1
|
Davies-Jenkins CW, Zöllner HJ, Simicic D, Hui SCN, Song Y, Hupfeld KE, Prisciandaro JJ, Edden RA, Oeltzschner G. GABA-edited MEGA-PRESS at 3 T: Does a measured macromolecule background improve linear combination modeling? Magn Reson Med 2024; 92:1348-1362. [PMID: 38818623 PMCID: PMC11262975 DOI: 10.1002/mrm.30158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. METHODS To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. RESULTS Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). CONCLUSIONS Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.
Collapse
Affiliation(s)
- Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dunja Simicic
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Steve C. N. Hui
- Developing Brain Institute, Children’s National Hospital, Washington, DC, USA
- Department of Radiology, The George Washington School of Medicine and Health Sciences, Washington D.C., USA
- Department of Pediatrics, The George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathleen E. Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - James J. Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Richard A.E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
2
|
Martens MAG, Zghoul T, Watson E, Rieger SW, Capitão LP, Harmer CJ. Acute neural effects of the mood stabiliser lamotrigine on emotional processing in healthy volunteers: a randomised control trial. Transl Psychiatry 2024; 14:211. [PMID: 38802372 PMCID: PMC11130123 DOI: 10.1038/s41398-024-02944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Lamotrigine is an effective mood stabiliser, largely used for the management and prevention of depression in bipolar disorder. The neuropsychological mechanisms by which lamotrigine acts to relieve symptoms as well as its neural effects on emotional processing remain unclear. The primary objective of this current study was to investigate the impact of an acute dose of lamotrigine on the neural response to a well-characterised fMRI task probing implicit emotional processing relevant to negative bias. 31 healthy participants were administered either a single dose of lamotrigine (300 mg, n = 14) or placebo (n = 17) in a randomized, double-blind design. Inside the 3 T MRI scanner, participants completed a covert emotional faces gender discrimination task. Brain activations showing significant group differences were identified using voxel-wise general linear model (GLM) nonparametric permutation testing, with threshold free cluster enhancement (TFCE) and a family wise error (FWE)-corrected cluster significance threshold of p < 0.05. Participants receiving lamotrigine were more accurate at identifying the gender of fearful (but not happy or angry) faces. A network of regions associated with emotional processing, including amygdala, insula, and the anterior cingulate cortex (ACC), was significantly less activated in the lamotrigine group compared to the placebo group across emotional facial expressions. A single dose of lamotrigine reduced activation in limbic areas in response to faces with both positive and negative expressions, suggesting a valence-independent effect. However, at a behavioural level lamotrigine appeared to reduce the distracting effect of fear on face discrimination. Such effects may be relevant to the mood stabilisation effects of lamotrigine.
Collapse
Affiliation(s)
- Marieke A G Martens
- Department of Psychiatry, University of Oxford, Oxford, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tarek Zghoul
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Evelyn Watson
- Department of Psychiatry, University of Oxford, Oxford, UK
- Institute of Sport Exercise and Health, Faculty of Medical Sciences, University College London, London, UK
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, UK
| | - Sebastian W Rieger
- Department of Psychiatry, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
4
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Higher-order functional brain networks and anterior cingulate glutamate + glutamine (Glx) in antipsychotic-naïve first episode psychosis patients. Transl Psychiatry 2024; 14:183. [PMID: 38600117 PMCID: PMC11006887 DOI: 10.1038/s41398-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024] Open
Abstract
Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Luo W, Du R, Li Y, Zhang H, Li W, Luo X, Chen Y, Yuan X, Deng J. Identification of genetic features that are associated with amplitude of low-frequency fluctuation changes in schizophrenia using omics analysis. J Neurosci Res 2024; 102:e25297. [PMID: 38361412 DOI: 10.1002/jnr.25297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Revised: 11/14/2023] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
Genetic risk for schizophrenia is thought to trigger variation in clinical features of schizophrenia, but biological processes associated with neuronal activity in brain regions remain elusive. In this study, gene expression features were mapped to various sub-regions of the brain by integrating low-frequency amplitude features and gene expression data from the schizophrenia brain and using gene co-expression network analysis of the Allen Transcriptome Atlas of the human brain from six donors to identify genetic features of brain regions and important associations with neuronal features. The results indicate that changes in the dynamic amplitude of low-frequency fluctuation (dALFF) are mainly associated with transcriptome signature factors such as cortical layer synthesis, immune response, and expanded membrane transport. Further modular disease enrichment analysis revealed that the same set of signature genes associated with dALFF levels was enriched for multiple neurological biological processes. Finally, genetic profiling of individual modules identified multiple core genes closely related to schizophrenia, also potentially associated with neuronal activity. Thus, this paper explores genetic features of brain regions in the schizophrenia closely related to low-frequency amplitude ratio levels based on imaging genetics, which suggests structural endophenotypes associated with schizophrenia.
Collapse
Affiliation(s)
- Wei Luo
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| | - Ruolan Du
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| | - Ying Li
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Hua Zhang
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weixin Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Xiaoqi Luo
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Yunying Chen
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Xinying Yuan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
- Pazhou Lab, Guangzhou, China
| |
Collapse
|
6
|
Zhang X, Wang H, Kilpatrick LA, Dong TS, Gee GC, Labus JS, Osadchiy V, Beltran-Sanchez H, Wang MC, Vaughan A, Gupta A. Discrimination exposure impacts unhealthy processing of food cues: crosstalk between the brain and gut. NATURE MENTAL HEALTH 2023; 1:841-852. [PMID: 38094040 PMCID: PMC10718506 DOI: 10.1038/s44220-023-00134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 08/28/2023] [Indexed: 12/17/2023]
Abstract
Experiences of discrimination are associated with adverse health outcomes, including obesity. However, the mechanisms by which discrimination leads to obesity remain unclear. Utilizing multi-omics analyses of neuroimaging and fecal metabolites, we investigated the impact of discrimination exposure on brain reactivity to food images and associated dysregulations in the brain-gut-microbiome system. We show that discrimination is associated with increased food-cue reactivity in frontal-striatal regions involved in reward, motivation and executive control; altered glutamate-pathway metabolites involved in oxidative stress and inflammation as well as preference for unhealthy foods. Associations between discrimination-related brain and gut signatures were skewed towards unhealthy sweet foods after adjusting for age, diet, body mass index, race and socioeconomic status. Discrimination, as a stressor, may contribute to enhanced food-cue reactivity and brain-gut-microbiome disruptions that can promote unhealthy eating behaviors, leading to increased risk for obesity. Treatments that normalize these alterations may benefit individuals who experience discrimination-related stress.
Collapse
Affiliation(s)
- Xiaobei Zhang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hao Wang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou, China
| | - Lisa A. Kilpatrick
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tien S. Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Gilbert C. Gee
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Urology, UCLA, Los Angeles, CA, USA
| | - Hiram Beltran-Sanchez
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
- California Center for Population Research, UCLA, Los Angeles, CA, USA
| | - May C. Wang
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Community Health Sciences Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Allison Vaughan
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, UCLA, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, UCLA, Los Angeles, CA, USA
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Goodman–Luskin Microbiome Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
8
|
Chen X, Song X, Öngür D, Du F. Association of default-mode network neurotransmitters and inter-network functional connectivity in first episode psychosis. Neuropsychopharmacology 2023; 48:781-788. [PMID: 36788375 PMCID: PMC10066209 DOI: 10.1038/s41386-023-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Multiple psychiatric disorders are characterized by a failure to suppress default-mode network (DMN) activity during tasks and by weaker anti-correlations between DMN and other brain networks at rest. However, the cellular and molecular mechanisms underlying this phenomenon are poorly understood. At the cellular level, neuronal activity is regulated by multiple neurochemical processes including cycling of glutamate and GABA, the major excitatory and inhibitory neurotransmitters in brain. By combining functional MRI and magnetic resonance spectroscopy techniques, it has been shown that the neurotransmitter concentrations in DMN modulate not only functional activity during cognitive tasks, but also the functional connectivity between DMN and other brain networks such as frontoparietal executive control network (CN) at rest in the healthy brain. In the current study, we extend previous research to first episode psychosis (FEP) patients and their relatives. We detected higher glutamate (Glu) levels in the medial prefrontal cortex (MPFC) in FEP compared to healthy controls without a significant difference in GABA. We also observed a significantly lower functional anti-correlated connectivity between critical nodes within the DMN (MPFC) and CN (DLPFC) in FEP. Furthermore, the relationship between MPFC Glu and GABA concentrations and the functional anti-correlation that is seen in healthy people was absent in FEP patients. These findings imply that both the DMN Glu level and the interaction between DMN and CN are affected by the illness, as is the association between neurochemistry and functional connectivity. A better understanding of this observation could provide opportunities for developing novel treatment strategies for psychosis.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Wuhan Zhongke Industrial Research Institute of Medical Science, Wuhan, Hubei, 430075, China
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, CA, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, CA, 02478, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Echeverria-Villalobos M, Fiorda-Diaz J, Uribe A, Bergese SD. Postoperative Nausea and Vomiting in Female Patients Undergoing Breast and Gynecological Surgery: A Narrative Review of Risk Factors and Prophylaxis. Front Med (Lausanne) 2022; 9:909982. [PMID: 35847822 PMCID: PMC9283686 DOI: 10.3389/fmed.2022.909982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Postoperative nausea and vomiting (PONV) have been widely studied as a multifactorial entity, being of female gender the strongest risk factor. Reported PONV incidence in female surgical populations is extremely variable among randomized clinical trials. In this narrative review, we intend to summarize the incidence, independent predictors, pharmacological and non-pharmacological interventions for PONV reported in recently published clinical trials carried out in female patients undergoing breast and gynecologic surgery, as well as the implications of the anesthetic agents on the incidence of PONV. A literature search of manuscripts describing PONV management in female surgical populations (breast surgery and gynecologic surgery) was carried out in PubMed, MEDLINE, and Embase databases. Postoperative nausea and vomiting incidence were highly variable in patients receiving placebo or no prophylaxis among RCTs whereas consistent results were observed in patients receiving 1 or 2 prophylactic interventions for PONV. Despite efforts made, a considerable number of female patients still experienced significant PONV. It is critical for the anesthesia provider to be aware that the coexistence of independent risk factors such as the level of sex hormones (pre- and postmenopausal), preoperative anxiety or depression, pharmacogenomic pleomorphisms, and ethnicity further enhances the probability of experiencing PONV in female patients. Future RCTs should closely assess the overall risk of PONV in female patients considering patient- and surgery-related factors, and the level of compliance with current guidelines for prevention and management of PONV.
Collapse
Affiliation(s)
- Marco Echeverria-Villalobos
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- *Correspondence: Marco Echeverria-Villalobos
| | - Juan Fiorda-Diaz
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sergio D. Bergese
- Department of Anesthesiology, Health Sciences Center, School of Medicine, Stony Brook University, New York, NY, United States
| |
Collapse
|
10
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Jia K, Frangou P, Karlaftis VM, Ziminski JJ, Giorgio J, Rideaux R, Zamboni E, Hodgson V, Emir U, Kourtzi Z. Neurochemical and functional interactions for improved perceptual decisions through training. J Neurophysiol 2022; 127:900-912. [PMID: 35235415 PMCID: PMC8977131 DOI: 10.1152/jn.00308.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Learning and experience are known to improve our ability to make perceptual decisions. Yet, our understanding of the brain mechanisms that support improved perceptual decisions through training remains limited. Here, we test the neurochemical and functional interactions that support learning for perceptual decisions in the context of an orientation identification task. Using magnetic resonance spectroscopy (MRS), we measure neurotransmitters (i.e., glutamate, GABA) that are known to be involved in visual processing and learning in sensory [early visual cortex (EV)] and decision-related [dorsolateral prefrontal cortex (DLPFC)] brain regions. Using resting-state functional magnetic resonance imaging (rs-fMRI), we test for functional interactions between these regions that relate to decision processes. We demonstrate that training improves perceptual judgments (i.e., orientation identification), as indicated by faster rates of evidence accumulation after training. These learning-dependent changes in decision processes relate to lower EV glutamate levels and EV-DLPFC connectivity, suggesting that glutamatergic excitation and functional interactions between visual and dorsolateral prefrontal cortex facilitate perceptual decisions. Further, anodal transcranial direct current stimulation (tDCS) in EV impairs learning, suggesting a direct link between visual cortex excitation and perceptual decisions. Our findings advance our understanding of the role of learning in perceptual decision making, suggesting that glutamatergic excitation for efficient sensory processing and functional interactions between sensory and decision-related regions support improved perceptual decisions.NEW & NOTEWORTHY Combining multimodal brain imaging [magnetic resonance spectroscopy (MRS), functional connectivity] with interventions [transcranial direct current stimulation (tDCS)], we demonstrate that glutamatergic excitation and functional interactions between sensory (visual) and decision-related (dorsolateral prefrontal cortex) areas support our ability to optimize perceptual decisions through training.
Collapse
Affiliation(s)
- Ke Jia
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Polytimi Frangou
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Vasilis M Karlaftis
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph J Ziminski
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Giorgio
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Reuben Rideaux
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Zamboni
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Hodgson
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, Indiana
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Li M, Danyeli LV, Colic L, Wagner G, Smesny S, Chand T, Di X, Biswal BB, Kaufmann J, Reichenbach JR, Speck O, Walter M, Sen ZD. The differential association between local neurotransmitter levels and whole-brain resting-state functional connectivity in two distinct cingulate cortex subregions. Hum Brain Mapp 2022; 43:2833-2844. [PMID: 35234321 PMCID: PMC9120566 DOI: 10.1002/hbm.25819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2021] [Revised: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen R Reichenbach
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany.,Michael Stifel Center Jena for Data-Driven & Simulation Science (MSCJ), Jena, Germany.,Center of Medical Optics and Photonics (CeMOP), Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Functional connectivity and neurotransmitter impairments of the salience brain network in chronic low back pain patients: a combined resting state functional MRI and 1H-MRS study. Pain 2022; 163:2337-2347. [PMID: 35417435 DOI: 10.1097/j.pain.0000000000002626] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Functional re-organisation of the salience network (SN) has been proposed as one of the key pathomechanisms associated with central nociceptive processing in the chronic pain state. Being associated with an altered functional connectivity within the SN, these processes have been hypothesized to result from a loss of inhibitory function leading to node hyperexcitability and spontaneous pain. Combined resting-state (rs) BOLD fMRI and 1H-MR spectroscopy was applied to chronic back pain (CBP) patients and healthy subjects (HS) to assess deviations from functional integrity (weighted closeness centrality, wCC, derived from rs-fMRI), oscillatory BOLD characteristics (spectral power, SP), and neurotransmitter levels (GABA+, glutamate+glutamine) in two key SN nodes, anterior insular (aInsR) and anterior mid-cingulate (aMCC) cortices. In addition, examinations were repeated in CBP patients after a four week interdisciplinary multimodal pain treatment and in HS after four weeks to explore longitudinal, treatment-mediated changes in target variables. The aInsR and, to a lesser extent, the aMCC of patients exhibited significantly reduced wCC accompanied by a SP shift from a lower to a higher frequency band, indicating a desynchronization of their neuronal activity within the SN, possibly due to increased spontaneous activations. Without revealing neurotransmitter differences, patients alone showed significant positive associations between local GABA+ levels and wCC in aInsR, suggesting a stronger dependence of node synchronization on the inhibitory tone in the chronic pain state. However, this needs to be explored in future using MRS techniques that are more sensitive to detecting subtle neurotransmitter changes and also allow multifocal characterization of neurotransmitter tone.
Collapse
|
14
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
15
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Maximo JO, Briend F, Armstrong WP, Kraguljac NV, Lahti AC. Salience network glutamate and brain connectivity in medication-naïve first episode patients - A multimodal magnetic resonance spectroscopy and resting state functional connectivity MRI study. Neuroimage Clin 2021; 32:102845. [PMID: 34662778 PMCID: PMC8526757 DOI: 10.1016/j.nicl.2021.102845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Salience network (SN) connectivity is altered in schizophrenia, but the pathophysiological origin remains poorly understood. The goal of this multimodal neuroimaging study was to investigate the role of glutamatergic metabolism as putative mechanism underlying SN dysconnectivity in first episode psychosis (FEP) subjects. METHODS We measured glutamate + glutamine (Glx) in the dorsal anterior cingulate cortex (dACC) from 70 antipsychotic-naïve FEP subjects and 52 healthy controls (HC). The dACC was then used as seed to define positive and negative resting state functional connectivity (FC) of the SN. We used multiple regression analyses to test main effects and group interactions of Glx and FC associations. RESULTS dACC Glx levels did not differ between groups. Positive FC was significantly reduced in FEP compared to HC, and no group differences were found in negative FC. Group interactions of Glx-FC associations were found within the SN for positive FC, and in parietal cortices for negative FC. In HC, higher Glx levels predicted greater positive FC in the dACC and insula, and greater negative FC of the lateral parietal cortex. These relationships were weaker or absent in FEP. CONCLUSIONS Here, we found that positive FC in the SN is already altered in medication-naïve FEP, underscoring the importance of considering both correlations and anticorrelations for characterization of pathology. Our data demonstrate that Glx and functional connectivity work differently in FEP than in HC, pointing to a possible mechanism underlying dysconnectivity in psychosis.
Collapse
Affiliation(s)
- Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Frederic Briend
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA; UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William P Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Zacharopoulos G, Sella F, Emir U, Cohen Kadosh R. The relation between parietal GABA concentration and numerical skills. Sci Rep 2021; 11:17656. [PMID: 34480033 PMCID: PMC8417296 DOI: 10.1038/s41598-021-95370-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2020] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Several scientific, engineering, and medical advancements are based on breakthroughs made by people who excel in mathematics. Our current understanding of the underlying brain networks stems primarily from anatomical and functional investigations, but our knowledge of how neurotransmitters subserve numerical skills, the building block of mathematics, is scarce. Using 1H magnetic resonance spectroscopy (N = 54, 3T, semi-LASER sequence, TE = 32 ms, TR = 3.5 s), the study examined the relation between numerical skills and the brain's major inhibitory (GABA) and excitatory (glutamate) neurotransmitters. A negative association was found between the performance in a number sequences task and the resting concentration of GABA within the left intraparietal sulcus (IPS), a key region supporting numeracy. The relation between GABA in the IPS and number sequences was specific to (1) parietal but not frontal regions and to (2) GABA but not glutamate. It was additionally found that the resting functional connectivity of the left IPS and the left superior frontal gyrus was positively associated with number sequences performance. However, resting GABA concentration within the IPS explained number sequences performance above and beyond the resting frontoparietal connectivity measure. Our findings further motivate the study of inhibition mechanisms in the human brain and significantly contribute to our current understanding of numerical cognition's biological bases.
Collapse
Affiliation(s)
- George Zacharopoulos
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- Department of Psychology, Swansea University, Swansea, UK.
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, UK
| | - Uzay Emir
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
- School of Psychology, University of Surrey, Guildford, UK.
| |
Collapse
|
18
|
Zacharopoulos G, Emir U, Cohen Kadosh R. The cross-sectional interplay between neurochemical profile and brain connectivity. Hum Brain Mapp 2021; 42:2722-2733. [PMID: 33835605 PMCID: PMC8127145 DOI: 10.1002/hbm.25396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 01/05/2023] Open
Abstract
Neurochemical profile and brain connectivity are both critical aspects of brain function. However, our knowledge of their interplay across development is currently poor. We combined single-voxel magnetic resonance spectroscopy and resting functional magnetic resonance imaging in a cross-sectional sample spanning from childhood to adulthood which was reassessed in ~1.5 years (N = 293). We revealed the developmental trajectories of 20 neurochemicals in two key developmental brain regions (the intraparietal sulcus, IPS, and the middle frontal gyrus, MFG). We found that certain neurochemicals exhibited similar developmental trajectories across the two regions, while other trajectories were region-specific. Crucially, we mapped the connectivity of the brain regions IPS and MFG to the rest of the brain across development as a function of regional glutamate and GABA concentration. We demonstrated that glutamate concentration within the IPS is modulated by age in explaining IPS connectivity with frontal, temporal and parietal regions. In mature participants, higher glutamate within the IPS was related to more negative connectivity while the opposite pattern was found for younger participants. Our findings offer specific developmental insights on the interplay between the brain's resting activity and the glutamatergic system both of which are crucial for regulating normal functioning and are dysregulated in several clinical conditions.
Collapse
Affiliation(s)
- George Zacharopoulos
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
| | - Uzay Emir
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
- School of Health Sciences, College of Health and Human SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
19
|
McCutcheon RA, Pillinger T, Rogdaki M, Bustillo J, Howes OD. Glutamate connectivity associations converge upon the salience network in schizophrenia and healthy controls. Transl Psychiatry 2021; 11:322. [PMID: 34045446 PMCID: PMC8159959 DOI: 10.1038/s41398-021-01455-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/23/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Alterations in cortical inter-areal functional connectivity, and aberrant glutamatergic signalling are implicated in the pathophysiology of schizophrenia but the relationship between the two is unclear. We used multimodal imaging to identify areas of convergence between the two systems. Two separate cohorts were examined, comprising 195 participants in total. All participants received resting state functional MRI to characterise functional brain networks and proton magnetic resonance spectroscopy (1H-MRS) to measure glutamate concentrations in the frontal cortex. Study A investigated the relationship between frontal cortex glutamate concentrations and network connectivity in individuals with schizophrenia and healthy controls. Study B also used 1H-MRS, and scanned individuals with schizophrenia and healthy controls before and after a challenge with the glutamatergic modulator riluzole, to investigate the relationship between changes in glutamate concentrations and changes in network connectivity. In both studies the network based statistic was used to probe associations between glutamate and connectivity, and glutamate associated networks were then characterised in terms of their overlap with canonical functional networks. Study A involved 76 individuals with schizophrenia and 82 controls, and identified a functional network negatively associated with glutamate concentrations that was concentrated within the salience network (p < 0.05) and did not differ significantly between patients and controls (p > 0.85). Study B involved 19 individuals with schizophrenia and 17 controls and found that increases in glutamate concentrations induced by riluzole were linked to increases in connectivity localised to the salience network (p < 0.05), and the relationship did not differ between patients and controls (p > 0.4). Frontal cortex glutamate concentrations are associated with inter-areal functional connectivity of a network that localises to the salience network. Changes in network connectivity in response to glutamate modulation show an opposite effect compared to the relationship observed at baseline, which may complicate pharmacological attempts to simultaneously correct glutamatergic and connectivity aberrations.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK. .,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK. .,South London and Maudsley NHS Foundation Trust, London, UK.
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, SE5 8AF, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, SE5 8AF, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Juan Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA.,Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, SE5 8AF, UK.,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Martens L, Herrmann L, Colic L, Li M, Richter A, Behnisch G, Stork O, Seidenbecher C, Schott BH, Walter M. Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Sci Rep 2021; 11:6742. [PMID: 33762638 PMCID: PMC7990923 DOI: 10.1038/s41598-021-86220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The Met allele of the Val66Met SNP of the BDNF gene (rs6265) is associated with impaired activity-dependent release of brain-derived neurotrophic factor (BDNF), resulting in reduced synaptic plasticity, impaired glutamatergic neurotransmission, and morphological changes. While previous work has demonstrated Val66Met effects on magnetic resonance spectroscopy (MRS) markers of either glutamatergic metabolism (Glx) or neuronal integrity (NAA), no study has investigated Val66Met effects on these related processes simultaneously. As these metabolites share a metabolic pathway, the Glx/NAA ratio may be a more sensitive marker of changes associated with the Val66Met SNP. This ratio is increased in psychiatric disorders linked to decreased functioning in the anterior cingulate cortex (ACC). In this study, we investigated the correlation of the Val66Met polymorphism of the BDNF gene with Glx/NAA in the pregenual anterior cingulate cortex (pgACC) using MRS at 3 Tesla (T) (n = 30, all males) and 7 T (n = 98, 40 females). In both cohorts, Met carriers had lower Glx/NAA compared to Val homozygotes. Follow-up analyses using absolute quantification revealed that the Met carriers do not show decreased pgACC glutamate or glutamine levels, but instead show increased NAA compared to the Val homozygotes. This finding may in part explain conflicting evidence for Val66Met as a risk factor for developing psychiatric illnesses.
Collapse
Affiliation(s)
- Louise Martens
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Graduate Training Center, IMPRS, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Luisa Herrmann
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-Von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martin Walter
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany. .,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. .,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.
| |
Collapse
|
21
|
The manifestation of individual differences in sensitivity to punishment during resting state is modulated by eye state. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:144-155. [PMID: 33432544 DOI: 10.3758/s13415-020-00856-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 11/21/2020] [Indexed: 11/08/2022]
Abstract
Structural and functional neuroimaging studies have shown that brain areas associated with fear and anxiety (defensive system areas) are modulated by individual differences in sensitivity to punishment (SP). However, little is known about how SP is related to brain functional connectivity and the factors that modulate this relationship. In this study, we investigated whether a simple methodological manipulation, such as performing a resting state with eyes open or eyes closed, can modulate the manifestation of individual differences in SP. To this end, we performed an exploratory fMRI resting state study in which a group of participants (n = 88) performed a resting state with eyes closed and another group (n = 56) performed a resting state with eyes open. All participants completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Seed-based functional connectivity analyses were performed in the amygdala, hippocampus, and periaqueductal gray (PAG). Our results showed that the relationship between SP and left amygdala-precuneus and left hippocampus-precuneus functional connectivity was modulated by eye state. Moreover, in the eyes open group, SP was negatively related to the functional connectivity between the PAG and amygdala and between the PAG and left hippocampus, and it was positively related to the functional connectivity between the amygdala and hippocampus. Together, our results may suggest underlying differences in the connectivity between anxiety-related areas based on eye state, which in turn would affect the manifestation of individual differences in SP.
Collapse
|
22
|
Zacharopoulos G, Kadosh Cohen R. Predicting Working Memory Capacity Based on Glutamatergic Concentration and its Modulation of Functional Connectivity. Neuroscience 2020; 457:12-19. [PMID: 33212221 DOI: 10.1016/j.neuroscience.2020.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Working memory (WM) capacity, the amount of information one can hold online in mind, has a central role in cognition. Previous electrophysiological and imaging studies revealed the pivotal role of persistent activity within parietal and frontal regions as the neural foundations underpinning WM capacity. The best candidate molecules determining persistent activity are the brain's major excitatory and inhibitory neurotransmitters, glutamate and gamma-aminobutyric acid (GABA), respectively. However, our knowledge of these neurophysiological determinants in forming WM capacity is still poor. Using magnetic resonance spectroscopy (MRS), we examined the contribution of glutamate and GABA within the left intraparietal sulcus (IPS) and the left inferior/middle frontal gyrus (FG) in tracking WM capacity. A positive association was found between glutamate within the left IPS and WM capacity. By utilising resting-state functional MRI, we identified a negative association between parieto-cingulate connectivity and WM capacity. Individual variation in parieto-cingulate connectivity was explained by glutamatergic concentration in the IPS. Moreover, we found that parieto-cingulate connectivity mediated the relationship between interparietal sulcus glutamate and WM capacity. This set of findings reveals a novel mechanistic insight by which glutamatergic concentration within the IPS shapes WM capacity via parieto-cingulate connectivity.
Collapse
Affiliation(s)
- George Zacharopoulos
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| | - Roi Kadosh Cohen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
23
|
Newman SD, Cheng H, Kim DJ, Schnakenberg-Martin A, Dydak U, Dharmadhikari S, Hetrick W, O'Donnell B. An investigation of the relationship between glutamate and resting state connectivity in chronic cannabis users. Brain Imaging Behav 2020; 14:2062-2071. [PMID: 31302844 PMCID: PMC6955389 DOI: 10.1007/s11682-019-00165-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Human and animal studies have shown that heavy cannabis (CB) use interacts with glutamatergic signaling. Additionally, recent studies have suggested that glutamate (Glu) may drive resting state functional connectivity (RSfc). The aims of the current preliminary study were to: 1) determine whether dorsal anterior cingulate cortex (dACC) Glu is related to RSfc between the dACC and two nodes of the reward network, the nucleus accumbens (NAc) and hippocampus (Hp); and 2) determine whether CB use interacts with the relationship between dACC Glu and RSfc. A group of 23 chronic CB users and 23 healthy controls participated in this multimodal MRI study. Glu levels were assessed in the dACC using magnetic resonance spectroscopy (MRS). Linear regression models were used to determine whether dACC Glu and CB use predicts RSfc between the dACC and the NAc and Hp. While the effect size is small, the results showed that the connectivity between the dACC and right NAc was predicted by the interaction between dACC Glu levels and monthly CB use. Additionally, while there is some suggestion that dACC Glu is correlated with dACC-hippocampal connectivity, unlike for dACC/NAc connectivity the relationship between them does not appear to be affected by CB use. These preliminary findings are significant in that they demonstrate the need for future studies with larger sample sizes to better characterize the relationship between resting state connectivity and neurochemistry as well as to characterize how CB use interacts with that relationship.
Collapse
Affiliation(s)
- Sharlene D Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | | | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Brian O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
24
|
Short-term nicotine deprivation alters dorsal anterior cingulate glutamate concentration and concomitant cingulate-cortical functional connectivity. Neuropsychopharmacology 2020; 45:1920-1930. [PMID: 32559759 PMCID: PMC7608204 DOI: 10.1038/s41386-020-0741-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/24/2020] [Revised: 05/20/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Most cigarette smokers who wish to quit too often relapse within the first few days of abstinence, primarily due to the aversive aspects of the nicotine withdrawal syndrome (NWS), which remains poorly understood. Considerable research has suggested that the dorsal anterior cingulate cortex (dACC) plays a key role in nicotine dependence, with its functional connections between other brain regions altered as a function of trait addiction and state withdrawal. The flow of information between dACC and fronto-striatal regions is secured through different pathways, the vast majority of which are glutamatergic. As such, we investigated dACC activity using resting state functional connectivity (rsFC) with functional magnetic resonance imaging (fMRI) and glutamate (Glu) concentration with magnetic resonance spectroscopy (MRS). We also investigated the changes in adenosine levels in plasma during withdrawal as a surrogate for brain adenosine, which plays a role in fine-tuning synaptic glutamate transmission. Using a double-blind, placebo-controlled, randomized crossover design, nontreatment seeking smoking participants (N = 30) completed two imaging sessions, one while nicotine sated and another after 36 h nicotine abstinence. We observed reduced dACC Glu (P = 0.029) along with a significant reduction in plasma adenosine (P = 0.03) and adenosine monophosphate (AMP; P < 0.0001) concentrations during nicotine withdrawal in comparison with nicotine sated state. This withdrawal state manipulation also led to an increase in rsFC strength (P < 0.05) between dACC and several frontal cortical regions, including left superior frontal gyrus (LSFG), and right middle frontal gyrus (RMFG). Moreover, the state-trait changes in dACC Glu and rsFC strength between the dACC and both SFG and MFG were positively correlated (P = 0.012, and P = 0.007, respectively). Finally, the change in circuit strength between dACC and LSFG was negatively correlated with the change in withdrawal symptom manifestations as measured by the Wisconsin Smoking Withdrawal Scale (P = 0.04) and Tobacco Craving Questionnaire (P = 0.014). These multimodal imaging-behavioral findings reveal the complex cascade of changes induced by acute nicotine deprivation and call for further investigation into the potential utility of adenosine- and glutamate-signaling as novel therapeutic targets to treat the NWS.
Collapse
|
25
|
Wang K, Smolker HR, Brown MS, Snyder HR, Hankin BL, Banich MT. Association of γ-aminobutyric acid and glutamate/glutamine in the lateral prefrontal cortex with patterns of intrinsic functional connectivity in adults. Brain Struct Funct 2020; 225:1903-1919. [PMID: 32803293 PMCID: PMC8765125 DOI: 10.1007/s00429-020-02084-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2019] [Accepted: 05/04/2020] [Indexed: 01/04/2023]
Abstract
This study examined how levels of neurotransmitters in the lateral prefrontal cortex (LPFC), a region underlying higher-order cognition, are related to the brain's intrinsic functional organization. Using magnetic resonance spectroscopy (MRS), GABA+ and Glx (glutamate + glutamine) levels in the left dorsal (DLPFC) and left ventral (VLPFC) lateral prefrontal cortex were obtained in a sample of 64 female adults (mean age = 48.5). We measured intrinsic connectivity via resting-state fMRI in three ways: (a) via seed-based connectivity for each of the two spectroscopy voxels; (b) via the spatial configurations of 17 intrinsic networks defined by a well-known template; and (c) via examination of the temporal inter-relationships between these intrinsic networks. The results showed that different neurotransmitter indexes (Glx-specific, GABA+-specific, Glx-GABA+ average and Glx-GABA+ ratio) were associated with distinct patterns of intrinsic connectivity. Neurotransmitter levels in the left LPFC are mainly associated with connectivity of right hemisphere prefrontal (e.g., DLPFC) or striatal (e.g., putamen) regions, two areas of the brain connected to LPFC via large white matter tracts. While the directions of these associations were mixed, in most cases, higher Glx levels are related to reduced connectivity. Prefrontal neurotransmitter levels are also associated with the degree of connectivity between non-prefrontal regions. These results suggest robust relationships between the brain's intrinsic functional organization and local neurotransmitters in the LPFC which may be constrained by white matter neuroanatomy.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, No. 55 West Zhongshan Avenue, Guangzhou, 510631, Guangdong, China.
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
| | - Harry R Smolker
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, 1480 30th Street, Boulder, CO, 80303, USA
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, 12401 E 17th Place, Aurora, CO, 80045, USA
| | - Hannah R Snyder
- Department of Psychology, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Benjamin L Hankin
- Psychology Department, University of Illinois-Urbana Champaign, 603 E. Daniel Street, Champaign, IL, 61820, USA
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, 344 UCB, Boulder, CO, 80309-0344, USA.
- Department of Psychology and Neuroscience, University of Colorado Boulder, E230 Muenzinger Hall, UCB 345, Boulder, CO, 80309-0345, USA.
| |
Collapse
|
26
|
Zachariou V, Bauer CE, Seago ER, Raslau FD, Powell DK, Gold BT. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults. Neuroimage 2020; 223:117309. [PMID: 32861788 PMCID: PMC7821351 DOI: 10.1016/j.neuroimage.2020.117309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive brain iron negatively affects working memory and related processes but the impact of cortical iron on task-relevant, cortical brain networks is unknown. We hypothesized that high cortical iron concentration may disrupt functional circuitry within cortical networks supporting working memory performance. Fifty-five healthy older adults completed an N-Back working memory paradigm while functional magnetic resonance imaging (fMRI) was performed. Participants also underwent quantitative susceptibility mapping (QSM) imaging for assessment of non-heme brain iron concentration. Additionally, pseudo continuous arterial spin labeling scans were obtained to control for potential contributions of cerebral blood volume and structural brain images were used to control for contributions of brain volume. Task performance was positively correlated with strength of task-based functional connectivity (tFC) between brain regions of the frontoparietal working memory network. However, higher cortical iron concentration was associated with lower tFC within this frontoparietal network and with poorer working memory performance after controlling for both cerebral blood flow and brain volume. Our results suggest that high cortical iron concentration disrupts communication within frontoparietal networks supporting working memory and is associated with reduced working memory performance in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Flavius D Raslau
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - David K Powell
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA; Magnetic Resonance Imaging and Spectroscopy Center, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 USA.
| |
Collapse
|
27
|
Kühnel A, Widmann A, Colic L, Herrmann L, Demenescu LR, Leutritz AL, Li M, Grimm S, Nolte T, Fonagy P, Walter M. Impaired cognitive self-awareness mediates the association between alexithymia and excitation/inhibition balance in the pgACC. Psychol Med 2020; 50:1727-1735. [PMID: 31328716 DOI: 10.1017/s0033291719001806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous research showed that automatic emotion regulation is associated with activation of subcortical areas and subsequent feedforward processes to cortical areas. In contrast, cognitive awareness of emotions is mediated by negative feedback from cortical to subcortical areas. Pregenual anterior cingulate cortex (pgACC) is essential in the modulation of both affect and alexithymia. We considered the interplay between these two mechanisms in the pgACC and their relationship with alexithymia. METHOD In 68 healthy participants (30 women, age = 26.15 ± 4.22) we tested associations of emotion processing and alexithymia with excitation/inhibition (E/I) balance represented as glutamate (Glu)/GABA in the pgACC measured via magnetic resonance spectroscopy in 7 T. RESULTS Alexithymia was positively correlated with the Glu/GABA ratio (N = 41, p = 0.0393). Further, cognitive self-awareness showed an association with Glu/GABA (N = 52, p = 0.003), which was driven by a correlation with GABA. In contrast, emotion regulation was only correlated with glutamate levels in the pgACC (N = 49, p = 0.008). CONCLUSION Our results corroborate the importance of the pgACC as a mediating region of alexithymia, reflected in an altered E/I balance. Furthermore, we could specify that this altered balance is linked to a GABA-related modulation of cognitive self-awareness of emotions.
Collapse
Affiliation(s)
- A Kühnel
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - A Widmann
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- University Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - L Colic
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry, Mood Disorders Research Program, Yale School of Medicine, New Haven, CT, USA
| | - L Herrmann
- University Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - L R Demenescu
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
| | - A L Leutritz
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
| | - M Li
- University Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, OVGU Magdeburg, Magdeburg, Germany
| | - S Grimm
- Department of Psychiatry, Charité, CBF, Berlin, Germany
- MSB Medical School Berlin, Calandrellistraße 1-9, 12247Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8032Zurich, Switzerland
| | - T Nolte
- The Anna Freud National Centre for Children and Families, London, UK
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - P Fonagy
- The Anna Freud National Centre for Children and Families, London, UK
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - M Walter
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- University Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
28
|
Duan X, Hu M, Huang X, Su C, Zong X, Dong X, He C, Xiao J, Li H, Tang J, Chen X, Chen H. Effect of Risperidone Monotherapy on Dynamic Functional Connectivity of Insular Subdivisions in Treatment-Naive, First-Episode Schizophrenia. Schizophr Bull 2020; 46:650-660. [PMID: 31504959 PMCID: PMC7147596 DOI: 10.1093/schbul/sbz087] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The insula consists of functionally diverse subdivisions, and each division plays different roles in schizophrenia neuropathology. The current study aimed to investigate the abnormal patterns of dynamic functional connectivity (dFC) of insular subdivisions in schizophrenia and the effect of antipsychotics on these connections. METHODS Longitudinal study of the dFC of insular subdivisions was conducted in 42 treatment-naive first-episode patients with schizophrenia at baseline and after 8 weeks of risperidone treatment based on resting-state functional magnetic resonance image (fMRI). RESULTS At baseline, patients showed decreased dFC variance (less variable) between the insular subdivisions and the precuneus, supplementary motor area and temporal cortex, as well as increased dFC variance (more variable) between the insular subdivisions and parietal cortex, compared with healthy controls. After treatment, the dFC variance of the abnormal connections were normalized, which was accompanied by a significant improvement in positive symptoms. CONCLUSIONS Our findings highlighted the abnormal patterns of fluctuating connectivity of insular subdivision circuits in schizophrenia and suggested that these abnormalities may be modified after antipsychotic treatment.
Collapse
Affiliation(s)
- Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, PR China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chan Su
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, PR China,Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, PR China,Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY
| | - Xia Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Haoru Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jinsong Tang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, PR China,Mental Health Institute of Central South University, Changsha, PR China,China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Changsha, PR China
| | - Xiaogang Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, PR China,Mental Health Institute of Central South University, Changsha, PR China,China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Changsha, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, PR China,To whom correspondence should be addressed; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; fax: 86-28-83208238, e-mail:
| |
Collapse
|
29
|
Effect of single dose N-acetylcysteine administration on resting state functional connectivity in schizophrenia. Psychopharmacology (Berl) 2020; 237:443-451. [PMID: 31786651 PMCID: PMC7018675 DOI: 10.1007/s00213-019-05382-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/25/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE There is interest in employing N-acetylcysteine (NAC) in the treatment of schizophrenia, but investigations of the functional signatures of its pharmacological action are scarce. OBJECTIVES The aim of this study was to identify the changes in resting-state functional connectivity (rs-FC) that occur following administration of a single dose of NAC in patients with schizophrenia. A secondary aim was to examine whether differences in rs-FC between conditions were mediated by glutamate metabolites in the anterior cingulate cortex (ACC). METHODS In a double-blind, placebo-controlled crossover design, 20 patients with schizophrenia had two MRI scans administered 7 days apart, following oral administration of either 2400 mg NAC or placebo. Resting state functional fMRI (rsfMRI) assessed the effect of NAC on rs-FC within the default mode network (DMN) and the salience network (SN). Proton magnetic resonance spectroscopy was used to measure Glx/Cr (glutamate plus glutamine, in ratio to creatine) levels in the ACC during the same scanning sessions. RESULTS Compared to the placebo condition, the NAC condition was associated with reduced within the DMN and SN, specifically between the medial pre-frontal cortex to mid frontal gyrus, and ACC to frontal pole (all p < 0.04). There were no significant correlations between ACC Glx/Cr and rs-FC in either condition (p > 0.6). CONCLUSIONS These findings provide preliminary evidence that NAC can reduce medial frontal rs-FC in schizophrenia. Future studies assessing the effects of NAC on rs-FC in early psychosis and on repeated administration in relation to efficacy would be of interest.
Collapse
|
30
|
Naylor B, Hesam-Shariati N, McAuley JH, Boag S, Newton-John T, Rae CD, Gustin SM. Reduced Glutamate in the Medial Prefrontal Cortex Is Associated With Emotional and Cognitive Dysregulation in People With Chronic Pain. Front Neurol 2019; 10:1110. [PMID: 31849800 PMCID: PMC6903775 DOI: 10.3389/fneur.2019.01110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2019] [Accepted: 10/03/2019] [Indexed: 01/03/2023] Open
Abstract
A decrease in glutamate in the medial prefrontal cortex (mPFC) has been extensively found in animal models of chronic pain. Given that the mPFC is implicated in emotional appraisal, cognition and extinction of fear, could a potential decrease in glutamate be associated with increased pessimistic thinking, fear and worry symptoms commonly found in people with chronic pain? To clarify this question, 19 chronic pain subjects and 19 age- and gender-matched control subjects without pain underwent magnetic resonance spectroscopy. Both groups also completed the Temperament and Character, the Beck Depression and the State Anxiety Inventories to measure levels of harm avoidance, depression, and anxiety, respectively. People with chronic pain had significantly higher scores in harm avoidance, depression and anxiety compared to control subjects without pain. High levels of harm avoidance are characterized by excessive worry, pessimism, fear, doubt and fatigue. Individuals with chronic pain showed a significant decrease in mPFC glutamate levels compared to control subjects without pain. In people with chronic pain mPFC glutamate levels were significantly negatively correlated with harm avoidance scores. This means that the lower the concentration of glutamate in the mPFC, the greater the total scores of harm avoidance. High scores are associated with fearfulness, pessimism, and fatigue-proneness. We suggest that chronic pain, particularly the stress-induced release of glucocorticoids, induces changes in glutamate transmission in the mPFC, thereby influencing cognitive, and emotional processing. Thus, in people with chronic pain, regulation of fear, worry, negative thinking and fatigue is impaired.
Collapse
Affiliation(s)
- Brooke Naylor
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, Macquarie University, Sydney, NSW, Australia
| | | | - James H McAuley
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Simon Boag
- School of Psychology, Macquarie University, Sydney, NSW, Australia
| | - Toby Newton-John
- Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Sylvia M Gustin
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
31
|
Association between dynamic resting-state functional connectivity and ketamine plasma levels in visual processing networks. Sci Rep 2019; 9:11484. [PMID: 31391479 PMCID: PMC6685940 DOI: 10.1038/s41598-019-46702-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2018] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous studies demonstrate ketamine’s influence on resting-state functional connectivity (rsFC). Seed-based and static rsFC estimation methods may oversimplify FC. These limitations can be addressed with whole-brain, dynamic rsFC estimation methods. We assessed data from 27 healthy subjects who underwent two 3 T resting-state fMRI scans, once under subanesthetic, intravenous esketamine and once under placebo, in a randomized, cross-over manner. We aimed to isolate only highly robust effects of esketamine on dynamic rsFC by using eight complementary methodologies derived from two dynamic rsFC estimation methods, two functionally defined atlases and two statistical measures. All combinations revealed a negative influence of esketamine on dynamic rsFC within the left visual network and inter-hemispherically between visual networks (p < 0.05, corrected), hereby suggesting that esketamine’s influence on dynamic rsFC is highly stable in visual processing networks. Our findings may be reflective of ketamine’s role as a model for psychosis, a disorder associated with alterations to visual processing and impaired inter-hemispheric connectivity. Ketamine is a highly effective antidepressant and studies have shown changes to sensory processing in depression. Dynamic rsFC in sensory processing networks might be a promising target for future investigations of ketamine’s antidepressant properties. Mechanistically, sensitivity of visual networks for esketamine’s effects may result from their high expression of NMDA-receptors.
Collapse
|
32
|
Ousdal OT, Milde AM, Craven AR, Ersland L, Endestad T, Melinder A, Huys QJ, Hugdahl K. Prefrontal glutamate levels predict altered amygdala-prefrontal connectivity in traumatized youths. Psychol Med 2019; 49:1822-1830. [PMID: 30223909 PMCID: PMC6650776 DOI: 10.1017/s0033291718002519] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/29/2017] [Revised: 05/22/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neurobiological models of stress and stress-related mental illness, including post-traumatic stress disorder, converge on the amygdala and the prefrontal cortex (PFC). While a surge of research has reported altered structural and functional connectivity between amygdala and the medial PFC following severe stress, few have addressed the underlying neurochemistry. METHODS We combined resting-state functional magnetic resonance imaging measures of amygdala connectivity with in vivo MR-spectroscopy (1H-MRS) measurements of glutamate in 26 survivors from the 2011 Norwegian terror attack and 34 control subjects. RESULTS Traumatized youths showed altered amygdala-anterior midcingulate cortex (aMCC) and amygdala-ventromedial prefrontal cortex (vmPFC) connectivity. Moreover, the trauma survivors exhibited reduced levels of glutamate in the vmPFC which fits with the previous findings of reduced levels of Glx (glutamate + glutamine) in the aMCC (Ousdal et al., 2017) and together suggest long-term impact of a traumatic experience on glutamatergic pathways. Importantly, local glutamatergic metabolite levels predicted the individual amygdala-aMCC and amygdala-vmPFC functional connectivity, and also mediated the observed group difference in amygdala-aMCC connectivity. CONCLUSIONS Our findings suggest that traumatic stress may influence amygdala-prefrontal neuronal connectivity through an effect on prefrontal glutamate and its compounds. Understanding the neurochemical underpinning of altered amygdala connectivity after trauma may ultimately lead to the discovery of new pharmacological agents which can prevent or treat stress-related mental illness.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Anne Marita Milde
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Regional Centre for Child and Youth Mental Health and Child Welfare, UNI Research Health, Bergen, Norway
| | - Alexander R. Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
| | - Lars Ersland
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Tor Endestad
- Institute of Psychology, University of Oslo, Oslo, Norway
| | | | - Quentin J. Huys
- Translational Neuromodeling Unit, Institute of Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, Zurich, Switzerland
- Department of Psychiatry, Centre for Addiction Disorders, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zürich, Zurich, Switzerland
| | - Kenneth Hugdahl
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT, Centre of Excellence, University of Oslo, Oslo, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, Zarate CA. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry 2019; 24:1040-1052. [PMID: 29487402 PMCID: PMC6111001 DOI: 10.1038/s41380-018-0028-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/13/2017] [Revised: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023]
Abstract
Ketamine's mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine's mechanism of action from studies of healthy controls alone.
Collapse
Affiliation(s)
- Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Nancy E Brutsche
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Nugent AC, Farmer C, Evans JW, Snider SL, Banerjee D, Zarate CA. Multimodal imaging reveals a complex pattern of dysfunction in corticolimbic pathways in major depressive disorder. Hum Brain Mapp 2019; 40:3940-3950. [PMID: 31179620 DOI: 10.1002/hbm.24679] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2019] [Revised: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 11/08/2022] Open
Abstract
Major depressive disorder (MDD) is highly prevalent and associated with considerable morbidity, yet its pathophysiology remains only partially understood. While numerous studies have investigated the neurobiological correlates of MDD, most have used only a single neuroimaging modality. In particular, diffusion tensor imaging (DTI) studies have failed to yield uniform results. In this context, examining key tracts and using information from multiple neuroimaging modalities may better characterize potential abnormalities in the MDD brain. This study analyzed data from 30 participants with MDD and 26 healthy participants who underwent DTI, magnetic resonance spectroscopy (MRS), resting-state functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). Tracts connecting the subgenual anterior cingulate cortex (sgACC) and the left and right amygdala, as well as connections to the left and right hippocampus and thalamus, were examined as target areas. Reduced fractional anisotropy (FA) was observed in the studied tracts. Significant differences in the correlation between medial prefrontal glutamate concentrations and FA were also observed between MDD and healthy participants along tracts connecting the sgACC and right amygdala; healthy participants exhibited a strong correlation but MDD participants showed no such relationship. In the same tract, a correlation was observed between FA and subsequent antidepressant response to ketamine infusion in MDD participants. Exploratory models also suggested group differences in the relationship between DTI, fMRI, and MEG measures. This study is the first to combine MRS, DTI, fMRI, and MEG data to obtain multimodal indices of MDD and antidepressant response and may lay the foundation for similar future analyses.
Collapse
Affiliation(s)
- Allison C Nugent
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.,Magnetoencephalography Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cristan Farmer
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jennifer W Evans
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sam L Snider
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Dipavo Banerjee
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carlos A Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
36
|
Shukla DK, Wijtenburg SA, Chen H, Chiappelli JJ, Kochunov P, Hong LE, Rowland LM. Anterior Cingulate Glutamate and GABA Associations on Functional Connectivity in Schizophrenia. Schizophr Bull 2019; 45:647-658. [PMID: 29912445 PMCID: PMC6483591 DOI: 10.1093/schbul/sby075] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The underlying neurobiological mechanism for abnormal functional connectivity in schizophrenia (SCZ) remains unknown. This project investigated whether glutamate and GABA, 2 metabolites that contribute to excitatory and inhibitory functions, may influence functional connectivity in SCZ. METHODS Resting-state functional magnetic resonance imaging and proton magnetic resonance spectroscopy were acquired from 58 SCZ patients and 61 healthy controls (HC). Seed-based connectivity maps were extracted between the anterior cingulate cortex (ACC) spectroscopic voxel and all other brain voxels. Magnetic resonance spectroscopy (MRS) spectra were processed to quantify glutamate and GABA levels. Regression analysis was performed to describe relationships between functional connectivity and glutamate and GABA levels. RESULTS Reduced ACC functional connectivity in SCZ was found in regions associated with several neural networks including the default mode network (DMN) compared to HC. In the HC, positive correlations were found between glutamate and both ACC-right inferior frontal gyrus functional connectivity and ACC-bilateral superior temporal gyrus functional connectivity. A negative correlation between GABA and ACC-left posterior cingulate functional connectivity was also observed in HC. These same relationships were not statistically significant in SCZ. CONCLUSIONS The present investigation is one of the first studies to examine links between functional connectivity and glutamate and GABA levels in SCZ. Results indicate that glutamate and GABA play an important role in the functional connectivity modulation in the healthy brain. The absence of glutamate and GABA correlations in areas where SCZ showed significantly reduced functional connectivity may suggest that this chemical-functional relationship is disrupted in SCZ.
Collapse
Affiliation(s)
- Dinesh K Shukla
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD,To whom correspondence should be addressed; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, US; tel: 410-402-6028, fax: 410-402-6077, e-mail:
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Hongji Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Joshua J Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Levar N, Van Doesum TJ, Denys D, Van Wingen GA. Anterior cingulate GABA and glutamate concentrations are associated with resting-state network connectivity. Sci Rep 2019; 9:2116. [PMID: 30765822 PMCID: PMC6375948 DOI: 10.1038/s41598-018-38078-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
In recent years, resting-state (RS) networks and RS function have received increased attention, highlighting their importance in both cognitive function and psychopathology. The neurochemical substrates underlying RS networks and their interactions, however, have not yet been well established. Even though prior research has provided first evidence for a negative association between brain GABA levels and RS connectivity, these findings have been limited to within network connectivity, and not network interactions. In this multi-modal imaging study, we investigated the role of the main inhibitory neurotransmitter У-aminobutyric acid (GABA) and the main excitatory neurotransmitter glutamate (Glx) on RS network function and network coupling of three core networks: the default-mode network (DMN), salience network (SN), and central executive network (CEN). Resting-state functional connectivity and GABA and Glx levels in the dorsal anterior cingulate cortex (dACC) were assessed in 64 healthy male participants using functional MRI and magnetic resonance spectroscopy (MRS). Analyses showed that dACC GABA levels were positively correlated with resting-state connectivity in the CEN, and negatively associated with functional coupling of the DMN and CEN. In contrast, GABA/Glx ratios were inversely correlated with the SN and DMN. These findings extend insights into the role of GABA and Glx in individual networks to interactions across networks, suggesting that GABA levels in the SN might play a role in RS functional connectivity within the central executive network, and network interactions with the default-mode network. Our results further suggest a potentially critical role of the relationship between GABA and Glx in RS network function.
Collapse
Affiliation(s)
- Nina Levar
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands. .,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands. .,Spinoza Center for Neuroimaging, Amsterdam, The Netherlands.
| | - Tessa J Van Doesum
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Spinoza Center for Neuroimaging, Amsterdam, The Netherlands
| | - Damiaan Denys
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Spinoza Center for Neuroimaging, Amsterdam, The Netherlands
| | - Guido A Van Wingen
- Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, The Netherlands.,Spinoza Center for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Zhang H, Zou Y, Lei H. Regional metabolic differences in rat prefrontal cortex measured with in vivo 1 H-MRS correlate with regional histochemical differences. NMR IN BIOMEDICINE 2019; 32:e4024. [PMID: 30376204 DOI: 10.1002/nbm.4024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/20/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Many neurological/psychiatric disorders are associated with metabolic abnormalities in the brain observable with in vivo proton MRS (1 H-MRS). The underlying molecular/cellular mechanisms and functional correlations of such metabolic alterations, however, are yet to be understood fully. The rodent prefrontal cortex (PFC) is comprised of multiple sub-regions with distinctive cytoarchitecture and functions, providing a good model system to study the correlations among cerebral metabolism, regional cytoarchitecture and connectivity. In this study, the metabolic profiles in two voxels containing mainly the medial PFC (mPFC) and posterior part of the cingulate cortex (pCG), respectively, were measured with single-voxel in vivo 1 H-MRS in adult male rats. The levels of glutamine synthetase and glutamatergic synaptic proteins, including vesicular glutamate transporter 1, vesicular glutamate transporter 2 (VGLUT2) and post-synaptic density protein 95 (PSD95), as well as the density of astrocytes, in these two regions were also compared semi-quantitatively. It was shown that, relative to the pCG voxel, the mPFC voxel had significantly higher N-acetyl aspartate, glutamate (Glu), glutamine (Gln), Glx (Glu + Gln), myo-inositol and taurine levels. The VGLUT2/PSD95 levels and astrocyte density were also higher in the mPFC voxel than in the pCG voxel. Taken together, these results indicated that regional metabolic variations in the PFC of the adult male rat may reflect regional differences in the density of astrocytes and glutamatergic terminals associated with subcortical projections. The study provided a link between the Glu concentration measured with localized in vivo 1 H-MRS and regional glutamatergic activities/connections in the rat PFC.
Collapse
Affiliation(s)
- Hui Zhang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijuan Zou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Höflich A, Michenthaler P, Kasper S, Lanzenberger R. Circuit Mechanisms of Reward, Anhedonia, and Depression. Int J Neuropsychopharmacol 2018; 22:105-118. [PMID: 30239748 PMCID: PMC6368373 DOI: 10.1093/ijnp/pyy081] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
Pleasure and motivation are important factors for goal-directed behavior and well-being in both animals and humans. Intact hedonic capacity requires an undisturbed interplay between a number of different brain regions and transmitter systems. Concordantly, dysfunction of networks encoding for reward have been shown in depression and other psychiatric disorders. The development of technological possibilities to investigate connectivity on a functional level in humans and to directly influence networks in animals using optogenetics among other techniques has provided new important insights in this field of research.In this review, we aim to provide an overview on the neurobiological substrates of anhedonia on a network level. For this purpose, definition of anhedonia and the involved reward components are described first, then current data on reward networks in healthy individuals and in depressed patients are summarized, and the roles of different neurotransmitter systems involved in reward processing are specified. Based on this information, the impact of different therapeutic approaches on reward processing is described with a particular focus on deep brain stimulation (DBS) as a possibility for a direct modulation of human brain structures in vivo.Overall, results of current studies emphasize the importance of anhedonia in psychiatric disorders and the relevance of targeting this phenotype for a successful psychiatric treatment. However, more data incorporating these results for the refinement of methodological approaches are needed to be able to develop individually tailored therapeutic concepts based on both clinical and neurobiological profiles of patients.
Collapse
Affiliation(s)
- Anna Höflich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Correspondence: Rupert Lanzenberger, MD, PD, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria ()
| |
Collapse
|
40
|
Poletti S, Riberto M, Vai B, Ghiglino D, Lorenzi C, Vitali A, Brioschi S, Locatelli C, Serretti A, Colombo C, Benedetti F. A Glutamate Transporter EAAT1 Gene Variant Influences Amygdala Functional Connectivity in Bipolar Disorder. J Mol Neurosci 2018; 65:536-545. [PMID: 30073554 DOI: 10.1007/s12031-018-1138-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Bipolar disorder (BD) is a severe illness characterized by recurrent depressive and manic episodes and by emotional dysregulation. Altered cortico-limbic connectivity could account for typical symptoms of the disorder such as mood instability, emotional dysregulation, and cognitive deficits. Functional connectivity positively associated with glutamatergic neurotransmission. The inactivation of glutamate is handled by a series of glutamate transporters, among them, the excitatory amino acid transporter 1 (EAAT1) which is modulated by a SNP rs2731880 (C/T) where the C allele leads to increased EAAT1 expression and glutamate uptake. We hypothesized that rs2731880 would affect cortico-limbic functional connectivity during an implicit affective processing task. Sixty-eight BD patients underwent fMRI scanning during implicit processing of fearful and angry faces. We explored the effect of rs2731880 on the strength of functional connectivity from the amygdalae to the whole brain. A significant activation in response to emotional processing was observed in two main clusters encompassing the right and left amygdala. Amygdalae to whole-brain functional connectivity analyses revealed a significant interaction between rs2731880 and the task (emotional stimuli vs geometric shapes) for the functional connections between the right amygdala and right subgenual anterior cingulate cortex. Post-hoc analyses revealed that T/T patients showed a significant negative connectivity between the amygdala and anterior cingulate cortex compared to C carriers. T/T subjects also performed significantly better in the face-matching task than rs2731880*C carriers. Our findings reveal an EAAT1 genotype-associated difference in cortico-limbic connectivity during affective regulation, possibly identifying a neurobiological underpinning of emotional dysfunction in BD.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy.
| | - Martina Riberto
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Davide Ghiglino
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Alice Vitali
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Brioschi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Locatelli
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Colombo
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
41
|
Smesny S, Große J, Gussew A, Langbein K, Schönfeld N, Wagner G, Valente M, Reichenbach JR. Prefrontal glutamatergic emotion regulation is disturbed in cluster B and C personality disorders - A combined 1H/ 31P-MR spectroscopic study. J Affect Disord 2018; 227:688-697. [PMID: 29174743 DOI: 10.1016/j.jad.2017.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Personality disorders (PD) belong to the most common and most serious mental disorders as regards social dysfunction, inability to work, occurrence of comorbidity and suicidal risk. PDs also crucially influence the incidence, clinical course and treatment response of mental disorders with high suicidal risk, such as depression or substance abuse. One key issue of PD concerns the regulation of emotions. METHODS Both 1H-/31P-Chemical Shift Imaging (CSI) was applied in a single session to assess neurochemical markers of glutamate function (NAA, Glu) and local energy metabolism (PCr, ATP) in two patient cohorts encompassing 22 cluster B (CB) and 21 cluster C (CC) PD patients, whereby 10 patients of each group were on low-dose antidepressants, and in 60 healthy controls (HC). Non-parametric statistical tests and correlation analyses were performed to assess disease effects on the metabolites and their relation to symptomatology as assessed by SCL-90R self-ratings. RESULTS Overall comparison including Bonferroni correction revealed significant differences of Glu across all groups in the dorsolateral prefrontal cortex (DLPFC). The following uncorrected results of pairwise tests were obtained: (i) Glu was bilaterally increased in the DLPFC in CB patients, whereas it was - together with NAA - bilaterally decreased in the DLPFC in CC patients and accompanied by increased PCr in the left DLPFC. (ii) NAA and Glu, accompanied by increased PCr, were significantly decreased in the dorsomedial prefrontal cortex (DMPFC) in CC patients. (iii) NAA was decreased in the right anterior cingulate cortex (ACC) in CB patients, and in the left ACC in CC patients with PCr being increased bilaterally. (iv) No associations were observed between metabolites and psychopathology measures. CONCLUSION The observations in the DLPFC may reflect a neurobiochemical correlate of disturbed cognitive control function in CB and CC PD. While the alterations in CB patients suggest increased basal activity, the observed patterns in CC patients likely reflect decreased or inhibited activity. The alterations of NAA and Glu levels in the ACC and DMPFC indirectly support the assumption of disturbed neuronal function in regions involved in social cognition and mentalizing abilities in both CB and CC PD. Further studies should include the investigation of metabolites of neuronal inhibition (GABA) and the examination of treatment effects.
Collapse
Affiliation(s)
- Stefan Smesny
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany.
| | - Johanna Große
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Alexander Gussew
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| | - Kerstin Langbein
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Nils Schönfeld
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Gerd Wagner
- Department of Psychiatry, Jena University Hospital, Philosophenweg 3, D-07743 Jena, Germany
| | - Matias Valente
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum am Weissenhof, D-74189 Weinsberg, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Philosophenweg 3, D-07740 Jena, Germany
| |
Collapse
|
42
|
Lopez JP, Pereira F, Richard-Devantoy S, Berlim M, Chachamovich E, Fiori LM, Niola P, Turecki G, Jollant F. Co-Variation of Peripheral Levels of miR-1202 and Brain Activity and Connectivity During Antidepressant Treatment. Neuropsychopharmacology 2017; 42:2043-2051. [PMID: 28079059 PMCID: PMC5561353 DOI: 10.1038/npp.2017.9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 12/27/2022]
Abstract
MicroRNAs are short non-coding molecules that play a major role in regulating gene expression. Peripheral levels of miR-1202 have been shown to predict and mediate antidepressant response. However, it is not clear to what extent these peripheral measures reflect central neural changes in vivo. We approached this problem with the combined use of peripheral miR-1202 measures and neuroimaging. At baseline and after 8 weeks of desvenlafaxine (50-100 mg die), 20 patients were scanned with 3T magnetic resonance imaging, first at rest then during the Go/NoGo task, a classical test of response inhibition. Blood samples were collected at both time points. During resting state, lower baseline miR-1202 levels were predictive of increased connectivity from T0 to T8 between the posterior cingulate and the prefrontal, parietal, and occipital cortices. Changes in miR-1202 levels following desvenlafaxine treatment were negatively correlated with changes in activity in right precuneus within the default-mode network, and in connectivity between the posterior cingulate and the temporal and prefrontal cortices, and the precuneus. During the Go/NoGo task, baseline miR-1202 levels and changes in these levels were correlated with activity changes in different regions, including bilateral prefrontal, insular, cingulate, and temporal cortices, and left putamen and claustrum. Finally, secondary analyses in a subset of patients showed a trend for a significant correlation between miR-1202 levels and glutamate levels measured by spectroscopy. Changes in peripheral miR-1202 levels were therefore associated with changes in brain activity and connectivity in a network of brain regions associated with depression and antidepressant response. These effects may be mediated by the glutamatergic system.
Collapse
Affiliation(s)
- Juan Pablo Lopez
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Munich, Germany
| | - Fabricio Pereira
- Department of Radiology, Nîmes Academic Hospital, Nîmes, France & EA 2415, Montpellier University, Montpellier, France
| | - Stéphane Richard-Devantoy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada
| | - Marcelo Berlim
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada
| | - Eduardo Chachamovich
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada
| | - Paola Niola
- Laboratory of Pharmacogenomics, Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada
| | - Fabrice Jollant
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montréal, Québec, Canada,Department of Psychiatry, McGill University, Montréal,, Québec, Canada,Department of Psychiatry, Nîmes Academic Hospital, Nîmes, France,Douglas Mental Health University Institute, Frank B. Common Building, 6875 LaSalle Boulevard, Montréal,Québec, Canada H4H 1R3, Tel: +1 514 761 6131 (ext: 3301), Fax: +1 514 888 4466, E-mail:
| |
Collapse
|
43
|
Abstract
Accumulating behavioral and genetic research suggests that most forms of psychopathology share common genetic and neural vulnerabilities and are manifestations of a relatively few core underlying processes. These findings support the view that comorbidity mostly arises, not from true co-occurrence of distinct disorders, but from the behavioral expression of shared vulnerability processes across the life span. The purpose of this review is to examine the role of the prefrontal cortex (PFC) in the shared vulnerability mechanisms underlying the clinical phenomena of comorbidity from a transdiagnostic and ontogenic perspective. In adopting this perspective, we suggest complex transactions between neurobiologically rooted vulnerabilities inherent in PFC circuitry and environmental factors (e.g., parenting, peers, stress, and substance use) across development converge on three key PFC-mediated processes: executive functioning, emotion regulation, and reward processing. We propose that individual differences and impairments in these PFC-mediated functions provide intermediate mechanisms for transdiagnostic symptoms and underlie behavioral tendencies that evoke and interact with environmental risk factors to further potentiate vulnerability.
Collapse
|
44
|
Ajram LA, Horder J, Mendez MA, Galanopoulos A, Brennan LP, Wichers RH, Robertson DM, Murphy CM, Zinkstok J, Ivin G, Heasman M, Meek D, Tricklebank MD, Barker GJ, Lythgoe DJ, Edden RAE, Williams SC, Murphy DGM, McAlonan GM. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry 2017; 7:e1137. [PMID: 28534874 PMCID: PMC5534939 DOI: 10.1038/tp.2017.104] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023] Open
Abstract
Currently, there are no effective pharmacologic treatments for the core symptoms of autism spectrum disorder (ASD). There is, nevertheless, potential for progress. For example, recent evidence suggests that the excitatory (E) glutamate and inhibitory (I) GABA systems may be altered in ASD. However, no prior studies of ASD have examined the 'responsivity' of the E-I system to pharmacologic challenge; or whether E-I modulation alters abnormalities in functional connectivity of brain regions implicated in the disorder. Therefore, we used magnetic resonance spectroscopy ([1H]MRS) to measure prefrontal E-I flux in response to the glutamate and GABA acting drug riluzole in adult men with and without ASD. We compared the change in prefrontal 'Inhibitory Index'-the GABA fraction within the pool of glutamate plus GABA metabolites-post riluzole challenge; and the impact of riluzole on differences in resting-state functional connectivity. Despite no baseline differences in E-I balance, there was a significant group difference in response to pharmacologic challenge. Riluzole increased the prefrontal cortex inhibitory index in ASD but decreased it in controls. There was also a significant group difference in prefrontal functional connectivity at baseline, which was abolished by riluzole within the ASD group. Our results also show, for we believe the first time in ASD, that E-I flux can be 'shifted' with a pharmacologic challenge, but that responsivity is significantly different from controls. Further, our initial evidence suggests that abnormalities in functional connectivity can be 'normalised' by targeting E-I, even in adults.
Collapse
Affiliation(s)
- L A Ajram
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - J Horder
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - M A Mendez
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - A Galanopoulos
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - L P Brennan
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - R H Wichers
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - D M Robertson
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - C M Murphy
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - J Zinkstok
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - G Ivin
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - M Heasman
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - D Meek
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - M D Tricklebank
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - G J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - D J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - R A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S C Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - D G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| | - G M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Centre for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Trust, London, UK
| |
Collapse
|
45
|
Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, Zarate CA. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol Psychiatry 2017; 81:886-897. [PMID: 27449797 PMCID: PMC5107161 DOI: 10.1016/j.biopsych.2016.05.005] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022]
Abstract
In patients with major depressive disorder or bipolar disorder, abnormalities in excitatory and/or inhibitory neurotransmission and neuronal plasticity may lead to aberrant functional connectivity patterns within large brain networks. Network dysfunction in association with altered brain levels of glutamate and gamma-aminobutyric acid have been identified in both animal and human studies of depression. In addition, evidence of an antidepressant response to subanesthetic-dose ketamine has led to a collection of studies that have examined neurochemical (e.g., glutamatergic and gamma-aminobutyric acidergic) and functional imaging correlates associated with such an effect. Results from these studies suggest that an antidepressant response in association with ketamine occurs, in part, by reversing these neurochemical/physiological disturbances. Future studies in depression will require a combination of neuroimaging approaches from which more biologically homogeneous subgroups can be identified, particularly with respect to treatment response biomarkers of glutamatergic modulation.
Collapse
Affiliation(s)
- Marc S Lener
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| | - Mark J Niciu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Minkyung Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, Krystal JH, Murray JD, Anticevic A. Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biol Psychiatry 2017; 81:848-861. [PMID: 28434615 PMCID: PMC5436134 DOI: 10.1016/j.biopsych.2017.03.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 03/05/2017] [Indexed: 01/08/2023]
Abstract
Recent theoretical accounts have proposed excitation and inhibition (E/I) imbalance as a possible mechanistic, network-level hypothesis underlying neural and behavioral dysfunction across neurodevelopmental disorders, particularly autism spectrum disorder (ASD) and schizophrenia (SCZ). These two disorders share some overlap in their clinical presentation as well as convergence in their underlying genes and neurobiology. However, there are also clear points of dissociation in terms of phenotypes and putatively affected neural circuitry. We highlight emerging work from the clinical neuroscience literature examining neural correlates of E/I imbalance across children and adults with ASD and adults with both chronic and early-course SCZ. We discuss findings from diverse neuroimaging studies across distinct modalities, conducted with electroencephalography, magnetoencephalography, proton magnetic resonance spectroscopy, and functional magnetic resonance imaging, including effects observed both during task and at rest. Throughout this review, we discuss points of convergence and divergence in the ASD and SCZ literature, with a focus on disruptions in neural E/I balance. We also consider these findings in relation to predictions generated by theoretical neuroscience, particularly computational models predicting E/I imbalance across disorders. Finally, we discuss how human noninvasive neuroimaging can benefit from pharmacological challenge studies to reveal mechanisms in ASD and SCZ. Collectively, we attempt to shed light on shared and divergent neuroimaging effects across disorders with the goal of informing future research examining the mechanisms underlying the E/I imbalance hypothesis across neurodevelopmental disorders. We posit that such translational efforts are vital to facilitate development of neurobiologically informed treatment strategies across neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, New York; Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Brendan D Adkinson
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| | - Vinod H Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - James C McPartland
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
47
|
GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. Neuroimage 2017; 149:53-62. [DOI: 10.1016/j.neuroimage.2017.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
48
|
3T hippocampal glutamate-glutamine complex reflects verbal memory decline in aging. Neurobiol Aging 2017; 54:103-111. [PMID: 28363111 DOI: 10.1016/j.neurobiolaging.2017.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022]
Abstract
The hippocampus is a critical site for alterations that are responsible for age-related changes in memory. Here, we present a relatively novel approach of examining the relationship between memory performance and glutamate-glutamine levels using short echo time magnetic resonance spectroscopy. Specifically, we investigated the relationship between Glx (a composite of glutamate and glutamine) levels in the hippocampus, performance on a word-recall task, and resting-state functional connectivity. While there was no overall difference in Glx intensity between young and aging adults, we identified a positive correlation between delayed word-list recall and Glx, bilaterally in older adults, but not in young adults. Collapsed across age, we also discovered a negative relationship between Glx intensity and resting-state functional connectivity between the anterior hippocampus and regions in the subcallosal gyrus. These findings demonstrate the possible utility of Glx in identifying age-related changes in the brain and behavior and provide encouragement that magnetic resonance spectroscopy can be useful in predicting age-related decline before any physical abnormalities are present.
Collapse
|
49
|
Arrubla J, Farrher E, Strippelmann J, Tse DHY, Grinberg F, Shah NJ, Neuner I. Microstructural and functional correlates of glutamate concentration in the posterior cingulate cortex. J Neurosci Res 2017; 95:1796-1808. [PMID: 28117486 DOI: 10.1002/jnr.24010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the human brain and has a central role in both intrinsic and stimulus-induced activity. We conducted a study in a cohort of healthy, male volunteers in which glutamate levels were measured in the posterior cingulate cortex (PCC) using 1H magnetic resonance spectroscopy at 3T. The advantages of simultaneous electroencephalography and magnetic resonance imaging (EEG-MRI) were exploited and the subjects were measured in the same session and under the same physiological conditions. Diffusion tensor imaging (DTI), functional MRI (fMRI) and EEG were measured in order to investigate the functional and microstructural correlates of glutamate. The concentration of glutamate (institute units) was calculated and those values were tested for correlation with the metrics of resting state fMRI, DTI, and EEG electrical sources. Our results showed that the concentration of glutamate in the PCC had a significant negative correlation with the tissue mean diffusivity in the same area. The analysis of resting state networks did not show any relationship between the concentration of glutamate and the intrinsic activity of the resting state networks. The concentration of glutamate showed a positive correlation with the electrical generators of α-1 frequency and a negative correlation with the generators of α-2 and β-1 electrical generators. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jorge Arrubla
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Strippelmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Desmond H Y Tse
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Farida Grinberg
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 11, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA - BRAIN - Translational Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
50
|
Dorsal anterior cingulate glutamate is associated with engagement of the default mode network during exposure to smoking cues. Drug Alcohol Depend 2016; 167:75-81. [PMID: 27522872 PMCID: PMC5037039 DOI: 10.1016/j.drugalcdep.2016.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/10/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND When exposed to smoking cues, nicotine dependent individuals activate brain regions overlapping with the default mode network (DMN), a network of regions involved in internally-focused cognition. The salience network (SN), which includes the dorsal anterior cingulate cortex (dACC), is thought to interact with the DMN and aids in directing attention toward salient internal or external stimuli. One possibility is that neurochemical variation in SN regions such as the dACC impact DMN reactivity to personally relevant stimuli such as smoking cues. This is consistent with emerging evidence suggesting an association between midline cortical glutamate (Glu) and activity in brain regions overlapping with the DMN. METHODS In 18 nicotine-dependent individuals, we assessed the relationship between DMN activation to smoking relative to neutral cues using functional magnetic resonance imaging and dACC Glu as measured by magnetic resonance spectroscopy. This association also was tested in a replication sample of 14 nicotine-dependent participants. RESULTS Not only was the DMN significantly less suppressed during smoking cue exposure, but also there was a positive association between DMN reactivity to smoking relative to neutral cues and dACC Glu (r=0.56, p<0.02). This finding was confirmed in the independent replication cohort (r=0.64, p<0.02). CONCLUSIONS The current findings confirm that the DMN is less suppressed when smokers view smoking relative to neutral cues, suggesting that smoking cues engage self-relevant processing. Furthermore, these results indicate that dACC Glu is associated with enhanced DMN engagement when nicotine-dependent individuals are exposed to self-relevant smoking cues.
Collapse
|