1
|
Wolniewicz AS, Shen Y, Li Q, Sun Y, Qiao Y, Chen Y, Hu YW, Liu J. An armoured marine reptile from the Early Triassic of South China and its phylogenetic and evolutionary implications. eLife 2023; 12:e83163. [PMID: 37551884 PMCID: PMC10499374 DOI: 10.7554/elife.83163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Abstract
Sauropterygia was a taxonomically and ecomorphologically diverse clade of Mesozoic marine reptiles spanning the Early Triassic to the Late Cretaceous. Sauropterygians are traditionally divided into two groups representing two markedly different body plans - the short-necked, durophagous Placodontia and the long-necked Eosauropterygia - whereas Saurosphargidae, a small clade of armoured marine reptiles, is generally considered as the sauropterygian sister-group. However, the early evolutionary history of sauropterygians and their phylogenetic relationships with other groups within Diapsida are still incompletely understood. Here, we report a new saurosphargid from the Early Triassic (Olenekian) of South China - Prosaurosphargis yingzishanensis gen. et sp. nov. - representing the earliest known occurrence of the clade. An updated phylogenetic analysis focussing on the interrelationships among diapsid reptiles recovers saurosphargids as nested within sauropterygians, forming a clade with eosauropterygians to the exclusion of placodonts. Furthermore, a clade comprising Eusaurosphargis and Palatodonta is recovered as the sauropterygian sister-group within Sauropterygomorpha tax. nov. The phylogenetic position of several Early and Middle Triassic sauropterygians of previously uncertain phylogenetic affinity, such as Atopodentatus, Hanosaurus, Majiashanosaurus, and Corosaurus, is also clarified, elucidating the early evolutionary assembly of the sauropterygian body plan. Finally, our phylogenetic analysis supports the placement of Testudines and Archosauromorpha within Archelosauria, a result strongly corroborated by molecular data, but only recently recovered in a phylogenetic analysis using a morphology-only dataset. Our study provides evidence for the rapid diversification of sauropterygians in the aftermath of the Permo-Triassic mass extinction event and emphasises the importance of broad taxonomic sampling in reconstructing phylogenetic relationships among extinct taxa.
Collapse
Affiliation(s)
- Andrzej S Wolniewicz
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
- Institute of Paleobiology, Polish Academy of SciencesWarsawPoland
| | - Yuefeng Shen
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
| | - Qiang Li
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
- Section Paleontology, Institute of Geosciences, University of BonnBonnGermany
| | - Yuanyuan Sun
- Chengdu Center, China Geological Survey (Southwest China Innovation Center for Geosciences)ChengduChina
| | - Yu Qiao
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
| | - Yajie Chen
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
| | - Yi-Wei Hu
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
| | - Jun Liu
- School of Resources and Environmental Engineering, Hefei University of TechnologyHefeiChina
| |
Collapse
|
2
|
Fang ZC, Li JL, Yan CB, Zou YR, Tian L, Zhao B, Benton MJ, Cheng L, Lai XL. First filter feeding in the Early Triassic: cranial morphological convergence between Hupehsuchus and baleen whales. BMC Ecol Evol 2023; 23:36. [PMID: 37550649 PMCID: PMC10408079 DOI: 10.1186/s12862-023-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Modern baleen whales are unique as large-sized filter feeders, but their roles were replicated much earlier by diverse marine reptiles of the Mesozoic. Here, we investigate convergence in skull morphology between modern baleen whales and one of the earliest marine reptiles, the basal ichthyosauromorph Hupehsuchus nanchangensis, from the Early Triassic, a time of rapid recovery of life following profound mass extinction. Two new specimens reveal the skull morphology especially in dorsal view. The snout of Hupehsuchus is highly convergent with modern baleen whales, as shown in a morphometric analysis including 130 modern aquatic amniotes. Convergences in the snout include the unfused upper jaw, specialized intermediate space in the divided premaxilla and grooves around the labial margin. Hupehsuchus had enlarged its buccal cavity to enable efficient filter feeding and probably used soft tissues like baleen to expel the water from the oral cavity. Coordinated with the rigid trunk and pachyostotic ribs suggests low speeds of aquatic locomotion, Hupehsuchus probably employed continuous ram filter feeding as in extant bowhead and right whales. The Early Triassic palaeoenvironment of a restrictive lagoon with low productivity drove Hupehsuchus to feed on zooplankton, which facilitated ecosystem recovery in the Nanzhang-Yuan'an Fauna at the beginning of the Mesozoic.
Collapse
Affiliation(s)
- Zi-Chen Fang
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China
| | - Jiang-Li Li
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Chun-Bo Yan
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China
| | - Ya-Rui Zou
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, P. R. China
| | - Bi Zhao
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Long Cheng
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China.
| | - Xu-Long Lai
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Cheng L, C. Moon B, Yan C, Motani R, Jiang D, An Z, Fang Z. The oldest record of Saurosphargiformes (Diapsida) from South China could fill an ecological gap in the Early Triassic biotic recovery. PeerJ 2022; 10:e13569. [PMID: 35855428 PMCID: PMC9288826 DOI: 10.7717/peerj.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Diversification following the end-Permian mass extinction marks the initiation of Mesozoic reptile dominance and of modern marine ecosystems, yet major clades are best known from the Middle Triassic suggesting delayed recovery, while Early Triassic localities produce poorly preserved specimens or have restricted diversity. Here we describe Pomolispondylus biani gen. et sp. nov. from the Early Triassic Nanzhang-Yuan'an Fauna of China assigned to Saurosphargiformes tax. nov., a clade known only from the Middle Triassic or later, which includes Saurosphargidae, and likely is the sister taxon to Sauropterygia. Pomolispondylus biani is allied to Saurosphargidae by the extended transverse processes of dorsal vertebrae and a low, table-like dorsal surface on the neural spine; however, it does not have the typical extensive osteoderms. Rather an unusual tuberous texture on the dorsal neural spine and rudimentary ossifications lateral to the gastralia are observed. Discovery of Pomolispondylus biani extends the known range of Saurosphargiformes and increases the taxic and ecological diversity of the Nanzhang-Yuan'an Fauna. Its small size fills a different ecological niche with respect to previously found species, but the overall food web remains notably different in structure to Middle Triassic and later ecosystems, suggesting this fauna represents a transitional stage during recovery rather than its endpoint.
Collapse
Affiliation(s)
- Long Cheng
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Benjamin C. Moon
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Chunbo Yan
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Ryosuke Motani
- University of California Davis, Department of Earth and Planetary Sciences, Davis, California, United States of America
| | - Dayong Jiang
- Peking University, Department of Geology and Geological Museum, Beijing, P. R. China
| | - Zhihui An
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Zichen Fang
- China University of Geoscience, Wuhan, P. R. China
| |
Collapse
|
4
|
Ren J, Jiang H, Xiang K, Sullivan C, He Y, Cheng L, Han F. A new basal ichthyosauromorph from the Lower Triassic (Olenekian) of Zhebao, Guangxi Autonomous Region, South China. PeerJ 2022; 10:e13209. [PMID: 35415016 PMCID: PMC8995025 DOI: 10.7717/peerj.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Here we describe a newly discovered basal ichthyosauromorph from the Lower Triassic of South China, Baisesaurus robustus gen. et sp. nov. The only known specimen of this new species was collected from the Lower Triassic (Olenekian) Luolou Formation in the Zhebao region of Baise City, on the northwest margin of the Nanpanjiang Basin, and comprises a partial skeleton including the ribs, the gastralia, a limb element, 12 centra, and seven neural arches. Comparisons to a wide variety of Early Triassic marine reptiles show Baisesaurus robustus to be a basal ichthyosauromorph based on the following features: neural arches lack transverse processes; dorsal ribs are slender, and not pachyostotic even proximally; and median gastral elements have long, sharp anterior processes. The limb element is long and robust, and is most likely to be a radius. Baisesaurus robustus is large (estimated length more than 3 m) relative to early ichthyosauromorphs previously discovered in China, and shares noteworthy morphological similarities with Utatsusaurus hataii, particularly with regard to body size and the morphology of the probable radius. Baisesaurus robustus also represents the first record of an Early Triassic ichthyosauromorph from Guangxi Autonomous Region, extending the known geographic distribution of ichthyosauromorphs in South China.
Collapse
Affiliation(s)
- Jicheng Ren
- School of Li Siguang, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| | - Haishui Jiang
- School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| | - Kunpeng Xiang
- Guizhou Geological Survey, Guiyang, Guizhou Province, China
| | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, Canada,Philip J. Currie Dinosaur Museum, Wembley, Canada
| | - Yongzhong He
- Guizhou Geological Survey, Guiyang, Guizhou Province, China
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, China
| | - Fenglu Han
- School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Scheyer TM, Oberli U, Klein N, Furrer H. A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland. SWISS JOURNAL OF PALAEONTOLOGY 2022; 141:1. [PMID: 35250843 PMCID: PMC8866377 DOI: 10.1186/s13358-022-00244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
An important component of the Alpine vertebrate record of Late Triassic age derives from the Kössen Formation, which crops out extensively in the eastern Alps. Here, we present an isolated and only partially preserved large rib, which carries an osteoderm on a low uncinate process. Osteological comparison indicates that the specimen likely belongs to a small clade of marine reptiles, Saurosphargidae. Members of the clade are restricted to the western (today Europe) and eastern margins of the Tethys (today China) and were so far known only from the Anisian stage of the Middle Triassic. The assignment of the new find to cf. Saurosphargidae, with potential affinities to the genus Largocephalosaurus from the Guanling Formation of Yunnan and Guizhou Provinces, China, would extend the occurrence of the clade about 35 million years into the Late Triassic.
Collapse
Affiliation(s)
- Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| | - Urs Oberli
- Waldgutstrasse 21, CH-9010 St.Gallen, Switzerland
| | - Nicole Klein
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| | - Heinz Furrer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| |
Collapse
|
6
|
Li Q, Liu J. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Commun Biol 2020; 3:63. [PMID: 32047220 PMCID: PMC7012838 DOI: 10.1038/s42003-020-0778-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
The timing and pattern of biotic recovery from the Permo-Triassic Mass Extinction remains elusive. Here we report new material of the Early Triassic sauropterygian Lariosaurus sanxiaensis and associated fauna from the Jialingjiang Formation in Hubei Province, South China. Phylogenetic analysis based on a novel data matrix of sauropterygians recognizes L. sanxiaensis as a basal nothosaur. Stratigraphic congruence analysis shows that the new phylogenetic consensus tree matches to the stratigraphic distribution of sauropterygians very well. The diversified reptilian fauna and inferred simple food web in the Nanzhang-Yuan'an fauna where L. sanxiaensis was discovered suggest that the Triassic biotic recovery adopted a top-down pattern, in contrast to the prevailing view. Comparison with the Middle Triassic Luoping biota from the same carbonate platform suggests that the Triassic biotic recovery is delayed and healthy ecosystems were not established until the Middle Triassic in South China.
Collapse
Affiliation(s)
- Qiang Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jun Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
- Institute of Geosciences, University of Bonn, Bonn, 53115, Germany.
- Nanjing Institute of Geology and Palaeontology, Nanjing, 210008, China.
| |
Collapse
|
7
|
Huang JD, Motani R, Jiang DY, Tintori A, Rieppel O, Zhou M, Ren XX, Zhang R. The new ichthyosauriform Chaohusaurus brevifemoralis (Reptilia, Ichthyosauromorpha) from Majiashan, Chaohu, Anhui Province, China. PeerJ 2019; 7:e7561. [PMID: 31565558 PMCID: PMC6741286 DOI: 10.7717/peerj.7561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/27/2019] [Indexed: 11/20/2022] Open
Abstract
A new species of ichthyosauriform is recognized based on 20 specimens, including nearly complete skeletons, and named Chaohusaurus brevifemoralis. A part of the specimens was previously identified as Chaohusaurus chaoxianensis and is herein reassigned to the new species. The new species differs from existing species of Chaohusaurus in a suite of features, such as the bifurcation of the caudal peak neural spine and a short femur relative to trunk length. The specimens include both complete and partially disarticulated skulls, allowing rigorous scrutiny of cranial sutures. For example, the squamosal does not participate in the margin of the upper temporal fenestra despite previous interpretations. Also, the frontal unequivocally forms a part of the anterior margin of the upper temporal fenestra, forming the most medial part of the anterior terrace. The skull of the holotype largely retains three-dimensionality with the scleral rings approximately in situ, revealing that the eyeball was uncovered in two different directions, that is, laterally and slightly dorsally through the main part of the orbit, and dorsally through the medial extension of the orbit into the skull roof. This skull construction is likely a basal feature of Ichthyosauromorpha. Phylogenetic analyses place the new species as a sister taxon of Chaohusaurus chaoxianensis.
Collapse
Affiliation(s)
- Jian-Dong Huang
- Department of Research, Anhui Geological Museum, Hefei, Anhui, People's Republic of China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, CA, USA
| | - Da-Yong Jiang
- Department of Geology, Peking University, Beijing, People's Republic of China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italia
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL, USA
| | - Min Zhou
- Department of Geology, Peking University, Beijing, People's Republic of China
| | - Xin-Xin Ren
- Department of Research, Anhui Geological Museum, Hefei, Anhui, People's Republic of China
| | - Rong Zhang
- Department of Research, Anhui Geological Museum, Hefei, Anhui, People's Republic of China
| |
Collapse
|
8
|
Cheng L, Motani R, Jiang DY, Yan CB, Tintori A, Rieppel O. Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles indicating non-visual prey detection. Sci Rep 2019; 9:152. [PMID: 30679783 PMCID: PMC6345829 DOI: 10.1038/s41598-018-37754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
The end-Permian mass extinction (EPME) led to reorganization of marine predatory communities, through introduction of air-breathing top predators, such as marine reptiles. We report two new specimens of one such marine reptile, Eretmorhipis carrolldongi, from the Lower Triassic of Hubei, China, revealing superficial convergence with the modern duckbilled platypus (Ornithorhynchus anatinus), a monotreme mammal. Apparent similarities include exceptionally small eyes relative to the body, snout ending with crura with a large internasal space, housing a bone reminiscent of os paradoxum, a mysterious bone of platypus, and external grooves along the crura. The specimens also have a rigid body with triangular bony blades protruding from the back. The small eyes likely played reduced roles during foraging in this animal, as with extant amniotes (group containing mammals and reptiles) with similarly small eyes. Mechanoreceptors on the bill of the animal were probably used for prey detection instead. The specimens represent the oldest record of amniotes with extremely reduced visual capacity, utilizing non-visual cues for prey detection. The discovery reveals that the ecological diversity of marine predators was already high in the late Early Triassic, and challenges the traditional view that the ecological diversification of marine reptiles was delayed following the EPME.
Collapse
Affiliation(s)
- Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, 430023, P. R. China.
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA.
| | - Da-Yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, MOE, Department of Geology and Geological Museum, Peking University, Yiheyuan Str. 5, Beijing, 100871, P. R. China
| | - Chun-Bo Yan
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, 430023, P. R. China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli, 34-20133, Milano, Italy
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL, 60605-2496, USA
| |
Collapse
|
9
|
Jiang DY, Motani R, Huang JD, Tintori A, Hu YC, Rieppel O, Fraser NC, Ji C, Kelley NP, Fu WL, Zhang R. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Sci Rep 2016; 6:26232. [PMID: 27211319 PMCID: PMC4876504 DOI: 10.1038/srep26232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/29/2016] [Indexed: 11/30/2022] Open
Abstract
Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation.
Collapse
Affiliation(s)
- Da-Yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education; Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing 100871, People's Republic of China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, United States of America
| | - Jian-Dong Huang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34-20133 Milano, Italy
| | - Yuan-Chao Hu
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL 60605-2496, United States of America
| | - Nicholas C Fraser
- National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, United Kingdom
| | - Cheng Ji
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
| | - Neil P Kelley
- Smithsonian Institution, National Museum of Natural History, Washington, DC 20560-0121, United States of America
| | - Wan-Lu Fu
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education; Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing 100871, People's Republic of China
| | - Rong Zhang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
10
|
Chen XH, Motani R, Cheng L, Jiang DY, Rieppel O. A New Specimen of Carroll's Mystery Hupehsuchian from the Lower Triassic of China. PLoS One 2015; 10:e0126024. [PMID: 26017585 PMCID: PMC4446317 DOI: 10.1371/journal.pone.0126024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
A new specimen of an enigmatic hupehsuchian genus is reported. The genus was first recognized by Robert L. Carroll and Zhi-ming Dong in 1991, who refrained from naming it because of the poor quality of the only specimen known at the time. After more than two decades, we finally report a second specimen of this genus, which remained unprepared until recently. The new specimen preserves most of the skeleton except the skull, allowing us to erect a new genus and species, Eretmorhipis carrolldongi. The new species shares many characters with Parahupehsuchus longus, including the strange axial skeleton that forms a bony body tube. However, the body tube is short in the new species, being limited to the pectoral region. The vertebral count and limb morphology considerably differ between the new species and P. longus. The forelimb of E. carrolldongi is markedly larger than its hind limb as in Hupehsuchus nanchangensis but unlike in P. longus. The new species is unique among hupehsuchians in a list of features. It has manual and pedal digits that spread radially, forming manus and pes that are almost as wide as long. The third-layer elements of the dermal armor are unusually large, spanning four vertebral segments, yet there are substantial gaps among them. With the addition of the unique paddle, it is now clear that Hupehsuchia had diverse forelimb morphologies spanning from paddles to flippers, unlike ichthyopterygians that were taxonomically more diverse yet only had flippers.
Collapse
Affiliation(s)
- Xiao-hong Chen
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, MOE, Department of Geology and Geological Museum, Peking University, Beijing, P. R. China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Motani R, Chen XH, Jiang DY, Cheng L, Tintori A, Rieppel O. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds. Sci Rep 2015; 5:8900. [PMID: 25754468 PMCID: PMC4354009 DOI: 10.1038/srep08900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/02/2015] [Indexed: 12/04/2022] Open
Abstract
Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, U.S.A
| | - Xiao-hong Chen
- Wuhan Centre of China Geological Survey, Wuhan, Hubei 430023, P. R. China
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education; Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing 100871, P.R. China
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei 430023, P. R. China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34-20133 Milano, Italy
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago. IL 60605-2496, U.S.A
| |
Collapse
|
12
|
Chen XH, Motani R, Cheng L, Jiang DY, Rieppel O. A small short-necked hupehsuchian from the lower Triassic of Hubei Province, China. PLoS One 2014; 9:e115244. [PMID: 25517113 PMCID: PMC4269458 DOI: 10.1371/journal.pone.0115244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/18/2014] [Indexed: 11/22/2022] Open
Abstract
Hupehsuchia is a group of enigmatic Triassic marine reptiles that is known exclusively from two counties in Hubei Province, China. One of the common features of the group was a modestly long neck with nine to ten cervical vertebrae. We report a new species of Hupehsuchia, Eohupehsuchus brevicollis gen. et sp. nov., which for the first time shows a short neck in this group, with six cervicals. The configuration of the skull roof in Eohupehsuchus is also unique among Hupehsuchia, with narrow frontals and posteriorly shifted parietals, warranting recognition of a new species. The taxon superficially resembles Nanchangosaurus in retaining hupehsuchian plesiomorphies, such as low neural spines and small body size. However, its limbs are well-developed, unlike in Nanchangosaurus, although the latter genus is marginally larger in body length. Thus, the individual is unlikely to be immature. Also, Eohupehsuchus shares a suite of synapomorphies with Hupehsuchus, including the second and third layers of dermal ossicles above the dorsal neural spines. A phylogenetic analysis suggests that the new species is not the most basal hupehsuchian despite its short neck, and instead forms the sister taxon of Hupehsuchidae. Until recently, Hupehsuchia contained only two monotypic genera. Now there are at least four genera among Hupehsuchia, and the undescribed diversity is even higher. The left forelimb of the only specimen is incomplete, ending with broken phalanges distally. The breakage could only have occurred pre-burial. The individual may have been attacked by a predator and escaped, given that scavenging is unlikely.
Collapse
Affiliation(s)
- Xiao-hong Chen
- Wuhan Centre of China Geological Survey, Wuhan, Hubei 430023, P. R. China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California 95616, United States of America
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei 430023, P. R. China
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, MOE, Department of Geology and Geological Museum, Peking University, Yiheyuan Str. 5, Beijing 100871, P.R. China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, Illinois 60605–2496, United States of America
| |
Collapse
|
13
|
Chen XH, Motani R, Cheng L, Jiang DY, Rieppel O. The enigmatic marine reptile nanchangosaurus from the lower triassic of Hubei, China and the phylogenetic affinities of Hupehsuchia. PLoS One 2014; 9:e102361. [PMID: 25014493 PMCID: PMC4094528 DOI: 10.1371/journal.pone.0102361] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/18/2014] [Indexed: 11/18/2022] Open
Abstract
The study of the holotype and of a new specimen of Nanchangosaurus suni (Reptilia; Diapsida; Hupehsuchia) revealed a suite of hitherto unrecognized characters. For example, Nanchangosaurus has bipartite neural spines and its vertebral count is nearly identical to that of Hupehsuchus. It differs from the latter in having poorly developed forelimbs despite the advanced ossification in the rest of the skeleton. Other differences all pertain to hupehsuchian plesiomorphies retained in Nanchangosaurus, such as low neural spines. The relationship of Hupehsuchia within Diapsida was analyzed based on a data matrix containing 41 taxa coded for 213 characters, of which 18 were identified as aquatic adaptations from functional inferences. These aquatic adaptations may be vulnerable to the argumentation of character homology because expectation for homoplasy is high. There is an apparent incongruence between phylogenetic signals from aquatic adaptations and the rest of the data, with aquatic adaptations favoring all marine reptiles but Helveticosaurus to form a super-clade. However, this super-clade does not obtain when aquatic adaptations were deleted, whereas individual marine reptile clades are all derived without them. We examined all possible combinations of the 18 aquatic adaptations (n = 262143) and found that four lineages of marine reptiles are recognized almost regardless of which of these features were included in the analysis: Hupehsuchia-Ichthyopterygia clade, Sauropterygia-Saurosphargidae clade, Thalattosauria, and Helveticosaurus. The interrelationships among these four depended on the combination of aquatic adaptations to be included, i.e., assumed to be homologous a priori by bypassing character argumentation. Hupehsuchia always appeared as the sister taxon of Ichthyopterygia.
Collapse
Affiliation(s)
- Xiao-hong Chen
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California Davis, Davis, California, United States of America
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, P. R. China
| | - Da-yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, MOE, Department of Geology and Geological Museum, Peking University, Beijing, P.R. China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, Illinois, United States of America
| |
Collapse
|