1
|
Liu L, Luo P, Wen P, Xu P. Effects of selenium and iodine on Kashin-Beck disease: an updated review. Front Nutr 2024; 11:1402559. [PMID: 38757132 PMCID: PMC11096467 DOI: 10.3389/fnut.2024.1402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Kashin-Beck disease (KBD) is an endochondral osteogenesis disorder characterised by epiphysis damage and secondary deformable arthropathy induced by multiple external factors, among which selenium (Se) and iodine deficiency are important influencing factors. Iodine deficiency is usually accompanied by a low Se content in the soil in the KBD areas of China. Se can reverse oxidative damage to chondrocytes. In addition, Se is related to the bone conversion rate and bone mineral density. Low Se will hinder growth and change bone metabolism, resulting in a decrease in the bone conversion rate and bone mineral density. Thyroid hormone imbalance caused by thyroid dysfunction caused by iodine deficiency can damage bone homeostasis. Compared with Se deficiency alone, Se combined with iodine deficiency can reduce the activity of glutathione peroxidase more effectively, which increases the vulnerability of chondrocytes and other target cells to oxidative stress, resulting in chondrocyte death. Clinical studies have shown that supplementation with Se and iodine is helpful for the prevention and treatment of KBD.
Collapse
Affiliation(s)
| | | | | | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Mehta R, Krupa C, Ahmed T, Hamer DH, Al Mahmud A. Associations between maternal and infant selenium status and child growth in a birth cohort from Dhaka, Bangladesh. Br J Nutr 2023; 130:1558-1572. [PMID: 36944370 PMCID: PMC10551473 DOI: 10.1017/s0007114523000739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Deficiency of essential trace element, Se, has been implicated in adverse birth outcomes and in child linear growth because of its important role in redox biology and associated antioxidant effects. We used data from a randomised controlled trial conducted among a cohort of pregnant and lactating women in Dhaka, Bangladesh to examine associations between Se biomarkers in whole blood (WBSe), serum and selenoprotein P (SEPP1) in maternal delivery and venous cord (VC) blood. Associations between Se biomarkers, birth weight and infant growth outcomes (age-adjusted length, weight, head circumference and weight-for-length z-scores) at birth, 1 and 2 years of age were examined using regression analyses. WB and serum Se were negatively associated with birth weight (adjusted β, 95 % CI, WBSe delivery: −26·6 (–44·3, −8·9); WBSe VC: −19·6 (–33·0, −6·1)); however, delivery SEPP1 levels (adjusted β: −37·5 (–73·0, −2·0)) and VC blood (adjusted β: 82·3 (30·0, 134·7)) showed inconsistent and opposite associations with birth weight. Positive associations for SEPP1 VC suggest preferential transfer from mother to fetus. We found small associations between infant growth and WBSe VC (length-for-age z-score β, 95 % CI, at birth: −0·05 (–0·1, −0·01)); 12 months (β: −0·05 (–0·08, −0·007)). Weight-for-age z-score also showed weak negative associations with delivery WBSe (at birth: −0·07 (–0·1, −0·02); 12 -months: −0·05 (–0·1, −0·005)) and in WBSe VC (at birth: −0·05 (–0·08, −0·02); 12 months: −0·05 (–0·09, −0·004)). Given the fine balance between essential nutritional and toxic properties of Se, it is possible that WB and serum Se may negatively impact growth outcomes, both in utero and postpartum.
Collapse
Affiliation(s)
- Rukshan Mehta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
| | - Christine Krupa
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, Canada
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Davidson H. Hamer
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
3
|
Gong Y, Wu Y, Liu Y, Chen S, Zhang F, Chen F, Wang C, Li S, Hu M, Huang R, Xu K, Wang X, Yang L, Ning Y, Li C, Zhou R, Guo X. Detection of selenoprotein transcriptome in chondrocytes of patients with Kashin-Beck disease. Front Cell Dev Biol 2023; 11:1083904. [PMID: 36875769 PMCID: PMC9981956 DOI: 10.3389/fcell.2023.1083904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Background: Kashin-Beck disease (KBD) is a deformed osteochondral disease with a chronic progression that is restrictively distributed in eastern Siberia, North Korea, and some areas of China, and selenium deficiency has been identified as an important factor in the pathogenesis of this disease in recent years. Objective: The aim of this study is to investigate the selenoprotein transcriptome in chondrocytes and define the contribution of selenoprotein to KBD pathogenesis. Methods: Three cartilage samples were collected from the lateral tibial plateau of adult KBD patients and normal controls paired by age and sex for real-time quantitative polymerase chain reaction (RT-qPCR) to detect the mRNA expression of 25 selenoprotein genes in chondrocytes. Six other samples were collected from adult KBD patients and normal controls. In addition, immunohistochemistry was used on four adolescent KBD samples and seven normal controls (IHC) to determine the expression of proteins screened by RT-qPCR results that had different gene levels. Results: Increased mRNA expression of GPX1 and GPX3 was observed in chondrocytes, and stronger positive staining was displayed in the cartilage from both adult and adolescent patients. The mRNA levels of DIO1, DIO2, and DIO3 were increased in KBD chondrocytes; however, the percentage of positive staining decreased in the KBD cartilage of adults. Conclusion: The selenoprotein transcriptome, mainly the glutathione peroxidase (GPX) and deiodinase (DIO) families were altered in KBD and might play a vital role in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Sijie Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feiyu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Shujin Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Minhan Hu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Lei Yang
- Department of Nursing, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujie Ning
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China
| | - Cheng Li
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Rong Zhou
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, Shaanxi, China
| | - Xiong Guo
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Bjørklund G, Shanaida M, Lysiuk R, Antonyak H, Klishch I, Shanaida V, Peana M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022; 27:6613. [PMID: 36235150 PMCID: PMC9570904 DOI: 10.3390/molecules27196613] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 02/08/2023] Open
Abstract
Aging is characterized by an imbalance between damage inflicted by reactive oxygen species (ROS) and the antioxidative defenses of the organism. As a significant nutritional factor, the trace element selenium (Se) may remodel gradual and spontaneous physiological changes caused by oxidative stress, potentially leading to disease prevention and healthy aging. Se is involved in improving antioxidant defense, immune functions, and metabolic homeostasis. An inadequate Se status may reduce human life expectancy by accelerating the aging process or increasing vulnerability to various disorders, including immunity dysfunction, and cancer risk. This review highlights the available studies on the effective role of Se in aging mechanisms and shows the potential clinical implications related to its consumption. The main sources of organic Se and the advantages of its nanoformulations were also discussed.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Ivan Klishch
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
5
|
Yu FF, Sun L, Zhou GY, Ping ZG, Guo X, Ba Y. Meta-analysis of Association Studies of Selenoprotein Gene Polymorphism and Kashin-Beck Disease: an Updated Systematic Review. Biol Trace Elem Res 2022; 200:543-550. [PMID: 33844169 DOI: 10.1007/s12011-021-02705-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
To evaluate the association between selenoprotein gene polymorphisms and Kashin-Beck disease (KBD) susceptibility through a systematic review and updated meta-analysis. PubMed, Google Scholar, Cochrane library, and Chinese National Knowledge Infrastructure (CNKI) were electronically searched using the terms "selenoprotein" and "Kashin-Beck disease" or "KBD" with a search time from the establishment of the database to January 2021. The Newcastle-Ottawa Scale (NOS) was used for methodological quality evaluation of the included studies. Stata 14.0 software was used to pooled odds ratio (OR) and 95% confidence interval. There were a total of eight included case-control studies covering 2025 KBD patients and 1962 controls. Meta-analysis results show that the pooled odds ratios (OR) and 95% confidence intervals (CI) for DIO2 (rs225014) were 0.69 (0.52, 0.91), 0.69 (0.50, 0.96), and 0.72 (0.52, 0.99) in the allele, heterozygote, and dominant models, respectively. The OR and 95%CI for SEPS1 (-105G>A) were 2.47 (1.85, 3.29), 9.36 (4.58, 19.12), 2.17 (1.53, 3.08), and 8.60 (4.25, 17.38) in the allele, homozygote, dominant, and recessive models, respectively. In addition, the OR and 95%CI for Sep15 (rs5859) were 2.05 (1.06, 3.96) in the allele model. These results illustrate that there was a significant association between DIO2 (rs225014), SEPS1 (-105G>A), Sep15 (rs5859), and KBD. For GPX1 (rs1050450, rs1800668, rs3811699), DIO2 (rs225014, rs1352815, rs1388382), TrxR2 (rs1139793, rs5746841), GPX4 (rs713041, rs4807542), and SEPP1 (rs7579, 25191g/a), there was no significant statistical difference between the KBD and control groups (P>0.05). We conclude that the DIO2 (rs225014), SEPS1 (-105G>A), and Sep15 (rs5859) gene polymorphism are associated with susceptibility to KBD.
Collapse
Affiliation(s)
- Fang-Fang Yu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Lei Sun
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Guo-Yu Zhou
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhi-Guang Ping
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, 45001, China
| | - Xiong Guo
- Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, China
| | - Yue Ba
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Environment and Health Innovation Team, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
6
|
Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun JS, Kim JH. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 2020; 52:1198-1208. [PMID: 32788658 PMCID: PMC7423502 DOI: 10.1038/s12276-020-0408-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/16/2023] Open
Abstract
As an essential nutrient and trace element, selenium is required for living organisms and its beneficial roles in human health have been well recognized. The role of selenium is mainly played through selenoproteins synthesized by the selenium metabolic system. Selenoproteins have a wide range of cellular functions including regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to various diseases, such as cardiovascular disease, cancer, liver disease, and arthropathy—Kashin–Beck disease (KBD) and osteoarthritis (OA). A skeletal developmental disorder, KBD has been reported in low-selenium areas of China, North Korea, and the Siberian region of Russia, and can be alleviated by selenium supplementation. OA, the most common form of arthritis, is a degenerative disease caused by an imbalance in matrix metabolism and is characterized by cartilage destruction. Oxidative stress serves as a major cause of the initiation of OA pathogenesis. Selenium deficiency and dysregulation of selenoproteins are associated with impairments to redox homeostasis in cartilage. We review the recently explored roles of selenium metabolism and selenoproteins in cartilage with an emphasis on two arthropathies, KBD and OA. Moreover, we discuss the potential of therapeutic strategies targeting the biological functions of selenium and selenoproteins for OA treatment. Selenium, a micronutrient found in brazil nuts, shiitake mushrooms, and most meats, may aid in treating joint diseases, including the most common form of arthritis, osteoarthritis (OA). In addition to thyroid hormone metabolism and immunity, selenium is important in antioxidant defense. Oxidative damage can destroy cartilage and harm joints, and selenium deficiency is implicated in several joint diseases. Jin-Hong Kim at Seoul National University in South Korea and co-workers reviewed selenium metabolism, focusing on OA and and Kashin–Beck disease, a skeletal development disorder prevalent in selenium-deficient areas of northeast Asia. They report that selenium-containing proteins protect cells against oxidative damage and that selenium is crucial to cartilage production. Further investigation of selenium metabolism may point the way to new treatments for OA and other joint diseases.
Collapse
Affiliation(s)
- Donghyun Kang
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Cuiyan Wu
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Byeong Jae Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
8
|
Jin T, Wang L, He X, Liu M, Bai M, Rong H, He Y, Yuan D. Association between DIO2 polymorphism and the risk of Kashin-Beck disease in the Tibetan population. J Gene Med 2019; 21:e3123. [PMID: 31433532 DOI: 10.1002/jgm.3123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kashin-Beck disease (KBD) is a local, multiple and deformable osteoarthropathy, mostly occurring in Tibet. Type 2 iodothyronine deiodinase (DIO2) is implicated in the activation of thyroid hormones to which the bones are very sensitive. Therefore, it is necessary to explore the association between KBD and DIO2 in the Tibetan population. METHODS We carried out a case-control study among 316 cases and 320 controls from a Tibetan population. Seven single nucleotide polymorphisms in DIO2 were selected and genotyped using the Agena MassARRAY platform (Agena Bioscience, San Diego, CA, USA). Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression analysis. HaploReg (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) and GTEx (http://www.gtexportal.org) databases were applied for functional assessment of the polymorphisms. RESULTS The "A/C" genotype of rs1352815 (OR = 3.18, 95% CI = 1.14-8.85, p = 0.027) and the "A/G" genotype of rs1388382 (OR = 3.80, 95% CI = 1.30-11.11, p = 0.015) were associated with the susceptibility of KBD under the co-dominant model. With gender stratification analysis, rs1388382 showed obvious evidence for correlation with an elevated risk of KBD in females under the co-dominant model (OR = 3.32, 95% CI = 1.06-10.41, p = 0.039). CONCLUSIONS The results obtained in the present study indicate that DIO2 polymorphisms rs1352815 and rs1388382 were correlated with KBD susceptibility among Tibetans, which also sheds new light on the role of DIO2 in the development of KBD.
Collapse
Affiliation(s)
- Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Ming Liu
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Gynaecology and Obstetrics, Ngari Prefecture People's Hospital, Ngari Prefecture, Tibet Autonomous Region, China
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Hao Rong
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
He X, Bai M, Liu M, Wang L, He Y, Rong H, Yuan D, Jin T. Genetic variants in the ITPR2 gene are associated with Kashin-Beck Disease in Tibetan. Mol Genet Genomic Med 2019; 7:e00715. [PMID: 31066235 PMCID: PMC6625103 DOI: 10.1002/mgg3.715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Kashin‐Beck Disease (KBD) is a chronic, endemic osteoarthropathy. Inositol 1,4,5‐triphosphate receptor type 2 (ITPR2) gene is involved in chondrocytes. We speculated that single‐nucleotide polymorphisms (SNPs) in ITPR2 gene may have an association with KBD in Tibetan. Methods To prove this hypothesis, a total of eight SNPs (rs1049376, rs11048526, rs11048556, rs11048585, rs16931011, rs10842759, rs2230372, and rs7134213) were selected, and genotyped in 316 KBD patients and 320 controls. The association between ITPR2 variants and KBD risk was assessed by logistic regression analysis. Results The study identified significant association (p = 0.019) between KBD and a novel locus, ITPR2 SNP rs11048526 (OR = 1.49, 95% CI = 1.07–2.08). The variant A/G genotype frequency in rs11048526 had a significantly increased risk of KBD in co‐dominant model (OR = 3.70, 95% CI = 1.26–10.89, p = 0.018), dominant model (OR = 3.56, 95% CI = 1.22–10.40, p = 0.020), log‐additive model (OR = 3.00, 95% CI = 1.12–8.00, p = 0.029) after adjusted for age and gender. Conclusion The results indicate a potential association between ITPR2 and KBD risk in Tibetan. Further work is required to confirm these results and explore the mechanisms of these effects.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Mei Bai
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Ming Liu
- Department of gynaecology and obstetricsThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of gynaecology and obstetricsThe Ngari Prefecture People's HospitalNgari PrefectureChina
| | - Li Wang
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Hao Rong
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangChina
| |
Collapse
|
10
|
Zhang R, Guo H, Yang X, Zhang D, Li B, Li Z, Xiong Y. Pathway-based network analyses and candidate genes associated with Kashin-Beck disease. Medicine (Baltimore) 2019; 98:e15498. [PMID: 31045836 PMCID: PMC6504273 DOI: 10.1097/md.0000000000015498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To perform a comprehensive analysis focusing on the biological functions and interactions of Kashin-Beck disease (KBD)-related genes to provide information towards understanding the pathogenesis of KBD.A retrospective, integrated bioinformatics analysis was designed and conducted. First, by reviewing the literature deposited in PubMed, we identified 922 genes genetically associated with KBD. Then, biological function and network analyses were conducted with Cytoscape software. Moreover, KBD specific molecular network analysis was conducted by Cytocluster using the Molecular Complex Detection Algorithm (MCODE).The biological function enrichment analysis suggested that collagen catabolic process, protein activation cascade, cellular response to growth factor stimulus, skeletal system development, and extrinsic apoptosis played important roles in KBD development. The apoptosis pathway, NF-kappa B signaling pathway, and the glutathione metabolism pathway were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway network, suggesting that these pathways may play key roles in KBD occurrence and development. MCODE clusters showed that in top 3 clusters, 54 of KBD-related genes were included in the network and 110 candidate genes were discovered might be potentially related to KBD.The 110 candidate genes discovered in the current study may be related to the development of KBD. The expression changes of apoptosis and oxidative stress-related genes might serve as biomarkers for early diagnosis and treatment of KBD.
Collapse
Affiliation(s)
- Rongqiang Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hao Guo
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| | - Xiaoli Yang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| | - Dandan Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| | - Baorong Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| | - Zhaofang Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| | - Yongmin Xiong
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission of the People's Republic of China, Xi’an
| |
Collapse
|
11
|
Gaffney-Stomberg E. The Impact of Trace Minerals on Bone Metabolism. Biol Trace Elem Res 2019; 188:26-34. [PMID: 30467628 DOI: 10.1007/s12011-018-1583-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active tissue that responds to alterations in dietary intake and nutritional status. It is ~ 35% protein, mostly collagen which provides an organic scaffolding for bone mineral. The mineral is the remaining ~ 65% of bone tissue and composed mostly of calcium and phosphate in a form that is structurally similar to mineral within the apatite group. The skeletal tissue is constantly undergoing turnover through resorption by osteoclasts coupled with formation by osteoblasts. In this regard, the overall bone balance is determined by the relative contribution of each of these processes. In addition to macro minerals such as calcium, phosphorus, and magnesium which have well-known roles in bone health, trace elements such as boron, iron, zinc, copper, and selenium also impact bone metabolism. Effects of trace elements on skeletal metabolism and tissue properties may be indirect through regulation of macro mineral metabolism, or direct by affecting osteoblast or osteoclast proliferation or activity, or finally through incorporation into the bone mineral matrix. This review focuses on the skeletal impact of the following trace elements: boron, iron, zinc, copper, and selenium, and overviews the state of the evidence for each of these minerals.
Collapse
Affiliation(s)
- Erin Gaffney-Stomberg
- Military Performance Division of the US Army Research Institute of Environmental Medicine, Natick, MA, 01760, USA.
| |
Collapse
|
12
|
Almondes KGS, Cardoso BR, Cominetti C, Nogueira NN, Marreiro DN, Oliveira TF, Loureiro APM, Cozzolino SMF. The redox balance of healthy Brazilian adults is associated with GPX1 Pro198Leu and -602A/G polymorphisms, selenium status, and anthropometric and lifestyle parameters. Food Funct 2019; 9:5313-5322. [PMID: 30256368 DOI: 10.1039/c8fo01621f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Considering that oxidative stress is implicated in the pathogenesis and progression of different health conditions, we aimed to evaluate whether the redox balance of a healthy Brazilian population is associated with GPX1 polymorphisms, selenium status, lipid profile, and anthropometric and lifestyle parameters. METHODS 343 healthy adults were assessed for redox balance markers [glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity; malondialdehyde (MDA) and oxygen radical absorption capacity (ORAC)]; genotyped for the polymorphisms GPX1 Pro198Leu (rs1050450), -602A/G (rs3811699) and Arg5Pro (rs8179169); evaluated for selenium biomarkers (plasma, erythrocyte, and urine) and intake; and assessed for lipid profile. Anthropometric (BMI) and lifestyle data (physical activity, current smoking habit and alcohol consumption) were collected. Multivariable regression models were applied to investigate the possible associations. RESULTS Although there were no differences in GPx activity according to GPX1 Pro198Leu and -602A/G polymorphisms, this redox balance marker was positively associated with erythrocyte selenium and negatively associated with the presence of a minor allele of Pro198Leu. SOD activity was positively associated with the presence of a minor allele for these polymorphisms. ORAC showed the same pattern among Leu and G carriers and was positively associated with Leu allele presence, BMI and alcohol intake. MDA was only associated negatively with the male sex and plasma selenium. CONCLUSIONS Our findings suggest that the redox balance of a Brazilian healthy population is associated with GPX1 polymorphisms (Pro198Leu and -602A/G), selenium status, BMI, sex, smoking habit and alcohol consumption.
Collapse
Affiliation(s)
- Kaluce G S Almondes
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, Butantã, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 2018; 127:215-227. [PMID: 29883789 PMCID: PMC6168380 DOI: 10.1016/j.freeradbiomed.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a redox-active environmental mineral that is converted to only a small number of metabolites and required for a relatively small number of mammalian enzymes. Despite this, dietary and environmental Se has extensive impact on every layer of omics space. This highlights a need for global network response structures to provide reference for targeted, hypothesis-driven Se research. In this review, we survey the Se research literature from the perspective of the responsive physical and chemical barrier between an organism (functional genome) and its environment (exposome), which we have previously termed the redox interface. Recent advances in metabolomics allow molecular phenotyping of the integrated genome-metabolome-exposome structure. Use of metabolomics with transcriptomics to map functional network responses to supplemental Se in mice revealed complex network responses linked to dyslipidemia and weight gain. Central metabolic hubs in the network structure in liver were not directly linked to transcripts for selenoproteins but were, instead, linked to transcripts for glucose transport and fatty acid β-oxidation. The experimental results confirm the survey of research literature in showing that Se interacts with the functional genome through a complex network response structure. The results imply that systematic application of data-driven integrated omics methods to models with controlled Se exposure could disentangle health benefits and risks from Se exposures and also serve more broadly as an experimental paradigm for exposome research.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Xin Hu
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - M Ryan Smith
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
14
|
Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 2018; 17:183-196. [PMID: 29873029 DOI: 10.1007/s42000-018-0033-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels, underlying or at-risk clinical conditions, and perhaps selenoprotein gene polymorphisms is envisaged.
Collapse
Affiliation(s)
- Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania.
- , Cluj-Napoca, Romania.
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Tai Z, Huang L, Lu F, Shi Y, Ma S, Cheng J, Lin H, Liu X, Li Y, Yang Z. Association study of candidate genes for susceptibility to Kashin-Beck disease in a Tibetan population. BMC MEDICAL GENETICS 2017. [PMID: 28651521 PMCID: PMC5485673 DOI: 10.1186/s12881-017-0423-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Many osteoarthritis (OA) susceptibility genes have been identified in recent years. Given the overlap in the phenotype of joint inflammation between OA and Kashin-Beck disease (KBD), the aim of this study is to explore whether the reported OA susceptibility genes and two genes that may link to OA pathophysiology are associated with KBD in the Tibetan population. Method Fifteen single-nucleotide polymorphisms (SNPs) in 12 candidate genes previously reported as OA susceptibility loci were selected for investigation. Genotyping was performed using the SNaPshot method for these SNPs in a Tibetan population composed of 849 KBD patients and 565 normal controls. Meanwhile, the coding regions of two genes, COL10A1 and HABP2, which may involve in the pathological mechanism of OA/KBD, were sequenced by Sanger sequencing to identify susceptibility coding variants for KBD in the Tibetan population. Results The two arthritis-susceptible candidate SNPs, rs7775 (p.Arg324Gly) in the FRZB gene and rs7033979 in the ASPN gene, showed associations with KBD (OR = 1.568, P = 4 × 10−3 and OR = 0.744, P = 8 × 10−3, respectively). The coding variants rs142463796 (p.Asp128Asn) and rs2228547 (p.Gly545Arg) in the COL10A1 gene (OR = 9.832 and P = 6 × 10−3 and OR = 1.242, P = 0.043, respectively) and rs548354451 (p.Asp272Glu) in the HABP2 gene (OR = 2.813, P = 0.010) were associated with KBD patients. Conclusion These finding suggested that rs7775 in the FRZB gene may increase susceptibility to KBD, while rs7033979 in the ASPN gene may play a protective role in susceptibility to KBD in Tibetans. Moreover, genetic variants in chondrogenesis-related genes COL10A1 and HABP2 may play a role in the risk of developing KBD in the Tibetan population. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0423-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhengfu Tai
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Fang Lu
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yi Shi
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shi Ma
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jing Cheng
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - He Lin
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xin Liu
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yuanfeng Li
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- The Key Laboratory for Human Disease Gene Study, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China. .,Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China. .,Center for Human Molecular Biology & Genetics, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial, People's Hospital, 32 The First Ring Road West 2, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
16
|
Yan J, Guo Y, Fei Y, Zhang R, Han Y, Lu S. GPx1 knockdown suppresses chondrogenic differentiation of ATDC5 cells through induction of reductive stress. Acta Biochim Biophys Sin (Shanghai) 2017; 49:110-118. [PMID: 28039148 DOI: 10.1093/abbs/gmw125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/13/2022] Open
Abstract
Glutathione peroxidase 1 (GPx1) is a selenium (Se)-containing protein and is induced in cartilage formation. GPx1 eliminates reactive oxygen species (ROS), which are required for chondrogenic induction. The physiological properties of GPx1 in cartilage and the redox mechanisms involved are not known. The effects of GPx1 on chondrogenic differentiation of ATDC5 cells were examined through short hairpin RNA-mediated gene silencing. The results demonstrated that GPx1 knockdown impaired gene expression of sex determining region Y-box 9, collagen II (Col II), and aggrecan. GPx1 knockdown suppressed the accumulation of cartilage glycosaminoglycans (GAGs) and the proliferation of chondrocyte. GPx1 knockdown also induced cell apoptosis. However, cell sensitivity toward exogenous oxidative stress was not increased after GPx1 knockdown. Unexpectedly, GPx1 knockdown not only induced oxidative stress characterized by the increased production of ROS but also caused reductive stress indicated by an elevation of glutathione (GSH)/oxidized GSH (GSSG) ratio. Furthermore, GPx1 knockdown-mediated reductive and oxidative stress could be antagonized by a thiol-oxidizing agent diamide and a thiol-containing compound N-acetylcysteine (NAC), respectively. Moreover, NAC attenuated GPx1 knockdown-induced cell apoptosis, while diamide prevented GPx1 knockdown-suppressed chondrocyte proliferation. Finally, diamide but not NAC could rescue GPx1 knockdown-mediated impaired chondrogenic differentiation. In summary, GPx1 is essential for chondrogenic induction in ATDC5 cells mainly through modulation of intracellular GSH/GSSG ratio, rather than an antioxidant enzyme to detoxify ROS. In addition, GPx1 knockdown-induced impaired chondrogenesis may participate in the pathogenesis of the endemic osteoarthropathy due to Se deficiency. These observations offer novel insights for the development of therapeutic target during cartilage degeneration.
Collapse
Affiliation(s)
- Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yao Fei
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Zhang
- Xi'an Hong Hui Hospital, The Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710054, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| |
Collapse
|
17
|
Genome-wide association study identifies COL2A1 locus involved in the hand development failure of Kashin-Beck disease. Sci Rep 2017; 7:40020. [PMID: 28059113 PMCID: PMC5216336 DOI: 10.1038/srep40020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
Kashin-Beck disease (KBD) is a chronic osteochondropathy. The pathogenesis of growth and development failure of hand of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally including 493 study subjects. Affymetrix Genome Wide Human SNP Array 6.0 was applied for genome-wide SNP genotyping of 90 KBD patients. Association analysis was conducted by PLINK. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. Two SNPs were selected for replication in an independent validation sample of 403 KBD patients. In the discovery GWAS, significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68 × 10−8). In addition, GWAS detected suggestive association signal at rs4760608 of COL2A1 gene (P value = 1.76 × 10−4). Imputation analysis of COL2A1 further identified 2 SNPs with association evidence for palmar LWR. Replication study observed significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene. Based on previous and our study results, we suggest that COL2A1 was a likely susceptibility gene involved in the hand development failure of KBD.
Collapse
|
18
|
Zhang X, Sun J, Han W, Jiang Y, Peng S, Shan Z, Teng W. The Type 2 Deiodinase Thr92Ala Polymorphism Is Associated with Worse Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Diabetes Res 2016; 2016:5928726. [PMID: 27777960 PMCID: PMC5061950 DOI: 10.1155/2016/5928726] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/27/2016] [Accepted: 08/24/2016] [Indexed: 01/18/2023] Open
Abstract
Objective. Type 2 deiodinase (Dio2) is an enzyme responsible for the conversion of T4 to T3. The Thr92Ala polymorphism has been shown related to an increased risk for developing type 2 diabetes mellitus (T2DM). The aim of this study is to assess the association between this polymorphism and glycemic control in T2DM patients as marked by the HbA1C levels. Design and Methods. The terms "rs225014," "thr92ala," "T92A," or "dio2 a/g" were used to search for eligible studies in the PubMed, Embase, and Cochrane databases and Google Scholar. A systematic review and meta-analysis of studies including both polymorphism testing and glycated hemoglobin (HbA1C) assays were performed. Results. Four studies were selected, totaling 2190 subjects. The pooled mean difference of the studies was 0.48% (95% CI, 0.18-0.77%), indicating that type 2 diabetics homozygous for the Dio2 Thr92Ala polymorphism had higher HbA1C levels. Conclusions. Homozygosity for the Dio2 Thr92Ala polymorphism is associated with higher HbA1C levels in T2DM patients. To confirm this conclusion, more studies of larger populations are needed.
Collapse
Affiliation(s)
- Xiaowen Zhang
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Jie Sun
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Wenqing Han
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Yaqiu Jiang
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Shiqiao Peng
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Zhongyan Shan
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| | - Weiping Teng
- The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Irfan S, Rani A, Sameem M, Nawaz SK, Liaqat I, Arshad M. Association of rs1800668 polymorphism in glutathione peroxidase- 1 gene and risk of rheumatoid arthritis in Pakistani population. Pak J Med Sci 2016; 32:1204-1207. [PMID: 27882022 PMCID: PMC5103134 DOI: 10.12669/pjms.325.10325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective: To investigate the role of glutathione peroxidase 1 (GPX1) C/T polymorphism (rs1800668) in modulating the chances of Rheumatoid arthritis (RA) in Pakistani population. Methods: A total of 400 individuals including 200 controls and 200 patients of RA, were genotyped. Detection of rs1800668 polymorphism was carried out using PCR based amplification strategy (allele specific). Results: The results for Hardy Weinberg Equilibrium (HWE) indicated that the allele frequencies for GPX1 polymorphism were not deviant from HWE in whole population under observation. The statistical analysis indicated that significant association existed between rs1800668 polymorphism and RA (p<0.01). CT genotype increased the risk of RA development by 1.8582 times (OR: 1.8582; 95% CI 1.2154 to 2.8409). CC genotype was found to have protective effect against the disease development (OR: 0.5133; 95% CI 0.3403 to 0.7742) while TT genotype was found to have association with RA development but the risk level was marginal (OR: 1.5319; 95% CI 0.6124 to 3.8322). Conclusion: The present finding suggests the importance of GPX1 C/T polymorphism (rs1800668) in development of RA in Pakistani population. The protective role of CC genotype against the development of RA in local population was also observed.
Collapse
Affiliation(s)
- Shazia Irfan
- Dr. Shazia Irfan, PhD Zoology. Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Asima Rani
- Asima Rani, M.Phil Zoology. Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Maryam Sameem
- Maryam Sameem, M.phil Zoology. Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Syed Kashif Nawaz
- Dr. Syed Kashif Nawaz, PhD Zoology. Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Iram Liaqat
- Dr. Iram Liaqat, PhD Zoology. Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Arshad
- Dr. Muhammad Arshad, PhD Zoology. University of Education, Lahore, Pakistan
| |
Collapse
|
20
|
Field synopsis and meta-analyses of genetic epidemiological evidence for Kashin–Beck disease, an endemic osteoarthropathy in China. Mol Genet Genomics 2016; 291:1823-33. [DOI: 10.1007/s00438-016-1222-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
21
|
Zhang F, Dai L, Lin W, Wang W, Liu X, Zhang J, Yang T, Liu X, Shen H, Chen X, Tan L, Tian Q, Deng HW, Xu X, Guo X. Exome sequencing identified FGF12 as a novel candidate gene for Kashin-Beck disease. Funct Integr Genomics 2015; 16:13-7. [PMID: 26290467 DOI: 10.1007/s10142-015-0462-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/28/2022]
Abstract
The objective of this study was to identify novel causal genes involved in the pathogenesis of Kashin-Beck disease (KBD). A representative grade III KBD sib pair with serious skeletal growth and development failure was subjected to exome sequencing using the Illumina Hiseq2000 platform. The detected gene mutations were then filtered against the data of 1000 Genome Project, dbSNP database, and BGI inhouse database, and replicated by a genome-wide association study (GWAS) of KBD. Ninety grade II or III KBD patients with extreme KBD phenotypes and 1627 healthy controls were enrolled in the GWAS. Affymetrix Genome-Wide Human SNP Array 6.0 was applied for genotyping. PLINK software was used for association analysis. We identified a novel 106T>C at the 3'UTR of the FGF12 gene, which has not been reported by now. Sequence alignment observed high conversation at the mutated 3'UTR+106T>C locus across various vertebrates. In the GWAS of KBD, we detected nine SNPs of the FGF12 gene showing association evidence (P value < 0.05) with KBD. The most significant association signal was observed at rs1847340 (P value = 1.90 × 10(-5)). This study suggests that FGF12 was a susceptibility gene of KBD. Our results provide novel clues for revealing the pathogenesis of KBD and the biological function of FGF12.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Weimin Lin
- Department of Nephrology and Traditional Chinese Medicine, The People's Liberating Army 451 Hospital, Xi'an, People's Republic of China
| | - Wenyu Wang
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | | | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xiaogang Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hui Shen
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, People's Republic of China
| | - Qing Tian
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.,Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of Ministry of Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
22
|
Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 2015; 7:3621-51. [PMID: 25988760 PMCID: PMC4446770 DOI: 10.3390/nu7053621] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023] Open
Abstract
Mechanistic data have revealed a key role for selenium (Se) and selenoproteins in biological pathways known to be altered in multifactorial diseases, such as cellular maintenance, response to oxidative stress and correct protein folding. Although epidemiological studies indicate that low Se intake is linked to increased risk for various chronic diseases, supplementation trials have given confusing outcomes, suggesting that additional genetic factors could affect the relationship between Se and health. Genetic data support this hypothesis, as risk for several chronic diseases, in particular cancer, was linked to a number of single nucleotide polymorphisms (SNP) altering Se metabolism, selenoprotein synthesis or activity. Interactions between SNPs in selenoprotein genes, SNPs in related molecular pathways and biomarkers of Se status were found to further modulate the genetic risk carried by the SNPs. Taken together, nutritional genomics approaches uncovered the potential implication of some selenoproteins as well as the influence of complex interactions between genetic variants and Se status in the aetiology of several chronic diseases. This review discusses the results from these genetic associations in the context of selenoprotein functions and epidemiological investigations and emphasises the need to assess in future studies the combined contribution of Se status, environmental stress, and multiple or individual SNPs to disease risk.
Collapse
|