1
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Hu J, Wang S, Zhang X, Yan W, Liu H, Chen X, Nie Y, Liu F, Zheng Y, Lu Y, Jin H. A genetic variant in the TAPBP gene enhances cervical cancer susceptibility by increasing m 6A modification. Arch Toxicol 2024; 98:3425-3438. [PMID: 38992170 DOI: 10.1007/s00204-024-03820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Genetic variants can affect gene expression by altering the level of N6-methyladenosine (m6A) modifications. A better understanding of the association of these genetic variants with susceptibility to cervical cancer (CC) can promote advances in disease screening and treatment. Genome-wide identification of m6A-associated functional SNPs for CC was performed using the TCGA and JENGER databases, incorporating the data from RNA-seq and MeRIP-seq. The screened risk-associated SNP rs1059288 (A>G), which is located in the 3' UTR of TAPBP, was further validated in a case-control study involving 921 cases and 1077 controls. The results revealed a significant association between rs1059288 and the risk of CC (OR 1.48, 95% CI 1.13-1.92). Mechanistically, the presence of the risk G allele of rs1059288 was associated with increased m6A modification of TAPBP compared with the A allele. This modification was facilitated by the m6A methyltransferase METTL14 and the reading protein YTHDF2. Immunohistochemical staining of tissue microarrays containing 61 CC and 45 normal tissues showed an overexpression of TAPBP in CC. Furthermore, the upregulation of TAPBP promoted the growth and migration of CC cells as well as tumor-forming ability, inhibited apoptosis, and conferred increased resistance to commonly used chemotherapeutic drugs such as bleomycin, cisplatin, and doxorubicin. Knockdown of TAPBP inhibited the JAK/STAT/MICB signaling pathway in CC cells and upregulated certain immune genes including ISG15, IRF3, PTPN6, and HLA-A. These findings offer insights into the involvement of genetic variations in TAPBP in the development and progression of CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| | - Xing Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Wenjing Yan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Haohan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xue Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yamei Nie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Fengying Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yun Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Yiran Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Hua Jin
- Clinical Laboratory, Affiliated Tumor Hospital of Nantong University (Nantong Tumor Hospital), No. 30, North Tongyang Road, Tongzhou District, Nantong, 226361, China.
| |
Collapse
|
3
|
Liu Y, Niu M, Luo Y, Pan M, Hong S. DNA damage response and inflammatory response: Two traffic lights for HPVs on the road to transformation. J Med Virol 2024; 96:e29815. [PMID: 39073137 DOI: 10.1002/jmv.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Human papillomaviruses (HPVs) are non-enveloped double-stranded DNA viruses. When HPV infection persists, infected tissues can develop many HPV-related diseases such as cervical cancer and head and neck squamous cell carcinoma. To establish their persistent infection, HPVs have evolved mechanisms to manipulate the host cellular processes such as DNA damage response (DDR), which includes homologous recombination, nonhomologous end joining, and microhomology-mediated end joining. Additionally, HPVs utilize host inflammatory processes to facilitate their life cycles. Here, we bridge the concepts of DDR and inflammatory response, and discuss how HPV proteins orchestrate a sophisticated manipulation of DDR and inflammation to promote their viral replication, ultimately fostering the progression of infected cells towards oncogenic transformation to malignancy.
Collapse
Affiliation(s)
- Yanfei Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Xu D, Wang W, Wang D, Ding J, Zhou Y, Zhang W. Long noncoding RNA MALAT-1: A versatile regulator in cancer progression, metastasis, immunity, and therapeutic resistance. Noncoding RNA Res 2024; 9:388-406. [PMID: 38511067 PMCID: PMC10950606 DOI: 10.1016/j.ncrna.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins but have been linked to cancer development and metastasis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) influences crucial cancer hallmarks through intricate molecular mechanisms, including proliferation, invasion, angiogenesis, apoptosis, and the epithelial-mesenchymal transition (EMT). The current article highlights the involvement of MALAT-1 in drug resistance, making it a potential target to overcome chemotherapy refractoriness. It discusses the impact of MALAT-1 on immunomodulatory molecules, such as major histocompatibility complex (MHC) proteins and PD-L1, leading to immune evasion and hindering anti-tumor immune responses. MALAT-1 also plays a significant role in cancer immunology by regulating diverse immune cell populations. In summary, MALAT-1 is a versatile cancer regulator, influencing tumorigenesis, chemoresistance, and immunotherapy responses. Understanding its precise molecular mechanisms is crucial for developing targeted therapies, and therapeutic strategies targeting MALAT-1 show promise for improving cancer treatment outcomes. However, further research is needed to fully uncover the role of MALAT-1 in cancer biology and translate these findings into clinical applications.
Collapse
Affiliation(s)
- Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Yunan Zhou
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, China
| |
Collapse
|
5
|
Abdullatif A, Abdelrahman AE, Bakry A, Gharieb SA, Ramadan MS, Wasfy MA, Abdelwanis AH, Fouad EM. Clinicopathological significance of protein disulphide isomerase A3 and phosphorylated signal transducer and activator of transcription 3 in cervical carcinoma. Contemp Oncol (Pozn) 2024; 28:51-62. [PMID: 38800530 PMCID: PMC11117164 DOI: 10.5114/wo.2024.139368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Death in cervical cancer patients is usually due to invasion and metastasis due to the aggressive nature of the tumour. Therefore, it is critical to identify potent therapeutic targets and prognostic markers to detect high-risk patients. Material and methods We assessed the immunohistochemical expression of protein disulphide isomerase A3 (PDIA3) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in 50 cases of cervical carcinoma, and we investigated their association with clinicopathological characteristics. Results High PDIA3 was detected in 50% of cases, and statistical analysis revealed a positive correlation between high PDAI3 expression and tumour grade (p < 0.001) and large tumour size (p = 0.010), depth of stromal invasion (p = 0.017), lymph-vascular invasion (p = 0.005), parametrial invasion (p < 0.001), nodal metastasis (p < 0.001), and higher International Federation of Gynaecology and Obstetrics stages (p < 0.001). Positive nuclear expression of p-STAT3 was detected in 44% of cases and showed significant association with histological grade (p = 0.036), tumour stage (p = 0.021), nodal metastasis (p = 0.020), and parametrial invasion (p = 0.045); statistical analysis of the patient's survival data revealed that shorter overall survival and disease-free survival, S, were associated with high PDIA3 expression and positive p-STAT3 immunoexpression. Conclusions The high expression of PDIA3 and p-STAT3 was related to highly aggressive cervical carcinoma with poor prognosis, and high risk of recurrence after the standardised protocol of treatment. Hence, both PDIA3 and p-STAT3 could be considered as novel biomarkers for tumour progression and promising targets in the management of cervical carcinoma patients.
Collapse
Affiliation(s)
| | | | - Adel Bakry
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | | | | | - Enas M. Fouad
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
7
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
8
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Thakur K, Janjua D, Aggarwal N, Chhokar A, Yadav J, Tripathi T, Chaudhary A, Senrung A, Shrivastav A, Bharti AC. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166817. [PMID: 37532113 DOI: 10.1016/j.bbadis.2023.166817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
The constitutive activation and aberrant expression of Signal Transducer and Activator of Transcription 3 (STAT3) plays a key role in initiation and progression of cervical cancer (CaCx). How STAT3 influences HPV transcription is poorly defined. In the present study, we probed direct and indirect interactions of STAT3 with HPV16/18 LCR. In silico assessment of cis-elements present on LCR revealed the presence of potential STAT3 binding motifs. However, experimental validation by ChIP-PCR could not confirm any specific STAT3 binding on HPV16 LCR. Protein-protein interaction (PPI) network analysis of STAT3 with other host transcription factors that bind LCR, highlighted the physical association of STAT3 with c-FOS and c-JUN. This was further confirmed in vitro by co-immunoprecipitation, where STAT3 co-immunoprecipitated with c-FOS and c-JUN in CaCx cells. The result was supported by immunocytochemical analysis and colocalization of STAT3 with c-FOS and c-JUN. Positive signals in proximity ligation assay validated physical interaction and colocalization of STAT3 with AP1. Colocalization of STAT3 with c-FOS and c-JUN increased upon IL-6 treatment and decreased post-Stattic treatment. Alteration of STAT3 expression affected the subcellular localization of c-FOS and c-JUN, along with the expression of viral oncoproteins (E6 and E7) in CaCx cells. High expression of c-JUN in tumor tissues correlated with poor prognosis in both HPV16 and HPV18 CaCx cohort whereas high expression of STAT3 correlated with poor prognosis in HPV18 CaCx lesions only. Overall, the data suggest an indirect interaction of STAT3 with HPV LCR via c-FOS and c-JUN and potentiate transcription of viral oncoproteins.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anuraag Shrivastav
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, Canada; Paul Albrechtsen Research Institute CCMB, 675 McDermot Ave, Winnipeg, Manitoba, Canada
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
10
|
Strobel TD, Weber M, Heber N, Holzer A, Hoppe-Seyler K, Hoppe-Seyler F. Revisiting the role of endogenous STAT3 in HPV-positive cervical cancer cells. J Med Virol 2023; 95:e29230. [PMID: 38009614 DOI: 10.1002/jmv.29230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Novel treatment options for human papillomavirus (HPV)-induced cancers are urgently required. The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is considered to be constitutively active in HPV-positive cervical cancer cells and essential for their proliferation. Moreover, STAT3 was reported to undergo mutually stimulatory interactions with the HPV E6/E7 oncogenes. Thus, inhibiting STAT3 in HPV-positive cancer cells is under discussion to provide a powerful novel therapeutic strategy. We here show that the antifungal drug ciclopirox destabilizes the STAT3 protein by acting as an iron chelator. However, by exploring the functional consequences of STAT3 inhibition in HPV-positive cancer cells, we obtained several unexpected results. Chemical STAT3 inhibitors heterogeneously affect cervical cancer cell proliferation and those which act antiproliferative also block the growth of STAT3 knockout cells, indicating induction of off-target effects. In contrast to several chemical inhibitors, genetic inhibition of STAT3 expression by either RNA interference or the CRISPR/Cas9 method does not appreciably affect cervical cancer cell proliferation. Transcriptome analyses indicate that blocking STAT3 expression in HPV-positive cancer cells has very limited effects on putative STAT3 target genes. Although the targeted inhibition of specific growth-promoting signaling pathways leads to a feedback activation of STAT3 in cervical cancer cells via Janus kinase 1/2, this does not lead to treatment resistance. Moreover, we did not obtain experimental evidence for a STAT3-linked activation of HPV E6/E7 oncogene expression or, vice versa, an E6/E7-dependent activation of STAT3, at endogenous conditions in cervical cancer cells. Collectively, these findings question the essential role of STAT3 in cervical cancer cell proliferation and the strategy to inhibit STAT3 in these cells for therapeutic purposes.
Collapse
Affiliation(s)
- Tobias D Strobel
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maria Weber
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Heber
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Angela Holzer
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
12
|
Thakur K, Janjua D, Shishodia G, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Bharti AC. Investigation of molecular mechanisms underlying JAK/STAT signaling pathway in HPV-induced cervical carcinogenesis using 'omics' approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:255. [PMID: 36224441 DOI: 10.1007/s12032-022-01854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/02/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022]
Abstract
The precise mechanism of action of Janus Kinases (JAK)/Signal Transducer and activator of Transcription (STAT) signaling in human papillomavirus (HPV)-associated cervical cancer (CaCx) is poorly defined. The present study dissected the underlying components of JAK/STAT signaling in HPV-positive cervical neoplasms. Whole transcriptome profile of CaCx cohort from TCGA database revealed elevated STAT3 and its impact on CaCx patients' survival. Using the RT2 Profiler PCR Array, we analyzed 84 genes of interest associated with JAK/STAT signaling in mRNA derived from HPV-negative and HPV-positive cervical lesions which revealed 21 differentially expressed genes (DEGs). Analyses of DEGs using the Database for Annotation, Visualization and Integrated Discovery tool indicated maximum genes enriched in immune response and negative regulation of apoptotic process. Protein-protein network analysis indicated IL4, STAT5A, STAT4, and JAK3 to be the key genes in the interaction network. Further, 7 key DEGs (IL4R, IRF1, EGFR, OAS1, PIAS1, STAT4, and STAT5A) were validated in TCGA cohort using R2 platform. These genes were differentially expressed among HPV-positive cervical tissues and their correlation with STAT3 was established. EGFR and IL4R showed a comparatively strong correlation with STAT3 that supports their involvement in pathogenesis of CaCx. Finally, the Kaplan-Meier analysis established the prognostic association of the key DEGs, in CaCx cohort. The STAT3 and associated key genes discovered from our study establish a strong pathogenic role of JAK/STAT3 pathway in HPV-mediated cervical carcinogenesis.
Collapse
Affiliation(s)
- Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Gauri Shishodia
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India.,Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India. .,Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India.
| |
Collapse
|
13
|
Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G. Gene expression profiling of HPV-associated cervical carcinogenesis in formalin-fixed paraffin-embedded (FFPE) tissues using the NanoString nCounter TM platform. Gene X 2022; 825:146385. [PMID: 35288200 DOI: 10.1016/j.gene.2022.146385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Revised: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Infection by high-risk human papillomavirus (HPV) causes genetic alterations in host cervical cells with consequent changes in gene expression affecting downstream molecular pathways, leading to the development of cervical cancer. In this exploratory study, we aimed to identify the perturbed cellular pathways during the various stages of cervical carcinogenesis. Total RNA was extracted from three formalin-fixed paraffin-embedded (FFPE) samples each of normal cervix, HPV-infected low-grade squamous intraepithelial lesion (LSIL), high-grade SIL (HSIL) and squamous cell carcinoma (SCC). Gene expression profiling was performed using the 770-gene panel from NanoString nCounter® PanCancer Pathways Panel to identify differentially expressed genes (DEGs) and significantly associated pathways in each stage of cervical cancer development. We identified 121 DEGs involved in cervical carcinogenesis. In the transformation from normal cells to LSIL, the MAPK, transcriptional misregulation and JAK-STAT pathways are implicated, while IL1B may promote inflammation and indirectly activates MMP9, resulting in collagen breakdown and cell migration. The cell cycle - apoptosis pathway with upregulation of E2F1 and MCM2, and DNA repair genes BRCA2-BRIP1 and FANCA are crucial during the progression from LSIL to HSIL. In the final stage of progression to SCC, the cell cycle and signaling pathways, as well as upregulation of c-MYC appear essential. In conclusion, archived FFPE-derived tissue samples are a valuable resource for gene expression profiling. The postulated dysregulated pathways and genes provide a guide of the molecular mechanisms that may be involved in the development of HPV-associated cervical cancer, for further investigation and validation studies.
Collapse
Affiliation(s)
- Shandra Devi Balasubramaniam
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia; Unit of Microbiology, Faculty of Medicine, AIMST University, Semeling, Bedong 8100, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
14
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022; 23:1818. [PMID: 35163748 PMCID: PMC8836588 DOI: 10.3390/ijms23031818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential. HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Daria A. Haręża
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
16
|
Singh T, Chhokar A, Thakur K, Aggarwal N, Pragya P, Yadav J, Tripathi T, Jadli M, Bhat A, Gupta P, Khurana A, Chandra Bharti A. Targeting Aberrant Expression of STAT3 and AP-1 Oncogenic Transcription Factors and HPV Oncoproteins in Cervical Cancer by Berberis aquifolium. Front Pharmacol 2021; 12:757414. [PMID: 34776976 PMCID: PMC8580881 DOI: 10.3389/fphar.2021.757414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Present study examines phytochemical preparation that uses berberine's plant source B. aquifolium root for availability of similar anti-cervical cancer (CaCx) and anti-HPV activities to facilitate repurposing of the B. aquifolium based drug in the treatment of CaCx. Purpose: To evaluate therapeutic potential of different concentrations of ethanolic extract of B. aquifolium root mother tincture (BAMT) against HPV-positive (HPV16: SiHa, HPV18: HeLa) and HPV-negative (C33a) CaCx cell lines at molecular oncogenic level. Materials and Methods: BAMT was screened for anti-proliferative activity by MTT assay. Cell cycle progression was analyzed by flowcytometry. Then, the expression level of STAT3, AP-1, HPV E6 and E7 was detected by immunoblotting, whereas nuclear localization was observed by fluorescence microscopy. Phytochemicals reportedly available in BAMT were examined for their inhibitory action on HPV16 E6 by in silico molecular docking. Results: BAMT induced a dose-dependent decline in CaCx cell viability in all cell types tested. Flowcytometric evaluation of BAMT-treated cells showed a small but specific cell growth arrest in G1-phase. BAMT-treatment resulted in reduced protein expression of key transcription factors, STAT3 with a decline of its active form pSTAT3 (Y705); and components of AP-1 complex, JunB and c-Jun. Immunocytochemistry revealed that BAMT did not prevent the entry of remnant active transcription factor to the nucleus, but loss of overall transcription factor activity resulted in reduced availability of transcription factors in the cancer cells. These changes were accompanied by gradual loss of HPV E6 and E7 protein in BAMT-treated HPV-positive cells. Molecular docking of reported active phytochemicals in B. aquifolium root was performed, which indicated a potential interference of HPV16 E6's interaction with pivotal cellular targets p53, E6AP or both by constituent phytochemicals. Among these, berberine, palmatine and magnoflorine showed highest E6 inhibitory potential. Conclusion: Overall, BAMT showed multi-pronged therapeutic potential against HPV infection and cervical cancer and the study described the underlying molecular mechanism of its action.
Collapse
Affiliation(s)
- Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Pragya Pragya
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| | - Pankaj Gupta
- Dr. DP. Rastogi Central Research Institute of Homeopathy, Noida, India
| | - Anil Khurana
- Central Council for Research in Homeopathy, New Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, India
| |
Collapse
|
17
|
NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021; 10:cells10113104. [PMID: 34831327 PMCID: PMC8619016 DOI: 10.3390/cells10113104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.
Collapse
|
18
|
Kim L, Park SA, Park H, Kim H, Heo TH. Bazedoxifene, a GP130 Inhibitor, Modulates EMT Signaling and Exhibits Antitumor Effects in HPV-Positive Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168693. [PMID: 34445405 PMCID: PMC8395523 DOI: 10.3390/ijms22168693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent HPV (Human Papillomavirus) infection is the primary cause of cervical cancer. Despite the development of the HPV vaccine to prevent infections, cervical cancer is still a fatal malignant tumor and metastatic disease, and it is often difficult to treat, so a new treatment strategy is needed. The FDA-approved drug Bazedoxifene is a novel inhibitor of protein–protein interactions between IL-6 and GP130. Multiple ligand simultaneous docking and drug repositioning approaches have demonstrated that an IL-6/GP130 inhibitor can act as a selective estrogen modulator. However, the molecular basis for GP130 activation in cervical cancer remains unclear. In this study, we investigated the anticancer properties of Bazedoxifene in HPV-positive cervical cancer cells. In vitro and in vivo experiments showed that Bazedoxifene inhibited cell invasion, migration, colony formation, and tumor growth in cervical cancer cells. We also confirmed that Bazedoxifene inhibits the GP130/STAT3 pathway and suppresses the EMT (Epithelial-mesenchymal transition) sub-signal. Thus, these data not only suggest a molecular mechanism by which the GP130/STAT3 pathway may promote cancer, but also may provide a basis for cervical cancer replacement therapy.
Collapse
Affiliation(s)
| | | | | | - Heejung Kim
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| | - Tae-Hwe Heo
- Correspondence: (H.K.); (T.-H.H.); Tel.: +82-2-2164-4088 (T.-H.H. & H.K.)
| |
Collapse
|
19
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
20
|
Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020; 9:cells9102297. [PMID: 33076315 PMCID: PMC7602614 DOI: 10.3390/cells9102297] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is associated with the regulation of essential cellular mechanisms, such as proliferation, invasion, survival, inflammation, and immunity. Aberrant JAK/STAT signaling contributes to cancer progression and metastatic development. STAT proteins play an essential role in the development of cervical cancer, and the inhibition of the JAK/STAT pathway may be essential for enhancing tumor cell death. Persistent activation of different STATs is present in a variety of cancers, including cervical cancer, and their overactivation may be associated with a poor prognosis and poor overall survival. The oncoproteins E6 and E7 play a critical role in the progression of cervical cancer and may mediate the activation of the JAK/STAT pathway. Inhibition of STAT proteins appears to show promise for establishing new targets in cancer treatment. The present review summarizes the knowledge about the participation of the different components of the JAK/STAT pathway and the participation of the human papillomavirus (HPV) associated with the process of cellular malignancy.
Collapse
|
21
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
22
|
Zhang J, Jiang M, Qian L, Lin X, Song W, Gao Y, Zhou Y. The STAT3-miR-223-TGFBR3/HMGCS1 axis modulates the progression of cervical carcinoma. Mol Oncol 2020; 14:2313-2331. [PMID: 32491253 PMCID: PMC7463355 DOI: 10.1002/1878-0261.12737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2020] [Revised: 05/06/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is induced by persistent infections with high-risk human papillomaviruses (HPVs), which produce the early protein 6 of HPVs (E6)/E7 protein that is involved in cell transformation by interacting with several oncoproteins or tumor suppressors. However, the role of noncoding RNA in mediating the pathogenesis of cervical cancer remains unclear. Here, we report that the novel signal transducer and activator of transcription 3 (STAT3)-microRNA-223-3p (miR-223)-TGFBR3/HMGCS1 axis regulated by the E6 protein controls cervical carcinogenesis. miR-223 was highly expressed in cervical tumor tissues, whereas TGFBR3 or HMGCS1 was significantly downregulated. miR-223 targeted the 3'-UTRs of TGFBR3 and HMGCS1 and suppressed their expression, leading to increased anchorage-independent growth and cervical squamous cell carcinoma (CSCC) tumor growth in vitro and in vivo. The increased expression of miR-223 was mediated by the transcription factor STAT3, whose activity was enhanced by E6 in the context of interleukin (IL)-6 stimulation. In addition, exosomal miR-223 derived from CSCC cells induced IL-6 secretion by monocyte/macrophage in a coculture system in vitro, and IL-6 secretion, in turn, led to enhanced STAT3 activity in CSSC cells, forming a positive feedback loop. Furthermore, modified miR-223 inhibitor effectively suppressed tumor growth in cell line-derived xenograft model, suggesting that miR-223 is a potential promising therapeutic target in CSCC. In conclusion, our results demonstrate that the STAT3-miR-223-HMGCS1/TGFBR3 axis functions as a key signaling pathway in cervical cancer progression and provides a new therapeutic target.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Ming Jiang
- School of Life ScienceUniversity of Science and Technology of ChinaHefeiChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouChina
| | - Lili Qian
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of University of Science & Technology of ChinaAnhui Provincial HospitalHefeiChina
| | - Xiao Lin
- Department of Laboratory MedicineThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Weiguo Song
- Department of Gynaecology and ObstetricsThe Second Hospital of Anhui Medical UniversityHefeiChina
| | - Yunfeng Gao
- China‐US (Henan) Hormel Cancer InstituteZhengzhouChina
| | - Ying Zhou
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of University of Science & Technology of ChinaAnhui Provincial HospitalHefeiChina
| |
Collapse
|
23
|
Wu S, Wu Y, Lu Y, Yue Y, Cui C, Yu M, Wang S, Liu M, Zhao Y, Sun Z. STAT1 expression and HPV16 viral load predict cervical lesion progression. Oncol Lett 2020; 20:28. [PMID: 32774501 PMCID: PMC7405543 DOI: 10.3892/ol.2020.11889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the fourth leading cause of cancer-associated mortality worldwide. However, its underlying molecular mechanisms are unclear. It is important to explore these mechanisms in order to identify novel diagnostic and prognostic biomarkers. The present study determined the association between STAT1 and human papillomavirus (HPV)16 in cervical lesions. STAT1 expression was detected by immunohistochemistry. Quantitative PCR was used to detect HPV16 viral load and STAT1 expression in cervical lesions. The potential associations among STAT1 expression, HPV16 viral load and the severity of cervical lesions in patients were analyzed using receiver operating characteristic (ROC) curves. The Cancer Genome Atlas database was used to analyze STAT1 expression and survival. High STAT1 expression was observed in 10.71 (3/28), 41.18 (14/34), 53.06 (26/49) and 90.00% (27/30) of normal tissue, low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) and cervical squamous cell carcinoma samples, respectively. The HPV16 copy number gradually increased with the progression of cervical lesions, with the highest copy number observed in cervical cancer samples. In addition, STAT1 expression was positively correlated with HPV16 viral load. Furthermore, ROC curve analysis demonstrated that the combination of STAT1 expression and HPV16 viral load was able to differentiate between LSIL/HSIL and cervical cancer samples. Bioinformatics analysis revealed that STAT1 expression was associated with improved survival in cervical cancer. Additionally, STAT1 expression was positively associated with the progression of cervical lesions, and HPV16 viral load may affect STAT1 expression. Overall, these findings indicate that STAT1 may be an indicator of the status of cervical lesions.
Collapse
Affiliation(s)
- Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yingying Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yiping Lu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Changwan Cui
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Yu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Wang
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Miao Liu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhao
- Medical Examination Center, Shenyang Red Cross Hospital, Shenyang, Liaoning 110013, P.R. China
| | - Zhengrong Sun
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
24
|
Hao Y, Yan Z, Zhang A, Hu S, Wang N, Luo XG, Ma W, Zhang TC, He H. IL-6/STAT3 mediates the HPV18 E6/E7 stimulated upregulation of MALAT1 gene in cervical cancer HeLa cells. Virus Res 2020; 281:197907. [DOI: 10.1016/j.virusres.2020.197907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
|
25
|
Li L, Ding L, Gao T, Lyu Y, Wang M, Song L, Li X, Gao W, Han Y, Jia H, Wang J. Association between Vaginal Micro-environment Disorder and Cervical Intraepithelial Neoplasia in a Community Based Population in China. J Cancer 2020; 11:284-291. [PMID: 31897224 PMCID: PMC6930421 DOI: 10.7150/jca.35022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2019] [Accepted: 08/31/2019] [Indexed: 01/05/2023] Open
Abstract
There are other factors that contribute to cervical carcinogenesis except HPV infection. This study aimed to investigate the association between vaginal micro-environment factors, including H2O2, vaginal PH value, vagina cleanness, β-glucuronidase, coagulase, neuraminidase and leukocyte esterase and cervical intraeipithelial neoplasia (CIN). In total 1019 participants, including 623 normal cervical (NC) women, 303 patients with low-grade cervical intraepithelial neoplasia (CIN1) and 93 patients with high-grade cervical intraepithelial neoplasia (CIN2/3), were enrolled into the study. HPV genotyping was detected by flow-through hybridization and gene chip. Vaginal H2O2, β-glucuronidase, coagulase, neuraminidase and leukocyte esterase were detected by Aerobic Vaginitis (AV) / Bacterial Vaginal Disease (BV) Five Joint Test Kit. Vaginal PH was measured on the glass slide after microscopy, using color strips with a PH range of 3.8-5.4. Vagina cleanness was determined according to the National Clinical Laboratory Practice Guideline. χ2test and Logistic regression were operated using SPSS 22.0 software. Our results showed that HPV16 infection rate and the abnormal rates of H2O2, PH, vagina cleanness, β-glucuronidase or neuraminidase increased gradually along with the severity of CIN (P<0.05). Abnormities of H2O2, cleanness, β-glucuronidase and neuraminidase were risk factors for CIN regardless of HPV16 infection, furthermore, abnormities of PH value, leukocyte esterase could also increase the risk of CIN in HPV16 positive group. In addition, women with abnormal vaginal micro-environment factors in HPV16 positive group had a significantly higher risk of developing CIN than HPV16 negative group. The results from generalized multifactor dimensionality reduction (GMDR) model showed that there was interaction effect with abnormities of vagina cleanness, H2O2, β-glucuronidase and neuraminidase on CIN2/3 in HPV16 negative group, while, there was interaction effect with abnormities of vagina cleanness, β-glucuronidase and neuraminidase on CIN1 and with abnormities of vagina cleanness, PH, H2O2, β-glucuronidase, neuraminidase and leukocyte esterase on CIN2/3 in HPV16 positive group. Our results suggested that vaginal micro-environment disorder could increase the risk of CIN, especially, the abnormality of H2O2, cleanness, β-glucuronidase and neuraminidase. There were interaction effects with abnormities of H2O2, vagina cleanness, β-glucuronidase and neuraminidase on CIN whether HPV16 was infected or not.
Collapse
Affiliation(s)
- Li Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ling Ding
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Tao Gao
- Department of Preventive Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
| | - Yuanjing Lyu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Ming Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Song
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaoxue Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Wen Gao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yang Han
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jintao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
26
|
Morgan EL, Macdonald A. JAK2 Inhibition Impairs Proliferation and Sensitises Cervical Cancer Cells to Cisplatin-Induced Cell Death. Cancers (Basel) 2019; 11:cancers11121934. [PMID: 31817106 PMCID: PMC6966458 DOI: 10.3390/cancers11121934] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is the underlying cause of ~5% of all human cancers, including the majority of cervical carcinomas and many other ano-genital and oral cancers. A major challenge remains to identify key host targets of HPV and to reveal how they contribute to virus-mediated malignancy. The HPV E6 oncoprotein aberrantly activates the signal transducer and activator of transcription 3 (STAT3) transcription factor and this is achieved by a virus-driven increase in the levels of the pro-inflammatory cytokine interleukin-6 (IL-6) in HPV positive cervical cancers cells. Crucially, STAT3 activity is essential for the proliferation and survival of cervical cancer cells, suggesting that targeting STAT3 may have therapeutic potential. Unfortunately, the development of direct STAT3 inhibitors has been problematic in the clinic due to toxicity issues identified in early stage trials. To overcome this issue, we focused on the protein Janus kinase 2 (JAK2), which phosphorylates STAT3 and is essential for STAT3 activation. Here, we demonstrate that inhibiting JAK2 reduces cell proliferation and induces apoptosis in HPV transformed cervical cancer cells. We further establish that this is due to inhibition of phosphorylation of the JAK2 substrates STAT3 and STAT5. Finally, we demonstrate that the clinically available JAK2 inhibitor Ruxolitinib synergises with cisplatin in inducing apoptosis, highlighting JAK2 as a promising therapeutic target in HPV-driven cancers.
Collapse
|
27
|
Kashyap VK, Dan N, Chauhan N, Wang Q, Setua S, Nagesh PKB, Malik S, Batra V, Yallapu MM, Miller DD, Li W, Hafeez BB, Jaggi M, Chauhan SC. VERU-111 suppresses tumor growth and metastatic phenotypes of cervical cancer cells through the activation of p53 signaling pathway. Cancer Lett 2019; 470:64-74. [PMID: 31809801 DOI: 10.1016/j.canlet.2019.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the therapeutic efficacy of VERU-111 in vitro and in vivo model systems of cervical cancer. VERU-111 treatment inhibited cell proliferation and, clonogenic potential, induce accumulation of p53 and down regulated the expression of HPV E6/E7 expression in cervical cancer cells. In addition, VERU-111 treatment also decreased the phosphorylation of Jak2(Tyr1007/1008) and STAT3 at Tyr705 and Ser727. VERU-111 treatment arrested cell cycle in the G2/M phase and modulated cell cycle regulatory proteins (cyclin B1, p21, p34cdc2 and pcdk1). Moreover, VERU-111 treatment induced apoptosis and modulated the expression of Bid, Bcl-xl, Survivin, Bax, Bcl2 and cleavage in PARP. In functional assays, VERU-111 markedly reduced the migratory and invasive potential of cervical cancer cells via modulations of MMPs. VERU-111 treatment also showed significant (P < 0.05) inhibition of orthotopic xenograft tumor growth in athymic nude mice. Taken together, our results demonstrate the potent anti-cancer efficacy of VERU-111 in experimental cervical cancer models.Thus, VERU-111 can be explored as a promising therapeutic agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nirnoy Dan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saini Setua
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Shabnam Malik
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Vivek Batra
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Bilal B Hafeez
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, The University of Texas Rio Grande Valley, McAllen, TX, 78504, USA; Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Level of phospho-STAT3 (Tyr705) correlates with copy number and physical state of human papillomavirus 16 genome in cervical precancer and cancer lesions. PLoS One 2019; 14:e0222089. [PMID: 31487312 PMCID: PMC6728030 DOI: 10.1371/journal.pone.0222089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Accepted: 08/21/2019] [Indexed: 12/03/2022] Open
Abstract
Our earlier studies indicated an important role of inducible transcription factor STAT3 in the establishment of persistent infection of human papillomavirus (HPV) type 16 and promotion of cervical carcinogenesis. Since HPV load and its physical state are two potential determinants of this virally-induced carcinogensis, though with some exceptions, we extended our study to examine the role of active STAT3 level in cervical precancer and cancer lesions and it’s association with HPV viral load and physical state. An elevated level of active STAT3 was measured by assessing phospho-STAT3-Y705 (pSTAT3), in tumor tissues harboring higher viral load irrespective of the disease grade. Physical state analysis of HPV16 by assessing the degree of amplification of full length E2 and comparing it with E6 (E2:E6 ratio), which predominantly represent episomal form of HPV16, revealed low or undetectable pSTAT3. A strong pSTAT3 immunoreactivity was found in tissues those harbored either mixed or predominantly integrated form of viral genome. Cumulative analysis of pSTAT3 expression, viral load and physical state demonstrated a direct correlation between pSTAT3 expression, viral load and physical state of HPV. The study suggests that there exists a strong clinical correlation between level of active STAT3 expression and HPV genome copy number, and integrated state of the virus that may play a pivotal role in promotion/maintanence of tumorigenic phenotype.
Collapse
|
29
|
The value of cytokine levels in triage and risk prediction for women with persistent high-risk human papilloma virus infection of the cervix. Infect Agent Cancer 2019; 14:16. [PMID: 31297140 PMCID: PMC6599292 DOI: 10.1186/s13027-019-0231-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cervical cancer is a common cancer among women worldwide and is closely related to high-risk human papillomavirus infection (HR-HPV). The immune microenvironment is thought to play an essential role in viral infection and cancer development; however, this relationship remains controversial. Cytokines are an important part of the immune system. Therefore, in this study, we explored changes in cervical cytokine levels of women with persistent HR-HPV infection and determined the value of cytokine detection in assessing cervical lesions. Methods We enrolled 146 patients; 117 had long-term high-risk (HR) HPV infection (> 6 months), and 29 were HPV-negative with previous HR-HPV infection. According to histopathological examination, 43 patients were diagnosed with cervicitis; 35, with low-grade squamous intraepithelial lesions (LSILs); and 39, with high-grade squamous intraepithelial lesions (HSILs). Cytokine levels in vaginal fluid were examined using cytometric bead array, and the values of interleukin (IL)-6 and IL-2 levels were converted to a cytokine score. The performance of the cytokine score for diagnosis and risk assessment was compared with that of ThinPrep cytology tests (TCTs). Results Disease severity was positively associated with IL-6 levels and inversely related to IL-2 levels. The area under the curve (AUC) was higher for the cytokine score including IL-6 and IL-2 than for TCTs for HSILs. Comparisons of the sensitivity, specificity, Youden index, and positive and negative predictive values for HSILs demonstrated that the cytokine score was better than TCT. HPV-positive patients with high cytokine scores showed increased risk of developing HSIL within 3 years. The hazard ratio for the cytokine score was 3.12; thus, the risk of developing HSIL was related to the cytokine score. Conclusions The cytokine score increased with the severity of cervical lesions and could distinguish more patients from HPV-positive women and predict the risk of disease progression.
Collapse
|
30
|
Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog 2019; 15:e1007835. [PMID: 31226168 PMCID: PMC6608985 DOI: 10.1371/journal.ppat.1007835] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2019] [Revised: 07/03/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection is the leading cause of cervical cancer. Although the fundamental link between HPV infection and oncogenesis is established, the specific mechanisms of virus-mediated transformation are not fully understood. We previously demonstrated that the HPV encoded E6 protein increases the activity of the proto-oncogenic transcription factor STAT3 in primary human keratinocytes; however, the molecular basis for STAT3 activation in cervical cancer remains unclear. Here, we show that STAT3 phosphorylation in HPV positive cervical cancer cells is mediated primarily via autocrine activation by the pro-inflammatory cytokine Interleukin 6 (IL-6). Antibody-mediated blockade of IL-6 signalling in HPV positive cells inhibits STAT3 phosphorylation, whereas both recombinant IL-6 and conditioned media from HPV positive cells leads to increased STAT3 phosphorylation within HPV negative cervical cancer cells. Interestingly, we demonstrate that activation of the transcription factor NFκB, involving the small GTPase Rac1, is required for IL-6 production and subsequent STAT3 activation. Our data provides new insights into the molecular re-wiring of cancer cells by HPV E6. We reveal that activation of an IL-6 signalling axis drives the autocrine and paracrine phosphorylation of STAT3 within HPV positive cervical cancers cells and that activation of this pathway is essential for cervical cancer cell proliferation and survival. Greater understanding of this pathway provides a potential opportunity for the use of existing clinically approved drugs for the treatment of HPV-mediated cervical cancer.
Collapse
|
31
|
Huber I, Zupkó I, Gyovai A, Horváth P, Kiss E, Gulyás-Fekete G, Schmidt J, Perjési P. A novel cluster of C5-curcuminoids: design, synthesis, in vitro antiproliferative activity and DNA binding of bis(arylidene)-4-cyclanone derivatives based on 4-hydroxycyclohexanone scaffold. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03859-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
32
|
Yao T, Lu R, Zhang J, Fang X, Fan L, Huang C, Lin R, Lin Z. Growth arrest‐specific 5 attenuates cisplatin‐induced apoptosis in cervical cancer by regulating STAT3 signaling via miR‐21. J Cell Physiol 2018; 234:9605-9615. [PMID: 30352127 DOI: 10.1002/jcp.27647] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2017] [Accepted: 10/02/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Yao
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University Guangzhou China
| | - Rongbiao Lu
- Department of Dermatology Third Affiliated Hospital, Sun Yet‐Sen University Guangzhou China
| | - Jun Zhang
- Department of Obstetrics and Gynecology The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University Shenzhen China
| | - Xingyu Fang
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Li Fan
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Chunxian Huang
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Rongchun Lin
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| | - Zhongqiu Lin
- Department of Gynecological Oncology Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University Guangzhou China
| |
Collapse
|
33
|
Jin X, Chen X, Zhang Z, Hu W, Ou R, Li S, Xue J, Chen L, Hu Y, Zhu H. Long noncoding RNA SNHG12 promotes the progression of cervical cancer via modulating miR‐125b/STAT3 axis. J Cell Physiol 2018; 234:6624-6632. [PMID: 30246459 DOI: 10.1002/jcp.27403] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Xue‐J. Jin
- Department of Obstetrics and Gynecology Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital) Hangzhou China
| | - Xiang‐J. Chen
- Department of Gastrointestinal Surgery the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Zhi‐F. Zhang
- Department of Obstetrics and Gynecology Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital) Hangzhou China
| | - Wen‐S. Hu
- Department of Obstetrics and Gynecology Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital) Hangzhou China
| | - Rong‐Y. Ou
- Department of Obstetrics and Gynecology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Shi Li
- Department of Urology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Ji‐S. Xue
- Department of Obstetrics and Gynecology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lu‐L. Chen
- Department of Obstetrics and Gynecology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yan Hu
- Department of Obstetrics and Gynecology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Hua Zhu
- Department of Obstetrics and Gynecology the First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
34
|
Alves JJP, De Medeiros Fernandes TAA, De Araújo JMG, Cobucci RNO, Lanza DCF, Bezerra FL, Andrade VS, Fernandes JV. Th17 response in patients with cervical cancer. Oncol Lett 2018; 16:6215-6227. [PMID: 30405758 PMCID: PMC6202464 DOI: 10.3892/ol.2018.9481] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Persistent infection by high-risk human papillomavirus (HR-HPV) is the main risk factor for uterine cervical cancer (UCC). However, viral infection alone is not sufficient for the development and progression of premalignant cervical lesions for cancer. In previous years it has been suggested that the adaptive immune response triggered by the differentiation of naïve helper T cells in Th17 cells may serve an important role in disease development. It has been hypothesized that Th17 cells may be involved in the promotion of UCC, as high levels of interleukin 17 (IL17) expression have been detected in the mucosa of the uterine cervix of patients affected by the disease. However, the role of Th17 cells in the tumor development and progression remains unclear. It is believed that the immune response of the Th17 type during persistent infection of the genital tract with HR-HPV triggers chronic inflammation with a long duration with the production of IL17 and other pro-inflammatory cytokines, creating a favorable environment for tumor development. These cytokines are produced by immune system cells in addition to tumor cells and appear to function by modulating the host immune system, resulting in an immunosuppressive response as opposed to inducing an effective protective immune response, thus contributing to the growth and progression of the tumor. In the present review, the latest advances are presented about the function of Th17 cells and the cytokines produced by them in the development and progression of UCC.
Collapse
Affiliation(s)
- Jayra Juliana Paiva Alves
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | | | | | | | | | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - Vânia Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072-970, Brazil
| |
Collapse
|
35
|
Fan Y, Shen Z. The clinical value of HPV E6/E7 and STAT3 mRNA detection in cervical cancer screening. Pathol Res Pract 2018; 214:767-775. [DOI: 10.1016/j.prp.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/20/2017] [Revised: 01/16/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023]
|
36
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Govindaraju S, Rengaraj A, Arivazhagan R, Huh YS, Yun K. Curcumin-Conjugated Gold Clusters for Bioimaging and Anticancer Applications. Bioconjug Chem 2018; 29:363-370. [PMID: 29323877 DOI: 10.1021/acs.bioconjchem.7b00683] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Curcumin-conjugated gold clusters (CUR-AuNCs) were synthesized using a "green" procedure and utilized as an anticancer and a bioimaging agent. Curcumin is a well-known anticancer agent, which forms a cluster when reacting with a gold precursor under mild alkali condition. A fluorescence spectroscopy analysis showed that the CUR-AuNCs emitted red fluorescence (650 nm) upon visible light (550) irradiation. Fourier transform infrared spectroscopy analysis confirmed the stretching and bending nature between the gold atoms and curcumin. Meanwhile, transmission electron microscopy analysis showed a cluster of approximately 1-3 nm with a uniform size. Time-resolved fluorescence analysis demonstrated that the red fluorescence was highly stable. Moreover, laser confocal imaging and atomic force microscopy analysis illustrated that a cluster was well distributed in the cell. This cluster exhibited less toxicity in the mortal cell line (COS-7) and high toxicity in the cervical cancer cell line (HeLa). The results demonstrated the conjugation of curcumin into the fluorescent gold cluster as a potential material for anticancer therapy and bioimaging applications.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University , Gyeonggi-do, 13120, Republic of Korea
| | - Arunkumar Rengaraj
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University , Incheon, 22212, Republic of Korea
| | - Roshini Arivazhagan
- Center for Genomics and Proteomics, Institute for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University , Incheon 406-840, Republic of Korea
| | - Yun-Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University , Incheon, 22212, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University , Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
38
|
MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother 2017; 96:238-245. [DOI: 10.1016/j.biopha.2017.09.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
|
39
|
Cardoso MDFS, Castelletti CHM, Lima-Filho JLD, Martins DBG, Teixeira JAC. Putative biomarkers for cervical cancer: SNVs, methylation and expression profiles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:161-173. [PMID: 28927526 DOI: 10.1016/j.mrrev.2017.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/30/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
Cervical cancer is primarily caused by Human papillomavirus (HPV) infection, but other factors such as smoking habits, co-infections and genetic background, can also contribute to its development. Although this cancer is avoidable, it is the fourth most frequent type of cancer in females worldwide and can only be treated with chemotherapy and radical surgery. There is a need for biomarkers that will enable early diagnosis and targeted therapy for this type of cancer. Therefore, a systems biology pipeline was applied in order to identify potential biomarkers for cervical cancer, which show significant reports in three molecular aspects: DNA sequence variants, DNA methylation pattern and alterations in mRNA/protein expression levels. CDH1, CDKN2A, RB1 and TP53 genes were selected as putative biomarkers, being involved in metastasis, cell cycle regulation and tumour suppression. Other ten genes (CDH13, FHIT, PTEN, MLH1, TP73, CDKN1A, CACNA2D2, TERT, WIF1, APC) seemed to play a role in cervical cancer, but the lack of studies prevented their inclusion as possible biomarkers. Our results highlight the importance of these genes. However, further studies should be performed to elucidate the impact of DNA sequence variants and/or epigenetic deregulation and altered expression of these genes in cervical carcinogenesis and their potential as biomarkers for cervical cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria de Fátima Senra Cardoso
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil.
| | - Carlos Henrique Madeiros Castelletti
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Agronomic Institute of Pernambuco (IPA), Av. General San Martin 1371, Bongi, Recife - PE, 50761-000, Brazil
| | - José Luiz de Lima-Filho
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - Danyelly Bruneska Gondim Martins
- Molecular Prospection and Bioinformatics Group (ProspecMol), Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil
| | - José António Couto Teixeira
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego s/n, Recife - PE, 50670-901, Brazil; Department of Biological Engineering, University of Minho (UM), Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
41
|
Zhang W, Che Q, Tan H, Qi X, Li J, Li D, Gu Q, Zhu T, Liu M. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin-proteasome system. Sci Rep 2017; 7:42180. [PMID: 28176847 PMCID: PMC5296914 DOI: 10.1038/srep42180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
Four new antimycin alkaloids (1–4) and six related known analogs (5–10) were isolated from the culture of a marine derived Streptomyces sp. THS-55, and their structures were elucidated by extensive spectroscopic analysis. All of the compounds exhibited potent cytotoxicity in vitro against HPV-transformed HeLa cell line. Among them, compounds 6–7 were derived as natural products for the first time, and compound 5 (NADA) showed the highest potency. NADA inhibited the proliferation, arrested cell cycle distribution, and triggered apoptosis in HeLa cancer cells. Our molecular mechanic studies revealed NADA degraded the levels of E6/E7 oncoproteins through ROS-mediated ubiquitin-dependent proteasome system activation. This is the first report that demonstrates antimycin alkaloids analogue induces the degradation of high-risk HPV E6/E7 oncoproteins and finally induces apoptosis in cervical cancer cells. The present work suggested that these analogues could serve as lead compounds for the development of HPV-infected cervical cancer therapeutic agents, as well as research tools for the study of E6/E7 functions.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Hongsheng Tan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 266237, People's Republic of China
| |
Collapse
|
42
|
Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep 2016; 6:36594. [PMID: 27824155 PMCID: PMC5100479 DOI: 10.1038/srep36594] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2016] [Accepted: 10/11/2016] [Indexed: 01/01/2023] Open
Abstract
In this study, we for the first time, investigated the potential anti-cancer effects of a novel analogue of cucurbitacin (Cucurbitacin D) against cervical cancer in vitro and in vivo. Cucurbitacin D inhibited viability and growth of cervical cancer cells (CaSki and SiHa) in a dose-dependent manner. IC50 of Cucurbitacin D was recorded at 400 nM and 250 nM in CaSki and SiHa cells, respectively. Induction of apoptosis was observed in Cucurbitacin D treated cervical cancer cells as measured by enhanced Annexin V staining and cleavage in PARP protein. Cucurbitacin D treatment of cervical cancer cells arrested the cell cycle in G1/S phase, inhibited constitutive expression of E6, Cyclin D1, CDK4, pRb, and Rb and induced the protein levels of p21 and p27. Cucurbitacin D also inhibited phosphorylation of STAT3 at Ser727 and Tyr705 residues as well as its downstream target genes c-Myc, and MMP9. Cucurbitacin D enhanced the expression of tumor suppressor microRNAs (miR-145, miRNA-143, and miRNA34a) in cervical cancer cells. Cucurbitacin D treatment (1 mg/kg body weight) effectively inhibited growth of cervical cancer cells derived orthotopic xenograft tumors in athymic nude mice. These results demonstrate the potential therapeutic efficacy of Cucurbitacin D against cervical cancer.
Collapse
|
43
|
Manipulation of the innate immune response by human papillomaviruses. Virus Res 2016; 231:34-40. [PMID: 27826042 DOI: 10.1016/j.virusres.2016.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/20/2022]
Abstract
The innate immune response constitutes the first line of defense against infections by pathogens. Successful pathogens such as human papillomaviruses (HPVs) have evolved mechanisms that target several points in these pathways including sensing of viral genomes, blocking the synthesis of interferons and inhibiting the action of JAK/STAT transcription factors. Disruption of these inhibitory mechanisms contributes to the ability of HPVs to establish persistent infections, which is the major etiological factor in the development of anogenital cancers. Interestingly, HPVs also positively activate several members of these pathways such as STAT-5 that are important for their differentiation-dependent life cycle. STAT-5 activation induces the ATM and ATR DNA damage response pathways that play critical roles in HPV genome amplification. Targeting of these pathways by pharmaceuticals can provide novel opportunities to inhibit infections by these important human pathogens.
Collapse
|
44
|
microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem Biophys Res Commun 2016; 480:528-533. [DOI: 10.1016/j.bbrc.2016.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
|
45
|
Vishnoi K, Mahata S, Tyagi A, Pandey A, Verma G, Jadli M, Singh T, Singh SM, Bharti AC. Cross-talk between Human Papillomavirus Oncoproteins and Hedgehog Signaling Synergistically Promotes Stemness in Cervical Cancer Cells. Sci Rep 2016; 6:34377. [PMID: 27678330 PMCID: PMC5039669 DOI: 10.1038/srep34377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2016] [Accepted: 09/12/2016] [Indexed: 12/22/2022] Open
Abstract
Viral oncoproteins E6/E7 play key oncogenic role in human papillomavirus (HPV)-mediated cervical carcinogenesis in conjunction with aberrant activation of cellular signaling events. GLI-signaling has been implicated in metastasis and tumor recurrence of cervical cancer. However, the interaction of GLI-signaling with HPV oncogenes is unknown. We examined this relationship in established HPV-positive and HPV-negative cervical cancer cell lines using specific GLI inhibitor, cyclopamine and HPVE6/E7 siRNAs. Cervical cancer cell lines showed variable expression of GLI-signaling components. HPV16-positive SiHa cells, overexpressed GLI1, Smo and Patch. Inhibition by cyclopamine resulted in dose-dependent reduction of Smo and GLI1 and loss of cell viability with a higher magnitude in HPV-positive cells. Cyclopamine selectively downregulated HPVE6 expression and resulted in p53 accumulation, whereas HPVE7 and pRb level remained unaffected. siRNA-mediated silencing of HPV16E6 demonstrated reduced GLI1 transcripts in SiHa cells. Cervical cancer stem-like cells isolated by side population analysis, displayed retention of E6 and GLI1 expression. Fraction of SP cells was reduced in cyclopamine-treated cultures. When combined with E6-silencing cyclopamine resulted in loss of SP cell’s sphere-forming ability. Co-inhibition of GLI1 and E6 in cervical cancer cells showed additive anti-cancer effects. Overall, our data show existence of a cooperative interaction between GLI signaling and HPVE6.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Abhishek Tyagi
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India
| | - Arvind Pandey
- Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Division of Molecular Oncology, Institute of Cytology &Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| |
Collapse
|
46
|
Nakamura H, Taguchi A, Kawana K, Kawata A, Yoshida M, Fujimoto A, Ogishima J, Sato M, Inoue T, Nishida H, Furuya H, Tomio K, Eguchi S, Mori-Uchino M, Yamashita A, Adachi K, Arimoto T, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. STAT3 activity regulates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cervical cancer cells. Int J Oncol 2016; 49:2155-2162. [PMID: 27599897 DOI: 10.3892/ijo.2016.3681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
In cervical cancer, p53-induced apoptosis is abrogated by human papilloma virus (HPV)-derived oncoprotein E6. Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) provides tumor-specific apoptosis in various cancers, including cervical cancer, the sensitivity differs depending on the cell lines. Signal transducer and activator of transcription 3 (STAT3) is a hub molecule that shifts the cellular fate to apoptosis or survival in response to cellular stresses. However, the contribution of STAT3 activity to TRAIL-induced apoptosis in cervical cancer remains unknown. We examined the TRAIL sensitivity in cervical cancer cells, using TRAIL-resistant (SiHa) and -sensitive (CaSki) cervical cancer cell lines and focused on STAT3 function involving the apoptotic pathway. STAT3 was inactivated by TRAIL stimulation in the CaSki cell line, but not in the SiHa cell line. We then inhibited STAT3 expression in the SiHa cell line using siRNA against STAT3 and suppressed STAT3 activity using a STAT3 inhibitor; both these treatments sensitized TRAIL-induced apoptosis in the SiHa cell line. Furthermore, the SiHa cells were exposed to tunicamycin (TM), an endoplasmic reticulum (ER) stress inducer that inactivates STAT3, with or without TRAIL. Accompanied by STAT3 inactivation, TM pretreatment significantly enhanced TRAIL-induced apoptosis. We therefore concluded that TRAIL-induced apoptosis was regulated by STAT3 in response to TRAIL stimulation. Our results also suggest that STAT3 inhibition increases the sensitivity of malignancies, particularly HPV-related cancer, to TRAIL-based therapy.
Collapse
Affiliation(s)
- Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Juri Ogishima
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hitomi Furuya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mayuyo Mori-Uchino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
47
|
Vishnoi K, Mahata S, Tyagi A, Pandey A, Verma G, Jadli M, Singh T, Singh SM, Bharti AC. Human papillomavirus oncoproteins differentially modulate epithelial-mesenchymal transition in 5-FU-resistant cervical cancer cells. Tumour Biol 2016; 37:13137-13154. [PMID: 27449048 DOI: 10.1007/s13277-016-5143-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Etiological role of viral proteins E6 and E7 of high-risk HPV in cervical carcinogenesis is well established. However, their contribution in chemoresistance and epithelial-mesenchymal transition (EMT) that leads to advanced metastatic lesions and chemoresistance is poorly defined. In the present study, contribution of viral oncoproteins in acquisition of EMT character during onset of chemoresistance was assessed. A chemoresistant cell line (SiHaCR) was developed from an established HPV16-positive cervical cancer cell line, SiHa, by escalating selection pressure of 5-fluorouracil (5-FU). Expression of Survivin, ABCG2, Snail, Slug, Twist, and Vimentin was examined in SiHa and SiHaCR cells by reverse transcriptase-PCR (RT-PCR) and immunoblotting assays. Mesenchymal phenotype in SiHaCR cells was confirmed by assessment of migration and invasion potentials. SiHaCR cells displayed elevated level of functional and molecular markers associated with chemoresistance (Survivin, ABCG2) and EMT (Snail, Slug, Twist, Vimentin) and reduced E-cadherin. SiHaCR also showed increased levels of HPV16 E6 and E7 transcripts. Specific silencing of HPV16 E6, but not E7 using corresponding siRNA, demonstrated a differential involvement of HPV oncogenes in manifestation of EMT. HPV16 E6 silencing resulted in reduction of Slug and Twist expression. However, the expression of Snail and Vimentin was only marginally affected. In contrast, there was an increase in the expression of E-cadherin. A reduced migration and invasion capabilities were observed only in E6-silenced SiHaCR cells, which further confirmed functional contribution of HPV16 E6 in manifestation of EMT. Taken together, our study demonstrated an active involvement of HPV16 E6 in regulation of EMT, which promotes chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Abhishek Tyagi
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, New Delhi, India.,Research Lab, Delhi State Cancer Institute, Delhi, India
| | - Arvind Pandey
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
| | - Gaurav Verma
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mohit Jadli
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Tejveer Singh
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India.,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alok C Bharti
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. .,Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
48
|
Wang HY, Lian P, Zheng PS. SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth. Oncotarget 2016; 6:20711-22. [PMID: 26036262 PMCID: PMC4653037 DOI: 10.18632/oncotarget.4133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
Sex-determining region Y-box 9 protein (SOX9) is a transcription factor that may act as both oncogene and tumor suppressor depending on tumor origin. Here we found that SOX9 expression was progressively decreased in cervical carcinoma in situ and especially in invasive cervical carcinoma, compared with normal cervix tissue. The effects of SOX9 on the proliferation, viability, and tumor formation of cervical carcinoma cells were assessed through the silencing and overexpression of SOX9. Overexpression of SOX9 in cervical carcinoma cells (SiHa and C33A) inhibited cell growth in vitro and tumor formation in vivo. In agreement, the silencing of SOX9 in HeLa cells promoted cell growth in culture and tumor formation in mice. Overexpression of SOX9 transactivated p21WAF1/CIP1 via a specific promoter region, thus blocking G1/S transition. The quantitative chromatin immunoprecipitation analysis revealed physical interaction between SOX9 and the specific region of the p21WAF1/CIP1 promoter. We suggest that SOX9 is a potential therapeutic target in cervical carcinoma, that specifically transactivates p21WAF1/CIP1.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| | - Ping Lian
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital, Xi'an Jiaotong University Medical School, Xi'an, China
| |
Collapse
|
49
|
Tyagi A, Vishnoi K, Mahata S, Verma G, Srivastava Y, Masaldan S, Roy BG, Bharti AC, Das BC. Cervical Cancer Stem Cells Selectively Overexpress HPV Oncoprotein E6 that Controls Stemness and Self-Renewal through Upregulation of HES1. Clin Cancer Res 2016; 22:4170-84. [PMID: 26988248 DOI: 10.1158/1078-0432.ccr-15-2574] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2015] [Accepted: 02/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Perturbation of keratinocyte differentiation by E6/E7 oncoproteins of high-risk human papillomaviruses that drive oncogenic transformation of cells in squamocolumnar junction of the uterine cervix may confer "stem-cell like" characteristics. However, the crosstalk between E6/E7 and stem cell signaling during cervical carcinogenesis is not well understood. We therefore examined the role of viral oncoproteins in stem cell signaling and maintenance of stemness in cervical cancer. EXPERIMENTAL DESIGN Isolation and enrichment of cervical cancer stem-like cells (CaCxSLCs) was done from cervical primary tumors and cancer cell lines by novel sequential gating using a set of functional and phenotypic markers (ABCG2, CD49f, CD71, CD133) in defined conditioned media for assessing sphere formation and expression of self-renewal and stemness markers by FACS, confocal microscopy, and qRT-PCR. Differential expression level and DNA-binding activity of Notch1 and its downstream targets in CaCxSLCs as well as silencing of HPVE6/Hes1 by siRNA was evaluated by gel retardation assay, FACS, immunoblotting, and qRT-PCR followed by in silico and in vivo xenograft analysis. RESULTS CaCxSLCs showed spheroid-forming ability, expressed self-renewal and stemness markers Oct4, Sox2, Nanog, Lrig1, and CD133, and selectively overexpressed E6 and HES1 transcripts in both cervical primary tumors and cancer cell lines. The enriched CaCxSLCs were highly tumorigenic and did recapitulate primary tumor histology in nude mice. siRNA silencing of HPVE6 or Hes1 abolished sphere formation, downregulated AP-1-STAT3 signaling, and induced redifferentiation. CONCLUSIONS Our findings suggest the possible mechanism by which HPVE6 potentially regulate and maintain stem-like cancer cells through Hes1. Clin Cancer Res; 22(16); 4170-84. ©2016 AACR.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Kanchan Vishnoi
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Gaurav Verma
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Yogesh Srivastava
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Shashank Masaldan
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India
| | - Bal Gangadhar Roy
- Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
| | - Alok C Bharti
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.
| | - Bhudev C Das
- Stem Cell and Cancer Research Laboratory, Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Noida, Uttar Pradesh, India. Molecular Oncology Laboratory, B.R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India.
| |
Collapse
|
50
|
Selective participation of c-Jun with Fra-2/c-Fos promotes aggressive tumor phenotypes and poor prognosis in tongue cancer. Sci Rep 2015; 5:16811. [PMID: 26581505 PMCID: PMC4652185 DOI: 10.1038/srep16811] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2015] [Accepted: 10/07/2015] [Indexed: 12/24/2022] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is most aggressive head and neck cancer often associated with HR-HPV infection. The role of AP-1 which is an essential regulator of HPV oncogene expression and tumorigenesis is not reported in tongue cancer. One hundred tongue tissue biopsies comprising precancer, cancer and adjacent controls including two tongue cancer cell lines were employed to study the role of HPV infection and AP-1 family proteins. An exclusive prevalence (28%) of HR-HPV type 16 was observed mainly in well differentiated tongue carcinomas (78.5%). A higher expression and DNA binding activity of AP-1 was observed in tongue tumors and cancer cell lines with c-Fos and Fra-2 as the major binding partners forming the functional AP-1 complex but c-Jun participated only in HPV negative and poorly differentiated carcinoma. Knocking down of Fra-2 responsible for aggressive tongue tumorigenesis led to significant reduction in c-Fos, c-Jun, MMP-9 and HPVE6/E7 expression but Fra-1 and p53 were upregulated. The binding and expression of c-Fos/Fra-2 increased as a function of severity of tongue lesions, yet selective participation of c-Jun appears to promote poor differentiation and aggressive tumorigenesis only in HPV negative cases while HPV infection leads to well differentiation and better prognosis preferably in nonsmokers.
Collapse
|