1
|
Sandhanam K, Tamilanban T. Unraveling the noncoding RNA landscape in glioblastoma: from pathogenesis to precision therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9475-9502. [PMID: 39007929 DOI: 10.1007/s00210-024-03265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive type IV brain tumor that originates from astrocytes and has a poor prognosis. Despite intensive research, survival rates have not significantly improved. Noncoding RNAs (ncRNAs) are emerging as critical regulators of carcinogenesis, progression, and increased treatment resistance in GBM cells. They influence angiogenesis, migration, epithelial-to-mesenchymal transition, and invasion in GBM cells. ncRNAs, such as long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are commonly dysregulated in GBM. miRNAs, such as miR-21, miR-133a, and miR-27a-3p, are oncogenes that increase cell proliferation, metastasis, and migration by targeting TGFBR1 and BTG2. In contrast, lncRNAs, such as HOXD-AS2 and LINC00511, are oncogenes that increase the migration, invasion, and proliferation of cells. CircRNAs, such as circ0001730, circENTPD7, and circFOXO3, are oncogenes responsible for cell growth, angiogenesis, and viability. Developing novel therapeutic strategies targeting ncRNAs, cell migration, and angiogenesis is a promising approach for GBM. By targeting these dysregulated ncRNAs, we can potentially restore a healthy balance in gene expression and influence disease progression. ncRNAs abound within GBM, demonstrating significant roles in governing the growth and behavior of these tumors. They may also be useful as biomarkers or targets for therapy. The use of morpholino oligonucleotides (MOs) suppressing the oncogene expression of HOTAIR, BCYRN1, and cyrano, antisense oligonucleotides (ASOs) suppressing the expression of ncRNAs such as MALAT1 and miR-10b, locked nucleic acids (LNAs) suppressing miR-21, and peptide nucleic acids (PNAs) suppressing the expression of miR-155 inhibited the PI3K pathway, tumor growth, angiogenesis, proliferation, migration, and invasion. Targeting oncogenic ncRNAs with RNA-interfering strategies such as MOs, ASOs, LNAs, CRISPR-Cas9 gene editing, and PNA approaches may represent a promising therapeutic strategy for GBM. This review emphasizes the critical role of ncRNAs in GBM pathogenesis, as well as the potential for new therapeutic strategies targeting these pathways to improve the prognosis and quality of life for GBM patients.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
2
|
KARAGÖZ U, KC RB, ISEL E, KANTARCI AG, ULUDAĞ H. Evaluation of a Synthetic Polyethyleneimine Based Polymeric Vector for ING4 Gene Delivery to MCF-7 Breast Cancer Cells. Turk J Pharm Sci 2024; 21:449-455. [PMID: 39569682 PMCID: PMC11600320 DOI: 10.4274/tjps.galenos.2023.72430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/07/2023] [Indexed: 11/22/2024]
Abstract
Objectives Breast cancer is the most common type of cancer among women and the second most common cause of death after lung cancer. The inhibitor of growth (ING) transcript levels are often suppressed in cancer cells, making it a promising candidate for cancer therapy. In this study, we aimed to formulate a polyplex that effectively carries and delivers pING4 to breast cancer cells. Materials and Methods Polyethyleneimine (PEI)-based non-viral vectors were synthesized and characterized for plasmid DNA delivery. Complexation was achieved via electrostatic interactions between the synthesized polymeric vectors and plasmid DNA. Characterization studies were conducted by testing Sodium dodecyl sulfate-induced complexation, Deoxyribonuclease I protection, and serum stability of the polyplexes. Subsequently, polyplexes were tested on MCF-7 cells for anticancer activity using the XTT cell viability assay. Western blot analysis was performed for the ING4 protein. Results Polyplexes carrying the ING4 gene exhibited significantly lower cell viability than control polyplexes (p=0.0067). During the 5-day viability assay, the lowest cell viability was observed on day 4. Approximately 69.11±2.18% cell viability was observed with ING4 treatment and the control group showed no cell death on day 4 (101.53±5.06%). The prepared delivery systems did not show a toxic effect on MCF-7 cells treated alone. In addition, the MCF10A normal mammary cell line was used as a positive control. Western blotting was performed to confirm the overexpression of ING4 protein in the treatment groups. Unlike in the control groups, the overexpression of ING4 was clear in the wells of the treatment group. Conclusion Our findings suggest that ING4 gene delivery using prepared PEI-based nonviral delivery systems is a promising approach for breast cancer treatment.
Collapse
Affiliation(s)
- Uğur KARAGÖZ
- Trakya University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Edirne, Türkiye
| | - Remant Bahadur KC
- Alberta University Faculty of Engineering, Department of Chemical and Materials Engineering, Alberta, Canada
| | - Elif ISEL
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Türkiye
| | - Ayşe Gülten KANTARCI
- Ege University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Türkiye
| | - Hasan ULUDAĞ
- Alberta University Faculty of Engineering, Department of Chemical and Materials Engineering, Alberta, Canada
| |
Collapse
|
3
|
Thompson Z, Anderson GA, Hernandez M, Alfaro Quinde C, Marchione A, Rodriguez M, Gabriel S, Binder V, Taylor AM, Kathrein KL. Ing4-deficiency promotes a quiescent yet transcriptionally poised state in hematopoietic stem cells. iScience 2024; 27:110521. [PMID: 39175773 PMCID: PMC11340613 DOI: 10.1016/j.isci.2024.110521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Defining the mechanisms that regulate stem cell maintenance, proliferation, and differentiation is critical for identifying therapies for improving stem cell function under stress. Here, we have identified the tumor suppressor, inhibitor of growth 4 (Ing4), as a critical regulator of hematopoietic stem cell (HSC) homeostasis. Cancer cell line models with Ing4 deficiency have shown that Ing4 functions as a tumor suppressor, in part, due to Ing4-mediated regulation of several major signaling pathways, including c-Myc. In HSCs, we show Ing4 deficiency promotes gene expression signatures associated with activation, yet HSCs are arrested in G0, expressing several markers of quiescence. Functionally, Ing4-deficient HSCs demonstrate robust regenerative capacity following transplantation. Our findings suggest Ing4 deficiency promotes a poised state in HSCs, where they appear transcriptionally primed for activation but remain in a resting state. Our model provides key tools for further identification and characterization of pathways that control quiescence and self-renewal in HSCs.
Collapse
Affiliation(s)
- Zanshé Thompson
- University of South Carolina, Department of Biomedical Engineering, Columbia, SC, USA
| | - Georgina A. Anderson
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Marco Hernandez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Carlos Alfaro Quinde
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Alissa Marchione
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Melanie Rodriguez
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Seth Gabriel
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Alison M. Taylor
- Columbia University Medical Center, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, New York, NY 10032, USA
| | - Katie L. Kathrein
- University of South Carolina, Department of Biological Sciences, Columbia, SC, USA
| |
Collapse
|
4
|
Tsutsumi E, Macy AM, LoBello J, Hastings KT, Kim S. Tumor immune microenvironment permissive to metastatic progression of ING4-deficient breast cancer. PLoS One 2024; 19:e0304194. [PMID: 38968186 PMCID: PMC11226078 DOI: 10.1371/journal.pone.0304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.
Collapse
Affiliation(s)
- Emily Tsutsumi
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| | - Anne M. Macy
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Janine LoBello
- Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Karen T. Hastings
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Suwon Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
5
|
Zhou Z, Jin M, Li B, He Y, Liu L, Ren B, Li J, Li F, Liu J, Chen Y, Wan S, Shen H. Effects of different iodine levels on the DNA methylation of intrinsic apoptosis-associated genes and analysis of gene-environment interactions in patients with autoimmune thyroiditis. Br J Nutr 2023; 130:2039-2052. [PMID: 37183696 DOI: 10.1017/s0007114523001216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Iodine is an essential nutrient that may change the occurrence of autoimmune thyroiditis (AIT). Apoptosis and DNA methylation participate in the pathogenesis and destructive mechanism of AIT. We detected the methylation and the expression of mRNA of intrinsic apoptosis-associated genes (YWHAG, ING4, BRSK2 and GJA1) to identify the potential interactions between the levels of methylation in these genes and different levels of iodine. 176 adult patients with AIT in Shandong Province, China, were included. The MethylTargetTM assay was used to verify the levels of methylation. We used PCR to detect the mRNA levels of the candidate genes. Interactions between methylation levels of the candidate genes and iodine levels were evaluated with multiplicative and addictive interaction models and GMDR. In the AIT group, YWHAG_1 and six CpG sites and BRSK2_1 and eight CpG sites were hypermethylated, whereas ING4_1 and one CpG site were hypomethylated. A negative correlation was found between methylation levels of YWHAG and mRNA expression. The combination of iodine fortification, YWHAG_1 hypermethylation and BRSK2_1 hypermethylation was significantly associated with elevated AIT risk. A four-locus model (YWHAG_1 × ING4_1 × BRSK2_1 × iodine level) was found to be the best model of the gene-environment interactions. We identified abnormal changes in the methylation status of YWHAG, ING4 and BRSK2 in patients with AIT in different iodine levels. Iodine fortification not only affected the methylation levels of YWHAG and BRSK2 but also interacted with the methylation levels of these genes and may ultimately increase the risk of AIT.
Collapse
Affiliation(s)
- Zheng Zhou
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Meihui Jin
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Baoxiang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yanhong He
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Lixiang Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Bingxuan Ren
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jianshuang Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, People's Republic of China
| | - Fan Li
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Jinjin Liu
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Yun Chen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar City, Heilongjiang Province161006, People's Republic of China
| | - Hongmei Shen
- Disorders Control, Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin City, Heilongjiang Province150081, People's Republic of China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin City, Heilongjiang Province, People's Republic of China
| |
Collapse
|
6
|
Gou Q, Chen H, Chen M, Shi J, Jin J, Liu Q, Hou Y. Inhibition of CK2/ING4 Pathway Facilitates Non-Small Cell Lung Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304068. [PMID: 37870169 PMCID: PMC10700192 DOI: 10.1002/advs.202304068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Immune cells can protect against tumor progression by killing cancer cells, while aberrant expression of the immune checkpoint protein PD-L1 (programmed death ligand 1) in cancer cells facilitates tumor immune escape and inhibits anti-tumor immunotherapy. As a serine/threonine kinase, CK2 (casein kinase 2) regulates tumor progression by multiple pathways, while it is still unclear the effect of CK2 on tumor immune escape. Here it is found that ING4 induced PD-L1 autophagic degradation and inhibites non-small cell lung cancer (NSCLC) immune escape by increasing T cell activity. However, clinical analysis suggests that high expression of CK2 correlates with low ING4 protein level in NSCLC. Further analysis shows that CK2 induce ING4-S150 phosphorylation leading to ING4 ubiquitination and degradation by JFK ubiquitin ligase. In contrast, CK2 gene knockout increases ING4 protein stability and T cell activity, subsequently, inhibites NSCLC immune escape. Furthermore, the combined CK2 inhibitor with PD-1 antibody effectively enhances antitumor immunotherapy. These findings provide a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
- School of medicineJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Huiqing Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Mingjun Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Juanjuan Shi
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Jianhua Jin
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
| | - Qian Liu
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine of Wujin People's Hospital (the Wujin Clinical College of Xuzhou Medical University)changzhouJiangsu213017P. R. China
| | - Yongzhong Hou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| |
Collapse
|
7
|
Cui Z, Sun S, Li J, Li J, Sha T, He J, Zuo L. Inhibitor of Growth 4 (ING4) Plays a Tumor-Repressing Role in Oral Squamous Cell Carcinoma via Nuclear Factor kappa-B (NF-kB)/DNA Methyltransferase 1 (DNMT1) Axis-Mediated Regulation of Aldehyde Dehydrogenase 1A2 (ALDH1A2). Curr Cancer Drug Targets 2022; 22:771-783. [PMID: 35388759 DOI: 10.2174/1568009622666220406104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inhibitor of growth 4 (ING4) level was reported to be decreased in head and neck squamous cell carcinoma (HNSC) tissue, however, it is unknown whether and how ING4 participates in regulating the development of oral squamous cell carcinoma (OSCC). OBJECTIVE To investigate the role and mechanism of ING4 in OSCC. METHODS ING4 was forced up-or down-regulated in two OSCC cell lines, and its effects on the malignant behavior of OSCC cells were investigated in vitro. The ubiquitination level of NF-kB p65 in ING4 upregulated cells was measured by co-immunoprecipitation. Moreover, the effects of ING4 on the methylation level of ALDH1A2 were evaluated by methylation-specific polymerase chain reaction (MSP) assay. The role of ING4 in OSCC growth in vivo was observed in nude mice. RESULTS Our results showed that the expression of ING4 in OSCC cell lines was lower than that in normal oral keratinocyte cells. In vitro, ING4 overexpression inhibited the proliferation, migration, and invasion of OSCC cell lines and ING4 silencing exhibited opposite results. We also demonstrated that ING4 overexpression promoted the ubiquitination and degradation of P65 and reduced DNA methyltransferase 1 (DNMT1) expression, and Aldehyde dehydrogenase 1A2 (ALDH1A2) methylation. Moreover, overexpression of p65 rescued the suppression of malignant behavior, induced by ING4 overexpression. In addition, ING4 negatively regulated the growth of OSCC xenograft tumors in vivo. CONCLUSION Our data evidenced that ING4 played a tumor-repressing role in OSCC in vivo and in vitro via NF-κB/DNMT1/ALDH1A2 axis.
Collapse
Affiliation(s)
- Zhi Cui
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shiqun Sun
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jia Li
- Department of Oral and Maxillofacial Surgery Clinic, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Tong Sha
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jie He
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Linjing Zuo
- Department of Pedodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Cxcl10 chemokine induces migration of ING4-deficient breast cancer cells via a novel crosstalk mechanism between the Cxcr3 and Egfr receptors. Mol Cell Biol 2021; 42:e0038221. [PMID: 34871062 DOI: 10.1128/mcb.00382-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study have shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression datasets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells, but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gβγ subunits downstream of Cxcr3, but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gβγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.
Collapse
|
9
|
ING4 Expression Landscape and Association With Clinicopathologic Characteristics in Breast Cancer. Clin Breast Cancer 2021; 21:e319-e331. [DOI: 10.1016/j.clbc.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
|
10
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Ruan Z, Liang M, Shang L, Lai M, Deng X, Su X. Shikonin-mediated PD-L1 degradation suppresses immune evasion in pancreatic cancer by inhibiting NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. Pancreatology 2021; 21:630-641. [PMID: 33707115 DOI: 10.1016/j.pan.2021.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly fatal malignancy with few effective therapies currently available. Recent studies have shown that PD-L1 inhibitors could be potential therapeutic targets for the treatment of PC. The present study aims to investigate the effect of Shikonin on immune evasion in PC with the involvement of the PD-L1 degradation. METHODS Initially, the expression patterns of PD-L1 and NF-κB in PC were predicted in-silico using the GEPIA database, and were subsequently validated using PC tissues. Thereafter, the correlation of NF-κB with STAT3, CSN5 and PD-L1 was examined. PC cells were treated with Shikonin, NF-κB inhibitor, STAT3 activator, and CSN5 overexpression plasmid to investigate effects on PD-L1 glycosylation and immune evasion in PC. Finally, in vivo tumor formation was induced in C57BL/6J mice, in order to verify the in vitro results. RESULTS PD-L1, NF-κB, NF-κB p65, STAT3, and CSN5 were highly expressed in PC samples, and NF-κB was positively correlated with STAT3/CSN5/PD-L1. Inhibition of NF-κB decreased PD-L1 glycosylation and increased PD-L1 degradation, whereas activated STAT3 and overexpressed CSN5 reversed these trends. Shikonin blocked immune evasion in PC, and lowered the expression of PD-L1, NF-κB, NF-κB p65, STAT3 and CSN5 in vivo and in vitro. CONCLUSION The findings indicated Shikonin inhibited immune evasion in PC by inhibiting PD-L1 glycosylation and activating the NF-κB/STAT3 and NF-κB/CSN5 signaling pathways. These effects of Shikonin on PC cells may bear important potential therapeutic implications for the treatment of PC.
Collapse
Affiliation(s)
- Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Minhua Liang
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Ling Shang
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Manxiang Lai
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China
| | - Xiangliang Deng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xinguo Su
- School of Pharmacy, Guangdong Food & Drug Vocational College, Guangzhou, 510520, PR China.
| |
Collapse
|
12
|
Wu X, Chen C, Luo B, Yan D, Yan H, Chen F, Guan F, Wu H, Yuan J. Nuclear ING3 Expression Is Correlated With a Good Prognosis of Breast Cancer. Front Oncol 2021; 10:589009. [PMID: 33469513 PMCID: PMC7813678 DOI: 10.3389/fonc.2020.589009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The inhibitor of growth (ING) family was discovered as the type II tumor suppressors, which regulated the proliferation, apoptosis, differentiation, angiogenesis, metastasis, and invasion of tumor cells through multiple pathways. ING3, a new member of ING family, has been reported to be downregulated in several types of tumors. However, few studies on ING3 in breast cancer have been reported. In this study, we investigated the expression of ING3 and determined its prognostic value in breast cancer. The immunohistochemistry was performed to evaluate the expression of ING3 in tissue microarrays (TMA) including breast cancer tissues (n=211) and normal breast tissues (n=50). In normal breast tissues, ING3 protein was detected in both the cytoplasm and nucleus. In breast cancer tissues, ING3 protein was principally detected in the cytoplasm. Compared with normal breast tissues, the expression of ING3 in nucleus was remarkably reduced in breast cancer tissues. The downregulated ING3 in nucleus was significantly correlated with clinicopathological characteristics including histological grade, lymph node metastasis, and the status of ER and PR. In HER2 positive-type and triple-negative breast cancer (TNBC) patients, it had the lower rate of nuclear ING3 with high expression than that in luminal-type. Moreover, Kaplan-Meier curves demonstrated that the reduced expression of ING3 in nucleus was correlated with a poorer 5-DFS and 5-OS of breast cancer patients. Importantly, multivariate Cox regression analysis suggested that the reduced expression of ING3 in nucleus was an independent prognostic factor in breast cancer. Our study comprehensively described the expression of ING3 in breast cancer for the first time and proved that it was an independent prognostic predictor of breast cancer, as well as a new idea for study of breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Guan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Yang Y, Liu Y, He X, Yang F, Han S, Qin A, Wu G, Liu M, Li Z, Wang J, Yang X, Hu D. ING4 alleviated lipopolysaccharide-induced inflammation by regulating the NF-κB pathway via a direct interaction with SIRT1. Immunol Cell Biol 2020; 98:127-137. [PMID: 31811786 PMCID: PMC7384142 DOI: 10.1111/imcb.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Sepsis is a complex inflammatory disorder in which high mortality is associated with an excessive inflammatory response. Inhibitor of growth 4 (ING4), which is a cofactor of histone acetyltransferase and histone deacetylase complexes, could negatively regulate this inflammation. However, the exact molecular signaling pathway regulated by ING4 remains uncertain. As a pivotal histone deacetylase, Sirtuin1 (SIRT1), which is widely accepted to be an anti‐inflammatory molecule, has not been found to be linked to ING4. This study investigated how ING4 is involved in the regulation of inflammation by constructing lipopolysaccharide (LPS)‐induced macrophage and mouse sepsis models. Our results revealed that ING4 expression decreased, whereas the levels of proinflammatory cytokines increased in LPS‐stimulated cultured primary macrophages and RAW 264.7 cells. ING4 transfection was confirmed to alleviate the LPS‐induced upregulation of proinflammatory cytokine expression both in vitro and in vivo. In addition, ING4‐overexpressing mice were hyposensitive to an LPS challenge and displayed reduced organ injury. Furthermore, immunoprecipitation indicated a direct interaction between ING4 and the SIRT1 protein. Moreover, ING4 could block nuclear factor‐kappa B (NF‐κB) P65 nuclear translocation and restrict P65 acetylation at lysine 310 induced by LPS treatment. These results are the first to clarify that the anti‐inflammatory role of ING4 is associated with SIRT1, through which ING4 inhibits NF‐κB signaling activation. Our studies provide a novel signaling axis involving ING4/SIRT1/NF‐κB in LPS‐induced sepsis.
Collapse
Affiliation(s)
- Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiang He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Anhui Qin
- The Fifteenth Squadron of the Fourth Regiment, School of Basic Medicine, The Four Military Medical University, Xi'an, Shaanxi, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mengdong Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Shatnawi A, Malkaram SA, Fandy T, Tsouko E. Identification of the inhibitor of growth protein 4 (ING4) as a potential target in prostate cancer therapy. Mol Cell Biochem 2019; 464:153-167. [PMID: 31773467 DOI: 10.1007/s11010-019-03657-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/16/2019] [Indexed: 02/02/2023]
Abstract
INhibitor of Growth protein 4 (ING4) is a potential chromatin modifier that has been implicated in several cancer-related processes. However, the role of ING4 in prostate cancer (PC) is largely unknown. This study aimed to assess ING4's role in global transcriptional regulation in PC cells to identify potential cellular processes associated with ING4 loss. RNA-Seq using next-generation sequencing (NGS) was used to identify altered genes in LNCaP PC cells following ING4 depletion. Ingenuity pathways analysis (IPA®) was applied to the data to highlight candidates, ING4-regulated pathways, networks and cellular processes. Selected genes were validated using RT-qPCR. RNA-Seq of LNCaP cells revealed a total of 159 differentially expressed genes (fold change ≥ 1.5 or ≤ - 1.5, FDR ≤ 0.05) following ING4 knockdown. RT-qPCR used to validate the expression level of selected genes was in agreement with RNA-Seq results. Key genes, unique pathways, and biological networks were identified using IPA® analysis. This is the first report of global gene regulation in PC cells by ING4. The resultant differential expression profile revealed the potential role of ING4 in PC pathogenesis possibly through modulation of key genes, pathways and biological networks that are central drivers of the disease. Collectively, these findings shed light on a novel transcriptional regulator of PC that ultimately may influence the disease progression and as a potential target in the disease therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV, 25304, USA.
| | - Sridhar A Malkaram
- Department of Mathematics and Computer Sciences, West Virginia State University, W729, Wallace Hall, Institute, WV, 25112, USA
| | - Tamer Fandy
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV, 25304, USA
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Du Y, Yang X, Gong Q, Xu Z, Cheng Y, Su G. Inhibitor of growth 4 affects hypoxia-induced migration and angiogenesis regulation in retinal pigment epithelial cells. J Cell Physiol 2019; 234:15243-15256. [PMID: 30667053 DOI: 10.1002/jcp.28170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Inhibitor of growth 4 (ING4), a potential tumor suppressor, is implicated in cell migration and angiogenesis. However, its effects on diabetic retinopathy (DR) have not been elucidated. In this study, we aimed to evaluate ING4 expression in normal and diabetic rats and clarify its effects on hypoxia-induced dysfunction in human retinal pigment epithelial (ARPE-19) cells. A Type 1 diabetic model was generated by injecting rats intraperitoneally with streptozotocin and then killed them 4, 8, or 12 weeks later. ING4 expression in retinal tissue was detected using western blot analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and immunohistochemistry assays. After transfection with an ING4 overexpression lentiviral vector or small interfering RNA (siRNA), ARPE-19 migration under hypoxia was tested using wound healing and transwell assays. The angiogenic effect of conditioned medium (CM) from ARPE-19 cells was examined by assessing human retinal endothelial cell (HREC) capillary tube formation. Additionally, western blot analysis and RT-qPCR were performed to investigate the signaling pathways in which ING4, specificity protein 1 (Sp1), matrix metalloproteinase 2 (MMP-2), MMP-9, and vascular endothelial growth factor A (VEGF-A) were involved. Here, we found that ING4 expression was significantly reduced in the diabetic rats' retinal tissue. Silencing ING4 aggravated hypoxia-induced ARPE-19 cell migration. CM collected from ING4 siRNA-transfected ARPE-19 cells under hypoxia promoted HREC angiogenesis. These effects were reversed by ING4 overexpression. Furthermore, ING4 suppressed MMP-2, MMP-9, and VEGF-A expression in an Sp1-dependent manner in hypoxia-conditioned ARPE-19 cells. Overall, our results provide valuable mechanistic insights into the protective effects of ING4 on hypoxia-induced migration and angiogenesis regulation in ARPE-19 cells. Restoring ING4 may be a novel strategy for treating DR.
Collapse
Affiliation(s)
- Yang Du
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyue Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiaoyun Gong
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Rapamycin-upregulated miR-29b promotes mTORC1-hyperactive cell growth in TSC2-deficient cells by downregulating tumor suppressor retinoic acid receptor β (RARβ). Oncogene 2019; 38:7367-7383. [PMID: 31420607 DOI: 10.1038/s41388-019-0957-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
miR-29b has been identified as a rapamycin-induced microRNA (miRNA) in Tsc2-deficient, mTORC1-hyperactive cells. The biological significance of this induction of miR-29b is unknown. We have found that miR-29b acts as an oncogenic miRNA in Tsc2-deficient cells: inhibition of miR-29b suppressed cell proliferation, anchorage-independent cell growth, cell migration, invasion, and the growth of Tsc2-deficient tumors in vivo. Importantly, the combination of miR-29b inhibition with rapamycin treatment further inhibited these tumor-associated cellular processes. To gain insight into the molecular mechanisms by which miR-29b promotes tumorigenesis, we used RNA sequencing to identify the tumor suppressor retinoid receptor beta (RARβ) as a target gene of miR-29b. We found that miR-29b directly targeted the 3'UTR of RARβ. Forced expression of RARβ reversed the effects of miR-29b overexpression in proliferation, migration, and invasion, indicating that it is a critical target. miR-29b expression correlated with low RARβ expression in renal clear cell carcinomas and bladder urothelial carcinomas, tumors associated with TSC gene mutations. We further identified growth family member 4 (ING4) as a novel interacting partner of RARβ. Overexpression of ING4 inhibited the migration and invasion of Tsc2-deficient cells while silencing of ING4 reversed the RARβ-mediated suppression of cell migration and invasion. Taken together, our findings reveal a novel miR-29b/RARβ/ING4 pathway that regulates tumorigenic properties of Tsc2-deficient cells, and that may serve as a potential therapeutic target for TSC, lymphangioleiomyomatosis (LAM), and other mTORC1-hyperactive tumors.
Collapse
|
17
|
The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci Rep 2019; 39:BSR20180773. [PMID: 30643005 PMCID: PMC6356015 DOI: 10.1042/bsr20180773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of growth 4 (ING4), a member of the ING family discovered in 2003, has been shown to act as a tumor suppressor and is frequently down-regulated in various human cancers. Numerous published in vivo and in vitro studies have shown that ING4 is responsible for important cancer hallmarks such as pathologic cell cycle arrest, apoptosis, autophagy, contact inhibition, and hypoxic adaptation, and also affects tumor angiogenesis, invasion, and metastasis. These characteristics are typically associated with regulation through chromatin acetylation by binding histone H3 trimethylated at lysine 4 (H3K4me3) and through transcriptional activity of transcription factor P53 and NF-κB. In addition, emerging evidence has indicated that abnormalities in ING4 expression and function play key roles in non-neoplastic disorders. Here, we provide an overview of ING4-modulated chromosome remodeling and transcriptional function, as well as the functional consequences of different genetic variants. We also present the current understanding concerning the role of ING4 in the development of neoplastic and non-neoplastic diseases. These studies offer inspiration for pursuing novel therapeutics for various cancers.
Collapse
|
18
|
You Q, Li H, Liu Y, Xu Y, Miao S, Yao G, Xue Y, Geng J, Jin X, Meng H. MicroRNA-650 targets inhibitor of growth 4 to promote colorectal cancer progression via mitogen activated protein kinase signaling. Oncol Lett 2018; 16:2326-2334. [PMID: 30008936 PMCID: PMC6036455 DOI: 10.3892/ol.2018.8910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant disease globally and causes numerous cancer-associated mortalities; however, the underlying molecular mechanisms remain unresolved. MicroRNAs (miRs) are endogenous noncoding RNAs that regulate post-transcriptional gene silencing by annealing to partially complementary sequences in the 3′-untranslated regions of target mRNAs. In the present study, expression of the tumor suppressor gene inhibitor of growth protein 4 (ING4) in cell lines was investigated using reverse transcription-quantitative polymerase chain reaction and western blotting. miR-650 overexpression promoted CRC cell proliferation and migration by targeting ING4 when the cells were transfected with the miR-650 mimics. Additionally, overexpression of miR-650 increased the epithelial-mesenchymal transition and activation of the Ras homolog gene family member A/Ras-related C3 botulinum toxin GTPase. Extracellular signal-regulated kinases and p38 mitogen-activated protein kinase signaling were markedly activated when miR-650 was increased in CRC cells. Combined, the results indicate the mechanism underlying the miR-650 promotion of CRC progression, and provide promising potential biomarkers for the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Qi You
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Huining Li
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150081, P.R. China
| | - Yao Liu
- Department of Otolaryngology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yangyang Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Susheng Miao
- Department of Otolaryngology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Yingwei Xue
- Department of Gastroenterology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongxue Meng
- Department of Pathology, Basic Research College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
19
|
Chen Y, Fu R, Xu M, Huang Y, Sun G, Xu L. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells. Life Sci 2018; 199:179-187. [PMID: 29496496 DOI: 10.1016/j.lfs.2018.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/23/2018] [Indexed: 12/12/2022]
Abstract
AIMS Angiogenesis is associated with the progression and mortality of gastric cancer. Epidemiological evidences indicate that long-term N-nitroso compounds (NOCs) exposure predominantly contributes to the mortality of gastric cancer. Therefore, further reduced mortality of gastric cancer demands to explore the exact mechanisms of NOCs induced angiogenesis. As a tumor suppressor gene, inhibitor of growth protein 4 (ING4) plays an important role in pathological angiogenesis. In this study, we will investigate ING4 expression level in human gastric epithelial cells after the long-term low dose exposure of N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and the pathological impact of MNNG-reduced ING4 on angiogenesis of transformed cells. MAIN METHODS The soft agar colony formation assay, Western blotting, immunofluorescence and wound healing assay were used to evaluate the characteristics of transformed cells. HUVEC growth and tube formation assays were performed to test the angiogenic abilities. EMSA, luciferase reporter gene assay, real-time PCR and Western blotting were used to explore the exact mechanism. KEY FINDINGS By establishing transformed human gastric epithelial cells via chronic low dose treatment, a gradually ING4 downregulation was observed in the later-stage of MNNG-induced cell transformation. Moreover, we demonstrated that MNNG exposure-reduced ING4 expression significantly resulted into aggravating angiogenesis through increasing the phosphorylation level of NF-κB p65 and subsequently DAN binding activity and regulating the expressions of NF-κB p65 downstream pro-angiogenic genes, MMP-2 and MMP-9. SIGNIFICANCE Our findings provided a significant mechanistic insight into angiogenesis of MNNG-transformed human gastric epithelial cell and supported the concept that ING4 may be a relevant therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yansu Chen
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Rui Fu
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Mengdie Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Yefei Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Guixiang Sun
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| | - Lichun Xu
- School of Public Health, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
20
|
Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Ther 2017; 25:54-65. [PMID: 28925992 PMCID: PMC5817393 DOI: 10.1038/gt.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.
Collapse
|
21
|
Sica V, Bravo-San Pedro JM, Chen G, Mariño G, Lachkar S, Izzo V, Maiuri MC, Niso-Santano M, Kroemer G. Inhibitor of growth protein 4 interacts with Beclin 1 and represses autophagy. Oncotarget 2017; 8:89527-89538. [PMID: 29163768 PMCID: PMC5685689 DOI: 10.18632/oncotarget.19033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Beclin 1 (BECN1) is a multifunctional protein that activates the pro-autophagic class III phosphatidylinositol 3-kinase (PIK3C3, best known as VPS34), yet also interacts with multiple negative regulators. Here we report that BECN1 interacts with inhibitor of growth family member 4 (ING4), a tumor suppressor protein that is best known for its capacity to interact with the tumor suppressor protein p53 (TP53) and the acetyltransferase E1A binding protein p300 (EP300). Removal of TP53 or EP300 did not affect the BECN1/ING4 interaction, which however was lost upon culture of cells in autophagy-inducing, nutrient free conditions. Depletion of ING4 stimulated the enzymatic activity of PIK3C3, as visualized by means of a red fluorescent protein-tagged short peptide (FYVE) that specifically binds to phosphatidylinositol-3-phosphate (PI3P)-containing subcellular vesicles and enhanced autophagy, as indicated by an enhanced lipidation of microtubule-associated proteins 1A/1B light chain 3 beta (LC3B) and the redistribution of a green-fluorescent protein (GFP)-LC3B fusion protein to cytoplasmic puncta. The generation of GFP-LC3B puncta stimulated by ING4 depletion was reduced by simultaneous depletion, or pharmacological inhibition, of PIK3C3/VPS34. In conclusion, ING4 acts as a negative regulator of the lipid kinase activity of the BECN1 complex, and starvation-induced autophagy is accompanied by the dissociation of the ING4/BECN1 interaction.
Collapse
Affiliation(s)
- Valentina Sica
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guo Chen
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guillermo Mariño
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Departamento de Biología Fundamental, Instituto de Investigación Sanitaria del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sylvie Lachkar
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Valentina Izzo
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Chiara Maiuri
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mireia Niso-Santano
- Institut National de la Santé et de la Recherche Médicale, Paris, France.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, C.P, Cáceres, Cáceres, Spain
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Lango-Chavarría M, Chimal-Ramírez GK, Ruiz-Tachiquín ME, Espinoza-Sánchez NA, Suárez-Arriaga MC, Fuentes-Pananá EM. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol 2017; 50:432-440. [PMID: 28101578 PMCID: PMC5238778 DOI: 10.3892/ijo.2017.3842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer.
Collapse
Affiliation(s)
- M Lango-Chavarría
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - G K Chimal-Ramírez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M E Ruiz-Tachiquín
- Medical Research Unit on Human Genetics, Pediatric's Hospital, Mexican Institute of Social Security XXI Century, Del. Cuauhtemoc, C.P. 06720 Mexico City, Mexico
| | - N A Espinoza-Sánchez
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - M C Suárez-Arriaga
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| | - E M Fuentes-Pananá
- Research Unit on Virology and Cancer, Children's Hospital of Mexico 'Federico Gómez', C.P. 06720 Mexico City, Mexico
| |
Collapse
|
23
|
Berger PL, Winn ME, Miranti CK. Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation. Prostate 2017; 77:49-59. [PMID: 27527891 PMCID: PMC6739073 DOI: 10.1002/pros.23249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND How prostate epithelial cells differentiate and how dysregulation of this process contributes to prostate tumorigenesis remain unclear. We recently identified a Myc target and chromatin reader protein, ING4, as a necessary component of human prostate luminal epithelial cell differentiation, which is often lost in primary prostate tumors. Furthermore, loss of ING4 in the context of oncogenic mutations is required for prostate tumorigenesis. Identifying the gene targets of ING4 can provide insight into how its loss disrupts differentiation and leads to prostate cancer. METHODS Using a combination of RNA-Seq, a best candidate approach, and chromatin immunoprecipitation (ChIP), we identified Miz1 as a new ING4 target. ING4 or Miz1 overexpression, shRNA knock-down, and a Myc-binding mutant were used in a human in vitro differentiation assay to assess the role of Miz1 in luminal cell differentiation. RESULTS ING4 directly binds the Miz1 promoter and is required to induce Miz1 mRNA and protein expression during luminal cell differentiation. Miz1 mRNA was not induced in shING4 expressing cells or tumorigenic cells in which ING4 is not expressed. Miz1 dependency on ING4 was unique to differentiating luminal cells; Miz1 mRNA expression was not induced in basal cells. Although Miz1 is a direct target of ING4, and its overexpression can drive luminal cell differentiation, Miz1 was not required for differentiation. CONCLUSIONS Miz1 is a newly identified ING4-induced target gene which can drive prostate luminal epithelial cell differentiation although it is not absolutely required. Prostate 77:49-59, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Penny L. Berger
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
| | - Mary E. Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan
| | - Cindy K. Miranti
- laboratory of Integrin Signaling, Van Andel Research Institute, Grand Rapids, Michigan
- Correspondence to: Cindy K. Miranti, Laboratory of Integrin Signaling, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503.
| |
Collapse
|
24
|
Keenen MM, Kim S. Tumor suppressor ING4 inhibits estrogen receptor activity in breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2016; 8:211-221. [PMID: 27895513 PMCID: PMC5117803 DOI: 10.2147/bctt.s119691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to antiestrogen therapy remains a significant problem in breast cancer. Low expression of inhibitor of growth 4 (ING4) in primary tumors has been correlated with increased rates of recurrence in estrogen receptor-positive (ER+) breast cancer patients, suggesting a role for ING4 in ER signaling. This study provides evidence that ING4 inhibits ER activity. ING4 overexpression increased the sensitivity of T47D and MCF7 ER+ breast cancer cells to hormone deprivation. ING4 attenuated maximal estrogen-dependent cell growth without affecting the dose–response of estrogen. These results indicated that ING4 functions as a noncompetitive inhibitor of estrogen signaling and may inhibit estrogen-independent ER activity. Supportive of this, treatment with fulvestrant but not tamoxifen rendered T47D cells sensitive to hormone deprivation as did ING4 overexpression. ING4 did not affect nuclear ERα protein expression, but repressed selective ER-target gene transcription. Taken together, these results demonstrated that ING4 inhibited estrogen-independent ER activity, suggesting that ING4-low breast tumors recur faster due to estrogen-independent ER activity that renders tamoxifen less effective. This study puts forth fulvestrant as a proposed therapy choice for patients with ING4-low ER+ breast tumors.
Collapse
Affiliation(s)
- Madeline M Keenen
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ
| | - Suwon Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ; Division of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
25
|
Zhang R, Jin J, Shi J, Hou Y. INGs are potential drug targets for cancer. J Cancer Res Clin Oncol 2016; 143:189-197. [PMID: 27544390 DOI: 10.1007/s00432-016-2219-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The inhibitor of growth (ING) family consists of ING1, ING2, ING3, ING4 and ING5, which function as the type II tumor suppressors. INGs regulate cell proliferation, senescence, apoptosis, differentiation, angiogenesis, DNA repair, metastasis, and invasion by multiple pathways. In addition, INGs increase cancer cell sensitivity for chemotherapy and radiotherapy, while clinical observations show that INGs are frequently lost in some types of cancers. The aim of the study was to summarize the recent progress regarding INGs regulating tumor progression. METHODS The literatures of INGs regulating tumor progression were searched and assayed. RESULTS The regulating signaling pathways of ING1, ING2, ING3 or ING4 on tumor progression were shown. The mechanisms of INGs on tumor suppression were also assayed. CONCLUSIONS This review better summarized the signaling mechanism of INGs on tumor suppression, which provides a candidate therapy strategy for cancers.
Collapse
Affiliation(s)
- Runyun Zhang
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
26
|
Zhao D, Liu X, Zhang Y, Ding Z, Dong F, Xu H, Wang B, Wang W. Reduced expression and prognostic implication of inhibitor of growth 4 in human osteosarcoma. Oncol Lett 2016; 11:2869-2874. [PMID: 27073567 DOI: 10.3892/ol.2016.4324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most prevalent type of primary malignant bone tumor. Inhibitor of growth 4 (ING4) has been demonstrated to function as a tumor suppressor through multiple pathways, and is its expression is understood to be suppressed or reduced in various malignancies. The present study aimed to investigate the expression of ING4 and to determine its prognostic value in osteosarcoma tissue. Formalin-fixed, paraffin-embedded tissue microarrays were analyzed, and contained 41 osteosarcoma specimens and 11 normal bone tissue specimens with duplicate cores. ING4 expression was evaluated by immunohistochemical staining. The association between ING4 expression in the osteosarcoma and normal bone tissues was analyzed, in addition to the association between ING4 expression and Enneking classification of the osteosarcoma tissues. A significant statistical difference was observed in the ING4 immunohistochemical staining score between the osteosarcoma and normal bone tissues (P<0.001). Furthermore, a significant negative correlation was detected between the ING4 immunohistochemical staining scores and the Enneking classification results of the 41 osteosarcoma tissues (P=0.002). Low expression of ING4 was observed in the osteosarcoma specimens, and this reduced expression of ING4 was negatively correlated with Enneking classification. Thus, the results of the present study indicate that ING4 may serve as a promising prognostic marker in osteosarcoma.
Collapse
Affiliation(s)
- Dahang Zhao
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiangjie Liu
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yunge Zhang
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhaoming Ding
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feng Dong
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongwei Xu
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Baoxin Wang
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- The Third Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
27
|
Yuan S, Jin J, Shi J, Hou Y. Inhibitor of growth-4 is a potential target for cancer therapy. Tumour Biol 2016; 37:4275-9. [PMID: 26803518 DOI: 10.1007/s13277-016-4842-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The inhibitor of growth-4 (ING-4) belongs to the inhibitor of growth (ING) family that is a type II tumor suppressor gene including five members (ING1-5). As a tumor suppressor, ING4 inhibits tumor growth, invasion, and metastasis by multiple signaling pathways. In addition to that, ING4 can facilitate cancer cell sensitivity to chemotherapy and radiotherapy. Although ING4 loss is observed for many types of cancers, increasing evidences show that ING4 can be used for gene therapy. In this review, the recent progress of ING4 regulating tumorigenesis is discussed.
Collapse
Affiliation(s)
- Shuping Yuan
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, People's Republic of China. .,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
28
|
Yan R, He L, Li Z, Han X, Liang J, Si W, Chen Z, Li L, Xie G, Li W, Wang P, Lei L, Zhang H, Pei F, Cao D, Sun L, Shang Y. SCF(JFK) is a bona fide E3 ligase for ING4 and a potent promoter of the angiogenesis and metastasis of breast cancer. Genes Dev 2015; 29:672-85. [PMID: 25792601 PMCID: PMC4378198 DOI: 10.1101/gad.254292.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor suppressor ING4 (inhibitor of growth protein 4) is involved in various cellular processes by virtue of its epigenetic regulatory capability and through its positive regulation of p53 and negative regulation of NFκB. Yan et al. find that the F-box protein JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1-Cul1-F-box (SCF) complex. JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NFκB pathway and promotes angiogenesis and metastasis of breast cancer. Loss of function/dysregulation of inhibitor of growth 4 (ING4) and hyperactivation of NF-κB are frequent events in many types of human malignancies. However, the molecular mechanisms underlying these remarkable aberrations are not understood. Here, we report that ING4 is physically associated with JFK. We demonstrated that JFK targets ING4 for ubiquitination and degradation through assembly of an Skp1–Cul1–F-box (SCF) complex. We showed that JFK-mediated ING4 destabilization leads to the hyperactivation of the canonical NF-κB pathway and promotes angiogenesis and metastasis of breast cancer. Significantly, the expression of JFK is markedly up-regulated in breast cancer, and the level of JFK is negatively correlated with that of ING4 and positively correlated with an aggressive clinical behavior of breast carcinomas. Our study identified SCFJFK as a bona fide E3 ligase for ING4 and unraveled the JFK–ING4–NF-κB axis as an important player in the development and progression of breast cancer, supporting the pursuit of JFK as a potential target for breast cancer intervention.
Collapse
Affiliation(s)
- Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wenzhe Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Peiyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Liandi Lei
- Laboratory of Molecular Imaging, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology, and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Fei Pei
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Dengfeng Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University School of Oncology, Beijing 100142, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China;
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China; 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
29
|
Thakur S, Nabbi A, Klimowicz A, Riabowol K. Stromal ING1 expression induces a secretory phenotype and correlates with breast cancer patient survival. Mol Cancer 2015; 14:164. [PMID: 26306560 PMCID: PMC4549945 DOI: 10.1186/s12943-015-0434-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/13/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous studies have established that levels of the Inhibitor of Growth 1(ING1) tumor suppressor are reduced in a significant proportion of different cancer types. Here we analyzed levels of ING1 in breast cancer patients to determine its prognostic significance as a biomarker for breast cancer prognosis. METHODS We used automated quantitative analysis (AQUA) to determine the levels of ING1 in the tumor associated stromal cells of 462 breast cancer samples. To better understand how high ING1 levels affect nearby epithelium, we measured the levels of cytokines and secreted matrix metalloproteases (MMPs), using an ELISA based assay in mammary fibroblasts overexpressing ING1. These cells were also used in a 3-dimensional co-culture with MCF7 cells to determine the effect of released MMPs and other cytokines on growing colonies. RESULTS We find that high levels of ING1 in stroma are associated with tumor grade (p = 0.001) and size (p = 0.02), and inversely associated with patient survival (p = 0.0001) in luminal, but not in non-luminal cancers, suggesting that high stromal ING1 promotes cancer development. In this group of patients ING1 could also predict patient survival and act as a biomarker (HR = 2.125). While ING1 increased or decreased the expression of different cytokines, ING1 also increased the levels of MMP1, MMP3 and MMP10 by 5-8 fold, and concomitantly decreased levels of the tissue inhibitors of metalloproteases TIMP2, TIMP3 and TIMP4 by 1.5-3.3 fold, resulting in significant increases in MMP activity as determined by zymography. Co-culturing of MCF7 cells with stromal cells expressing ING1 in 3-dimensional organoid cultures suggested that MCF7 colonies were less well defined, suggesting that secreted MMPs might promote migration. CONCLUSION These data indicate that stromal ING1 expression can predict the survival of patients with luminal breast cancer. High levels of ING1 in stromal cells can promote the development of breast cancer through increased expression and release of MMPs and down regulation of TIMPs, which may be an underlying mechanism of reduced patient survival.
Collapse
Affiliation(s)
- Satbir Thakur
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, T2N 4N1, AB, Canada
| | - Arash Nabbi
- Department of Medical Science, University of Calgary, 3330 Hospital Drive, Calgary, T2N 4N1, AB, Canada
| | - Alexander Klimowicz
- Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Center, 1331- 29 street NW, Calgary, T2N 4N2, AB, Canada.,Present Address: Boehringer Ingelheim Pharmaceuticals Inc, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive, Calgary, T2N 4N1, AB, Canada. .,Department of Oncology, University of Calgary, 311 HMRB, 3330 Hospital Drive, NW, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
30
|
Wang CJ, Yang D, Luo YW. Recombinant ING4 suppresses the migration of SW579 thyroid cancer cells via epithelial to mesenchymal transition. Exp Ther Med 2015; 10:603-607. [PMID: 26622361 DOI: 10.3892/etm.2015.2515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/12/2015] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancer is a common endocrine malignancy that has rapidly increased in global incidence. Inhibitor of growth 4 (ING4) has been identified in various types of carcinoma; however, to the best of our knowledge, no previous studies have investigated the effects of ING4 on thyroid cancer. In the present study, SW579 thyroid cancer cells were treated with recombinant ING4 protein, and the results confirmed that recombinant ING4 protein was able to reduce the rate of proliferation, increase the rate of apoptosis and inhibit the mobility of SW579 cells. These results were obtained using a colony formation, fluoroscein isothiocyanate/propidium iodide double staining and Transwell assays, respectively. Furthermore, in the western blot analysis assays, ING4 was demonstrated to inhibit the Wnt/β catenin signaling pathway and epithelial to mesenchymal transition (EMT). Therefore, the present study demonstrated the antitumor activities of recombinant ING4 and identified ING4 could inhibit EMT in thyroid cancer cell. However, additional studies are required to confirm these results in other cell types.
Collapse
Affiliation(s)
- Chuan-Jiang Wang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dong Yang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ying-Wei Luo
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
31
|
Li M, Zhu Y, Zhang H, Li L, He P, Xia H, Zhang Y, Mao C. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells. Sci Rep 2014; 4:7380. [PMID: 25490312 PMCID: PMC4260466 DOI: 10.1038/srep07380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma.
Collapse
Affiliation(s)
- Mei Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| | - Hongbin Zhang
- Department of Medical Research, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Lihua Li
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Peng He
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Hong Xia
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Key Lab of Orthopaedic Technology and Implant, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman OK 73019, USA
| |
Collapse
|
32
|
Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, Chang TTA, Hostetter G, Kim S, Miranti CK. Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res 2014; 74:3357-68. [PMID: 24762396 PMCID: PMC4066454 DOI: 10.1158/0008-5472.can-13-3076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms by which Myc overexpression or Pten loss promotes prostate cancer development are poorly understood. We identified the chromatin remodeling protein, ING4, as a crucial switch downstream of Myc and Pten that is required for human prostate epithelial differentiation. Myc-induced transient expression of ING4 is required for the differentiation of basal epithelial cells into luminal cells, while sustained ING4 expression induces apoptosis. ING4 expression is lost in >60% of human primary prostate tumors. ING4 or Pten loss prevents epithelial cell differentiation, which was necessary for tumorigenesis. Pten loss prevents differentiation by blocking ING4 expression, which is rescued by ING4 re-expression. Pten or ING4 loss generates tumor cells that co-express basal and luminal markers, indicating prostate oncogenesis occurs through disruption of an intermediate step in the prostate epithelial differentiation program. Thus, we identified a new epithelial cell differentiation switch involving Myc, Pten, and ING4, which when disrupted leads to prostate tumorigenesis. Myc overexpression and Pten loss are common genetic abnormalities in prostate cancer, whereas loss of the tumor suppressor ING4 has not been reported. This is the first demonstration that transient ING4 expression is absolutely required for epithelial differentiation, its expression is dependent on Myc and Pten, and it is lost in the majority of human prostate cancers. This is the first demonstration that loss of ING4, either directly or indirectly through loss of Pten, promotes Myc-driven oncogenesis by deregulating differentiation. The clinical implication is that Pten/ING4 negative and ING4-only negative tumors may reflect two distinct subtypes of prostate cancer.
Collapse
Affiliation(s)
- Penny L Berger
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Sander B Frank
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Veronique V Schulz
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Eric A Nollet
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Mathew J Edick
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Brittany Holly
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Ting-Tung A Chang
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Galen Hostetter
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Suwon Kim
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Cindy K Miranti
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
33
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
34
|
Keep-ING balance: tumor suppression by epigenetic regulation. FEBS Lett 2014; 588:2728-42. [PMID: 24632289 DOI: 10.1016/j.febslet.2014.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
Cancer cells accumulate genetic and epigenetic changes that alter gene expression to drive tumorigenesis. Epigenetic silencing of tumor suppressor, cell cycle, differentiation and DNA repair genes contributes to neoplastic transformation. The ING (inhibitor of growth) proteins (ING1-ING5) have emerged as a versatile family of growth regulators, phospholipid effectors, histone mark sensors and core components of HDAC1/2 - and several HAT chromatin-modifying complexes. This review will describe the characteristic pathways by which ING family proteins differentially affect the Hallmarks of Cancer and highlight the various epigenetic mechanisms by which they regulate gene expression. Finally, we will discuss their potentials as biomarkers and therapeutic targets in epigenetic treatment strategies.
Collapse
|
35
|
ING4 regulates JWA in angiogenesis and their prognostic value in melanoma patients. Br J Cancer 2013; 109:2842-52. [PMID: 24157826 PMCID: PMC3844917 DOI: 10.1038/bjc.2013.670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/27/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Background: We previously showed that inhibitor of growth family member 4 (ING4) inhibits melanoma angiogenesis, and JWA suppresses the metastasis of melanoma cells. As angiogenesis is essential for tumour metastasis, further investigation of the function of ING4 and JWA in melanoma angiogenesis is needed, and their prognostic value are of great interest. Methods: Western blot, tube-formation assays and luciferase assays were used to investigate the correlation between ING4 and JWA in melanoma angiogenesis. JWA and integrin-linked kinase (ILK) expression was determined on a tissue microarray constructed from 175 biopsies. Results: ING4 promoted JWA expression by activating JWA promoter. Furthermore, the regulation of growth and tube formation of endothelial cells by ING4 was partially JWA dependent. Also, ING4 inhibited the ILK-induced angiogenesis signalling pathway via JWA. Moreover, reduced JWA, or increased ILK, expression was closely associated with 5-year disease-specific survival of melanoma patients (P=0.001 and 0.007, respectively). There was also a positive correlation between ING4 and JWA yet a negative correlation between ING4 and ILK. Importantly, their concomitant expressions were significantly related to 5-year survival of melanoma patients (P=0.002 and 0.003, respectively). Conclusion: JWA has an important role in ING4-regulated melanoma angiogenesis, and ING4/JWA/ILK are promising prognostic markers and may be used as anti-angiogenic therapeutic targets for melanoma.
Collapse
|
36
|
Li S, Fan T, Liu H, Chen J, Qin C, Ren X. Tumor suppressor ING4 overexpression contributes to proliferation and invasion inhibition in gastric carcinoma by suppressing the NF-κB signaling pathway. Mol Biol Rep 2013; 40:5723-32. [PMID: 24057236 DOI: 10.1007/s11033-013-2675-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 09/14/2013] [Indexed: 12/26/2022]
Abstract
There is growing evidence that inhibitor of growth 4 (ING4) plays a pivotal role in development and progression of multiple different tumors; however, its precise function in gastric carcinoma remains to be elucidated. In the present study, we investigated ING4 level in gastric carcinoma tissues and cells, and preliminarily elucidated the role of ING4 in the proliferation and invasion of gastric carcinoma. The results demonstrated that expressions of ING4 mRNA and protein in gastric carcinoma tissues and cells were significantly lower than those in normal tissues and cells (P < 0.05). ING4 level in gastric carcinoma cells stably expressing ING4 was markedly higher than those in untreated group and empty vector pcDNA3.1 group (P < 0.05). Elevated ING4 level resulted in the inhibition of proliferation and invasion in three of gastric carcinoma cell lines MKN-28, SGC-7901 and MKN-45. Most notably, increased ING4 level evidently evoked the down-regulation of p65, p-IκBα, MMP-9 and uPA proteins and the up-regulation of IκBα protein. Our results presented herein suggest that ING4 level elevation mediated proliferation and invasion inhibition may be tightly associated with the suppression of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shijie Li
- Department of General Surgery, Huaihe Hospital of Henan University, No.8 Baogong Lake North Road, Kaifeng, 475000, Henan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Hou Y, Zhang Z, Xu Q, Wang H, Xu Y, Chen K. Inhibitor of growth 4 induces NFκB/p65 ubiquitin-dependent degradation. Oncogene 2013; 33:1997-2003. [DOI: 10.1038/onc.2013.135] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|