1
|
Rich S, Chameh HM, Rafiee M, Ferguson K, Skinner FK, Valiante TA. Inhibitory Network Bistability Explains Increased Interneuronal Activity Prior to Seizure Onset. Front Neural Circuits 2020; 13:81. [PMID: 32009908 PMCID: PMC6972503 DOI: 10.3389/fncir.2019.00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Recent experimental literature has revealed that GABAergic interneurons exhibit increased activity prior to seizure onset, alongside additional evidence that such activity is synchronous and may arise abruptly. These findings have led some to hypothesize that this interneuronal activity may serve a causal role in driving the sudden change in brain activity that heralds seizure onset. However, the mechanisms predisposing an inhibitory network toward increased activity, specifically prior to ictogenesis, without a permanent change to inputs to the system remain unknown. We address this question by comparing simulated inhibitory networks containing control interneurons and networks containing hyperexcitable interneurons modeled to mimic treatment with 4-Aminopyridine (4-AP), an agent commonly used to model seizures in vivo and in vitro. Our in silico study demonstrates that model inhibitory networks with 4-AP interneurons are more prone than their control counterparts to exist in a bistable state in which asynchronously firing networks can abruptly transition into synchrony driven by a brief perturbation. This transition into synchrony brings about a corresponding increase in overall firing rate. We further show that perturbations driving this transition could arise in vivo from background excitatory synaptic activity in the cortex. Thus, we propose that bistability explains the increase in interneuron activity observed experimentally prior to seizure via a transition from incoherent to coherent dynamics. Moreover, bistability explains why inhibitory networks containing hyperexcitable interneurons are more vulnerable to this change in dynamics, and how such networks can undergo a transition without a permanent change in the drive. We note that while our comparisons are between networks of control and ictogenic neurons, the conclusions drawn specifically relate to the unusual dynamics that arise prior to seizure, and not seizure onset itself. However, providing a mechanistic explanation for this phenomenon specifically in a pro-ictogenic setting generates experimentally testable hypotheses regarding the role of inhibitory neurons in pre-ictal neural dynamics, and motivates further computational research into mechanisms underlying a newly hypothesized multi-step pathway to seizure initiated by inhibition.
Collapse
Affiliation(s)
- Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marjan Rafiee
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Katie Ferguson
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Frances K Skinner
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Departments of Medicine (Neurology) and Physiology, University of Toronto, Toronto, ON, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Effects of chronic exposure to low dose THIP on brainstem neuronal excitability in mouse models of Rett syndrome: Evidence from symptomatic females. Neuropharmacology 2017; 116:288-299. [PMID: 28069353 DOI: 10.1016/j.neuropharm.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 01/17/2023]
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the MECP2 gene, affecting predominantly females. One of the characteristic features of the disease is defective brainstem autonomic function. In Mecp2-/Y mice, several groups of brainstem neurons are overly excitable, which causes destabilization of neuronal networks for the autonomic control. We have previously shown that the extrasynaptic GABAA receptor agonist THIP relieves many RTT-like symptoms in Mecp2-/Y mice. Although neuronal activity is inhibited by acute THIP exposure, how a chronic treatment affects neuronal excitability remains elusive. Thus, we performed studies to address whether increased excitability occurs in brainstem neurons of female Mecp2+/- mice, how the MeCP expression affects the neuronal excitability, and whether chronic THIP exposure improves the neuronal hyperexcitability. Symptomatic Mecp2+/- (sMecp2+/-) female mice were identified with a two-step screening system. Whole-cell recording was performed in brain slices after a prior exposure of the sMecp2+/- mice to a 5-week low-dose THIP. Neurons in the locus coeruleus (LC) and the mesencephalic trigeminal nucleus (Me5) showed excessive firing activity in the sMecp2+/- mice. THIP pretreatment reduced the hyperexcitability of both LC and Me5 neurons in the sMecp2+/- mice, to a similar level as their counterparts in Mecp2-/Y mice. In identified LC neurons, the hyperexcitability appeared to be determined by not only the MeCP2 expression, but also their environmental cues. The alleviation of LC neuronal hyperexcitability seems to benefit brainstem autonomic function as THIP also improved breathing abnormalities of these sMecp2+/- mice.
Collapse
|
3
|
Y Ho EC, Truccolo W. Interaction between synaptic inhibition and glial-potassium dynamics leads to diverse seizure transition modes in biophysical models of human focal seizures. J Comput Neurosci 2016; 41:225-44. [PMID: 27488433 PMCID: PMC5002283 DOI: 10.1007/s10827-016-0615-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 06/18/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022]
Abstract
How focal seizures initiate and evolve in human neocortex remains a fundamental problem in neuroscience. Here, we use biophysical neuronal network models of neocortical patches to study how the interaction between inhibition and extracellular potassium ([K (+)] o ) dynamics may contribute to different types of focal seizures. Three main types of propagated focal seizures observed in recent intracortical microelectrode recordings in humans were modelled: seizures characterized by sustained (∼30-60 Hz) gamma local field potential (LFP) oscillations; seizures where the onset in the propagated site consisted of LFP spikes that later evolved into rhythmic (∼2-3 Hz) spike-wave complexes (SWCs); and seizures where a brief stage of low-amplitude fast-oscillation (∼10-20 Hz) LFPs preceded the SWC activity. Our findings are fourfold: (1) The interaction between elevated [K (+)] o (due to abnormal potassium buffering by glial cells) and the strength of synaptic inhibition plays a predominant role in shaping these three types of seizures. (2) Strengthening of inhibition leads to the onset of sustained narrowband gamma seizures. (3) Transition into SWC seizures is obtained either by the weakening of inhibitory synapses, or by a transient strengthening followed by an inhibitory breakdown (e.g. GABA depletion). This reduction or breakdown of inhibition among fast-spiking (FS) inhibitory interneurons increases their spiking activity and leads them eventually into depolarization block. Ictal spike-wave discharges in the model are then sustained solely by pyramidal neurons. (4) FS cell dynamics are also critical for seizures where the evolution into SWC activity is preceded by low-amplitude fast oscillations. Different levels of elevated [K (+)] o were important for transitions into and maintenance of sustained gamma oscillations and SWC discharges. Overall, our modelling study predicts that the interaction between inhibitory interneurons and [K (+)] o glial buffering under abnormal conditions may explain different types of ictal transitions and dynamics during propagated seizures in human focal epilepsy.
Collapse
Affiliation(s)
- E C Y Ho
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| | - Wilson Truccolo
- Department of Neuroscience & Institute for Brain Science, Brown University, Providence, RI, USA.
- U.S. Department of Veterans Affairs, Center for Neurorestoration and Neurotechnology, Providence, RI, USA.
| |
Collapse
|
4
|
Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model. Neuron 2016; 91:739-747. [PMID: 27499081 DOI: 10.1016/j.neuron.2016.07.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/01/2016] [Accepted: 07/07/2016] [Indexed: 11/22/2022]
Abstract
Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.
Collapse
|
5
|
Examining the limits of cellular adaptation bursting mechanisms in biologically-based excitatory networks of the hippocampus. J Comput Neurosci 2015; 39:289-309. [DOI: 10.1007/s10827-015-0577-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/21/2023]
|