanisms of susceptibility that extend from classical innate and acquired immunity to weaknesses in constitutional resistance. These studies also revealed an overlap in genetic control between infectious disease and other common immune and inflammatory disorders.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; URC, CIC, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- McGill International TB Centre & Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada; Program in Immunology and Infectious Diseases in Global Health, The Research Institute of the McGill University Health Centre, Canada.
| |
Collapse
|