1
|
Lee JJ, Kang HJ, Kim D, Lim SO, Kim SS, Kim G, Kim S, Lee JK, Kim J. expHRD: an individualized, transcriptome-based prediction model for homologous recombination deficiency assessment in cancer. BMC Bioinformatics 2024; 25:236. [PMID: 38997639 PMCID: PMC11241885 DOI: 10.1186/s12859-024-05854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) stands as a clinical indicator for discerning responsive outcomes to platinum-based chemotherapy and poly ADP-ribose polymerase (PARP) inhibitors. One of the conventional approaches to HRD prognostication has generally centered on identifying deleterious mutations within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limitations in scenarios involving tumors bereft of corresponding germline data. Although several RNA-seq-based HRD prediction algorithms have been developed, they mainly support cohort-wise classification, thereby yielding HRD status without furnishing an analogous quantitative metric akin to scarHRD. This study introduces the expHRD method, which operates as a novel transcriptome-based framework tailored to n-of-1-style HRD scoring. RESULTS The prediction model has been established using the elastic net regression method in the Cancer Genome Atlas (TCGA) pan-cancer training set. The bootstrap technique derived the HRD geneset for applying the expHRD calculation. The expHRD demonstrated a notable correlation with scarHRD and superior performance in predicting HRD-high samples. We also performed intra- and extra-cohort evaluations for clinical feasibility in the TCGA-OV and the Genomic Data Commons (GDC) ovarian cancer cohort, respectively. The innovative web service designed for ease of use is poised to extend the realms of HRD prediction across diverse malignancies, with ovarian cancer standing as an emblematic example. CONCLUSIONS Our novel approach leverages the transcriptome data, enabling the prediction of HRD status with remarkable precision. This innovative method addresses the challenges associated with limited available data, opening new avenues for utilizing transcriptomics to inform clinical decisions.
Collapse
Affiliation(s)
- Jae Jun Lee
- Computational Cancer Genomics Groups, Spanish Cancer Research Center (CNIO), Madrid, Spain
| | - Hyun Ju Kang
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
| | - Donghyo Kim
- Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Si On Lim
- Department of Biomedical Sciences, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea
| | - Stephanie S Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Gahyun Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Sanguk Kim
- Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Jin-Ku Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital (SNUBH), Seongnam, Gyeonggi-do, 13620, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
2
|
Zouzoulas D, Tsolakidis D, Tzitzis P, Chatzistamatiou K, Theodoulidis V, Sofianou I, Grimbizis G, Timotheadou E. CA-125 KELIM as an Alternative Predictive Tool to Identify Which Patients Can Benefit from PARPi in High-Grade Serous Advanced Ovarian Cancer: A Retrospective Pilot Diagnostic Accuracy Study. Int J Mol Sci 2024; 25:5230. [PMID: 38791269 PMCID: PMC11121425 DOI: 10.3390/ijms25105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
BRCA mutation and homologous recombination deficiency (HRD) are the criteria for the administration of PARP inhibitor (PARPi) maintenance therapy. It is known that PARPi efficacy is related to platinum sensitivity and that the latter can be demonstrated from the CA-125 elimination rate constant (KELIM). This study aims to investigate if KELIM can be another tool in the identification of patients that could be benefit from PARPi therapy. Retrospective analysis of patients with high-grade serous advanced ovarian cancer that underwent cytoreduction and was further tested for HRD status. The HRD status was tested either by myChoice HRD CDx assay or by RediScore assay. KELIM score was measured in both neoadjuvant and adjuvant settings with the online tool biomarker-kinetics.org. A total of 39 patients had available data for estimating both HRD status and KELIM score. When assuming KELIM as a binary index test with the value 1 as the cut-off point, the sensitivity was 0.86, 95% CI (0.64-0.97) and the specificity was 0.83, 95% CI (0.59-0.96). On the other hand, when assuming KELIM as a continuous index test, the area under the curve (AUC) was 81% and the optimal threshold, using the Youden index, was identified as 1.03 with a sensitivity of 85.7% and a specificity of 83.3%. KELIM score seems to be a new, cheaper, and faster tool to identify patients that can benefit from PARPi maintenance therapy.
Collapse
Affiliation(s)
- Dimitrios Zouzoulas
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Dimitrios Tsolakidis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Panagiotis Tzitzis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Kimon Chatzistamatiou
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Vasilis Theodoulidis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Iliana Sofianou
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Grigoris Grimbizis
- 1st Department of Obstetrics & Gynecology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - Eleni Timotheadou
- Department of Oncology, “Papageorgiou” Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| |
Collapse
|
3
|
Park W, O'Connor CA, Bandlamudi C, Forman D, Chou JF, Umeda S, Reyngold M, Varghese AM, Keane F, Balogun F, Yu KH, Kelsen DP, Crane C, Capanu M, Iacobuzio-Donahue C, O'Reilly EM. Clinico-genomic Characterization of ATM and HRD in Pancreas Cancer: Application for Practice. Clin Cancer Res 2022; 28:4782-4792. [PMID: 36040493 PMCID: PMC9634347 DOI: 10.1158/1078-0432.ccr-22-1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Characterizing germline and somatic ATM variants (gATMm, sATMm) zygosity and their contribution to homologous recombination deficiency (HRD) is important for therapeutic strategy in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Clinico-genomic data for patients with PDAC and other cancers with ATM variants were abstracted. Genomic instability scores (GIS) were derived from ATM-mutant cancers and overall survival (OS) was evaluated. RESULTS Forty-six patients had PDAC and pathogenic ATM variants including 24 (52%) stage III/IV: gATMm (N = 24), and sATMm (N = 22). Twenty-seven (59%) had biallelic, 15 (33%) monoallelic, and 4 indeterminate (8%) variants. Median OS for advanced-stage cohort at diagnosis (N = 24) was 19.7 months [95% confidence interval (CI): 12.3-not reached (NR)], 27.1 months (95% CI: 22.7-NR) for gATMm (n = 11), and 12.3 months for sATMm (n = 13; 95% CI: 11.9-NR; P = 0.025). GIS was computed for 33 patients with PDAC and compared with other ATM-mutant cancers enriched for HRD. The median was lower (median, 11; range, 2-29) relative to breast (18, 3-55) or ovarian (25, 3-56) ATM-mutant cancers (P < 0.001 and P = 0.003, respectively). Interestingly, biallelic pathogenic ATM variants were mutually exclusive with TP53. Other canonical driver gene (KRAS, CDKN2A, SMAD4) variants were less frequent in ATM-mutant PDAC. CONCLUSIONS ATM variants in PDAC represent a distinct biologic group and appear to have favorable OS. Nonetheless, pathogenic ATM variants do not confer an HRD signature in PDAC and ATM should be considered as a non-core HR gene in this disease.
Collapse
Affiliation(s)
- Wungki Park
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- Parker Institute of Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine A O'Connor
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chaitanya Bandlamudi
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniella Forman
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shigeaki Umeda
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Marsha Reyngold
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M Varghese
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fiyinfolu Balogun
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H Yu
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David P Kelsen
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher Crane
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Yang H, Zhang W, Ding J, Hu J, Sun Y, Peng W, Chu Y, Xie L, Mei Z, Shao Z, Xiao Y. A novel genomic instability-derived lncRNA signature to predict prognosis and immune characteristics of pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:970588. [PMID: 36148233 PMCID: PMC9486402 DOI: 10.3389/fimmu.2022.970588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor of the digestive system. Its grim prognosis is mainly attributed to the lack of means for early diagnosis and poor response to treatments. Genomic instability is shown to be an important cancer feature and prognostic factor, and its pattern and extent may be associated with poor treatment outcomes in PDAC. Recently, it has been reported that long non-coding RNAs (lncRNAs) play a key role in maintaining genomic instability. However, the identification and clinical significance of genomic instability-related lncRNAs in PDAC have not been fully elucidated. Methods Genomic instability-derived lncRNA signature (GILncSig) was constructed based on the results of multiple regression analysis combined with genomic instability-associated lncRNAs and its predictive power was verified by the Kaplan-Meier method. And real-time quantitative polymerase chain reaction (qRT-PCR) was used for simple validation in human cancers and their adjacent non-cancerous tissues. In addition, the correlation between GILncSig and tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) was investigated by Pearson correlation analysis. Results The computational framework identified 206 lncRNAs associated with genomic instability in PDAC and was subsequently used to construct a genome instability-derived five lncRNA-based gene signature. Afterwards, we successfully validated its prognostic capacity in The Cancer Genome Atlas (TCGA) cohort. In addition, via careful examination of the transcriptome expression profile of PDAC patients, we discovered that GILncSig is associated with EMT and an adaptive immunity deficient immune profile within TME. Conclusions Our study established a genomic instability-associated lncRNAs-derived model (GILncSig) for prognosis prediction in patients with PDAC, and revealed the potential functional regulatory role of GILncSig.
Collapse
Affiliation(s)
- Huijie Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiwen Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Ding
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| |
Collapse
|
5
|
Zhu X, Yu R, Peng Y, Miao Y, Jiang K, Li Q. Identification of genomic instability related lncRNA signature with prognostic value and its role in cancer immunotherapy in pancreatic cancer. Front Genet 2022; 13:990661. [PMID: 36118868 PMCID: PMC9481284 DOI: 10.3389/fgene.2022.990661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Increasing evidence suggested the critical roles of lncRNAs in the maintenance of genomic stability. However, the identification of genomic instability-related lncRNA signature (GILncSig) and its role in pancreatic cancer (PC) remains largely unexplored. Methods: In the present study, a systematic analysis of lncRNA expression profiles and somatic mutation profiles was performed in PC patients from The Cancer Genome Atlas (TCGA). We then develop a risk score model to describe the characteristics of the model and verify its prediction accuracy. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and CIBERSORT analysis were employed to reveal the correlation between tumor immune microenvironment, immune infiltration, immune checkpoint blockade (ICB) therapy, and GILncSig in PC. Results: We identified 206 GILnc, of which five were screened to develop a prognostic GInLncSig model. Multivariate Cox regression analysis and stratified analysis revealed that the prognostic value of the GILncSig was independent of other clinical variables. Receiver operating characteristic (ROC) analysis suggested that GILncSig is better than the existing lncRNA-related signatures in predicting survival. Additionally, the prognostic performance of the GILncSig was also found to be favorable in patients carrying wild-type KRAS, TP53, and SMAD4. Besides, a nomogram exhibited appreciable reliability for clinical application in predicting the prognosis of patients. Finally, the relationship between the GInLncSig model and the immune landscape in PC reflected its application value in clinical immunotherapy. Conclusion: In summary, the GILncSig identified by us may serve as novel prognostic biomarkers, and could have a crucial role in immunotherapy decisions for PC patients.
Collapse
Affiliation(s)
- Xiaole Zhu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Yu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunpeng Peng
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kuirong Jiang
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Kuirong Jiang, ; Qiang Li,
| | - Qiang Li
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Pancreas Institute, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Kuirong Jiang, ; Qiang Li,
| |
Collapse
|
6
|
Kwon M, Kim G, Kim R, Kim KT, Kim ST, Smith S, Mortimer PGS, Hong JY, Loembé AB, Irurzun-Arana I, Koulai L, Kim KM, Kang WK, Dean E, Park WY, Lee J. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer 2022; 10:jitc-2022-005041. [PMID: 35790315 PMCID: PMC9258491 DOI: 10.1136/jitc-2022-005041] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Targeting the DNA damage repair (DDR) pathways is an attractive strategy for boosting cancer immunotherapy. Ceralasertib (AZD6738) is an oral kinase inhibitor of ataxia telangiectasia and Rad3 related protein, which is a master regulator of DDR. We conducted a phase II trial of ceralasertib plus durvalumab in patients with previously treated advanced gastric cancer (AGC) to demonstrate the safety, tolerability, and clinical activity of the combination. METHODS This phase II, open-label, single-center, non-randomized study was designed to evaluate the efficacy and safety of ceralasertib in combination with durvalumab in patients with AGC. The study drug regimen was ceralasertib (240 mg two times a day) days 15-28 in a 28-day cycle in combination with durvalumab (1500 mg) at day 1 every 4 weeks. The primary end point was overall response rate (ORR) by Response Evaluation Criteria in Solid Tumors (V.1.1). Exploratory biomarker analysis was performed using fresh tumor biopsies in all enrolled patients. RESULTS Among 31 patients, the ORR, disease control rate, median progression-free survival (PFS), and overall survival were 22.6% (95% CI 9.6% to 41.1%), 58.1% (95% CI 39.1% to 75.5%), 3.0 (95% CI 2.1 to 3.9) months, and 6.7 (95% CI 3.8 to 9.6) months, respectively. Common adverse events were manageable with dose modification. A subgroup of patients with a loss of ataxia telangiectasia mutated (ATM) expression and/or high proportion of mutational signature attributable to homologous repair deficiency (sig. HRD) demonstrated a significantly longer PFS than those with intact ATM and low sig. HRD (5.60 vs 1.65 months; HR 0.13, 95% CI 0.045 to 0.39; long-rank p<0.001). During the study treatment, upregulation of the innate immune response by cytosolic DNA, activation of intratumoral lymphocytes, and expansion of circulating tumor-reactive CD8 +T cell clones were identified in responders. Enrichment of the tumor vasculature signature was associated with treatment resistance. CONCLUSIONS Ceralasertib plus durvalumab has promising antitumor activity, with durable responses in patients with refractory AGC. Thus, a biomarker-driven trial is required. TRIAL REGISTRATION NCT03780608.
Collapse
Affiliation(s)
- Minsuk Kwon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Hematology-Oncology, Ajou University, Suwon, Republic of Korea
| | - Gahyun Kim
- Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ryul Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu-Tae Kim
- Department of Physiology, Ajou University, Suwon, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Gangnam-gu, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Wang Y, Li N, Ren Y, Zhao J. Association of BRCA1/2 mutations with prognosis and surgical cytoreduction outcomes in ovarian cancer patients: An updated meta-analysis. J Obstet Gynaecol Res 2022; 48:2270-2284. [PMID: 35698734 DOI: 10.1111/jog.15326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
AIM This meta-analysis was conducted to evaluate the impact of BRCA mutations on survival outcomes of ovarian cancer patients and assess whether the BRCA status was an independent predictor of complete cytoreduction. METHODS We searched the PubMed, Cochrane, EMBASE, Scopus, Web of Science, and Google Scholar databases for studies that evaluated the associations among BRCA mutations, ovarian cancer survival and surgical cytoreduction before August 2021 based on specific inclusion and exclusion criteria. RESULTS We identified 61 articles that compared the clinical features, survival outcomes, and optimal surgical cytoreduction rates between BRCA-positive patients and BRCA-negative patients. The results showed that BRCA mutation carriers were diagnosed with ovarian cancer at a younger age than the age at which nonmutation carriers were diagnosed. In addition, BRCA mutation carriers were more likely to be in the International Federation of Gynecology and Obstetrics (FIGO) stage III-IV, and the pathological grade was commonly grade 3. The pathological type of BRCA mutation carriers was more likely to be high-grade serous carcinoma. Patients with BRCA mutations had higher response rates to platinum-based chemotherapy than the noncarriers. However, patients in both groups had equivalent rates of surgical cytoreduction, and BRCA-positive patients had longer overall survival (OS) time (HR = 0.65; 95% confidence interval [CI]: 0.59, 0.73; p < 0.001) and longer progression-free survival (PFS) (HR = 0.72; 95% CI: 0.63, 0.82; p < 0.001). CONCLUSION BRCA mutations appear to be associated with improved OS and PFS in patients with ovarian cancer. However, we did not find any difference in the surgical resection rate between participants in the two groups.
Collapse
Affiliation(s)
- Yazhuo Wang
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, China
| | - Yanan Ren
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, China
| | - Jing Zhao
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
8
|
Medium levels of transcription and replication related chromosomal instability are associated with poor clinical outcome. Sci Rep 2021; 11:23429. [PMID: 34873180 PMCID: PMC8648741 DOI: 10.1038/s41598-021-02787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Genomic instability (GI) influences treatment efficacy and resistance, and an accurate measure of it is lacking. Current measures of GI are based on counts of specific structural variation (SV) and mutational signatures. Here, we present a holistic approach to measuring GI based on the quantification of the steady-state equilibrium between DNA damage and repair as assessed by the residual breakpoints (BP) remaining after repair, irrespective of SV type. We use the notion of Hscore, a BP "hotspotness" magnitude scale, to measure the propensity of genomic structural or functional DNA elements to break more than expected by chance. We then derived new measures of transcription- and replication-associated GI that we call iTRAC (transcription-associated chromosomal instability index) and iRACIN (replication-associated chromosomal instability index). We show that iTRAC and iRACIN are predictive of metastatic relapse in Leiomyosarcoma (LMS) and that they may be combined to form a new classifier called MAGIC (mixed transcription- and replication-associated genomic instability classifier). MAGIC outperforms the gold standards FNCLCC and CINSARC in stratifying metastatic risk in LMS. Furthermore, iTRAC stratifies chemotherapeutic response in LMS. We finally show that this approach is applicable to other cancers.
Collapse
|
9
|
Guo CR, Mao Y, Jiang F, Juan CX, Zhou GP, Li N. Computational detection of a genome instability-derived lncRNA signature for predicting the clinical outcome of lung adenocarcinoma. Cancer Med 2021; 11:864-879. [PMID: 34866362 PMCID: PMC8817082 DOI: 10.1002/cam4.4471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/30/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022] Open
Abstract
Evidence has been emerging of the importance of long non-coding RNAs (lncRNAs) in genome instability. However, no study has established how to classify such lncRNAs linked to genomic instability, and whether that connection poses a therapeutic significance. Here, we established a computational frame derived from mutator hypothesis by combining profiles of lncRNA expression and those of somatic mutations in a tumor genome, and identified 185 candidate lncRNAs associated with genomic instability in lung adenocarcinoma (LUAD). Through further studies, we established a six lncRNA-based signature, which assigned patients to the high- and low-risk groups with different prognosis. Further validation of this signature was performed in a number of separate cohorts of LUAD patients. In addition, the signature was found closely linked to genomic mutation rates in patients, indicating it could be a useful way to quantify genomic instability. In summary, this research offered a novel method by through which more studies may explore the function of lncRNAs and presented a possible new way for detecting biomarkers associated with genomic instability in cancers.
Collapse
Affiliation(s)
- Chen-Rui Guo
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Mao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Neonatology,, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chen-Xia Juan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Li
- Department of Abdominal Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Xu M, Ma T, Shi S, Xing J, Xi Y. Development and Validation of a Mutational Burden-Associated LncRNA Signature for Improving the Clinical Outcome of Hepatocellular Carcinoma. Life (Basel) 2021; 11:life11121312. [PMID: 34947843 PMCID: PMC8706720 DOI: 10.3390/life11121312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) modulate numerous cellular processes, including DNA damage repair. Here, we investigated the clinical importance of lncRNAs associated with mutational burden in hepatocellular carcinoma (HCC). Methods: Prognosis-related lncRNAs associated with mutational burden were screened and determined to score the mutational burden-associated lncRNA signature (MbLncSig) from TCGA. Prognostic values and predictive performance of the MbLncSig score were analysed. Results: Four mutational burden-associated lncRNAs (AC010643.1, AC116351.1, LUCAT1 and MIR210HG) were identified for establishing the MbLncSig score. The MbLncSig score served as an independent risk factor for HCC prognosis in different subgroup patients. The predictive performance of one-year and three-year OS was 0.739 and 0.689 in the entire cohort, respectively. Moreover, the MbLncSig score can further stratify the patient survival in those with TP53 wild type or mutation. Conclusions: This study identified a four-lncRNA signature (the MbLncSig score) which could predict survival in HCC patient with/without TP53 mutation.
Collapse
Affiliation(s)
| | | | | | | | - Yang Xi
- Correspondence: ; Tel.: +86-574-87600754
| |
Collapse
|
11
|
Weberpals JI, Pugh TJ, Marco-Casanova P, Goss GD, Andrews Wright N, Rath P, Torchia J, Fortuna A, Jones GN, Roudier MP, Bernard L, Lo B, Torti D, Leon A, Marsh K, Hodgson D, Duciaume M, Howat WJ, Lukashchuk N, Lazic SE, Whelan D, Sekhon HS. Tumor genomic, transcriptomic, and immune profiling characterizes differential response to first-line platinum chemotherapy in high grade serous ovarian cancer. Cancer Med 2021; 10:3045-3058. [PMID: 33811746 PMCID: PMC8085970 DOI: 10.1002/cam4.3831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background In high grade serous ovarian cancer (HGSOC), there is a spectrum of sensitivity to first line platinum‐based chemotherapy. This study molecularly characterizes HGSOC patients from two distinct groups of chemotherapy responders (good vs. poor). Methods Following primary debulking surgery and intravenous carboplatin/paclitaxel, women with stage III–IV HGSOC were grouped by response. Patients in the good response (GR) and poor response (PR) groups respectively had a progression‐free intervals (PFI) of ≥12 and ≤6 months. Analysis of surgical specimens interrogated genomic and immunologic features using whole exome sequencing. RNA‐sequencing detected gene expression outliers and inference of immune infiltrate, with validation by targeted NanoString arrays. PD‐L1 expression was scored by immunohistochemistry (IHC). Results A total of 39 patient samples were analyzed (GR = 20; PR = 19). Median PFI for GR and PR patient cohorts was 32 and 3 months, respectively. GR tumors were enriched for loss‐of‐function BRCA2 mutations and had a significantly higher nonsynonymous mutation rate compared to PR tumors (p = 0.001). Samples from the PR cohort were characterized by mutations in MGA and RAD51B and trended towards a greater rate of amplification of PIK3CA, MECOM, and ATR in comparison to GR tumors. Gene expression analysis by NanoString correlated increased PARP4 with PR and increased PD‐L1 and EMSY with GR. There was greater tumor immune cell infiltration and higher immune cell PD‐L1 protein expression in the GR group. Conclusions Our research demonstrates that tumors from HGSOC patients responding poorly to first line chemotherapy have a distinct molecular profile characterized by actionable drug targets including PARP4.
Collapse
Affiliation(s)
- Johanne I Weberpals
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Glenwood D Goss
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Medicine, Division of Medical Oncology, University of Ottawa, Ottawa, ON, Canada
| | | | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | - Gemma N Jones
- Translational Medicine, R&D Oncology, AstraZeneca, Cambridge, UK
| | | | - Laurence Bernard
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alberto Leon
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Darren Hodgson
- Translational Medicine, R&D Oncology, AstraZeneca, Cambridge, UK
| | - Marc Duciaume
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William J Howat
- Translational Medicine, R&D Oncology, AstraZeneca, Cambridge, UK
| | | | - Stanley E Lazic
- Quantitative Biology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Doreen Whelan
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Harmanjatinder S Sekhon
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 2020; 31:1606-1622. [PMID: 33004253 DOI: 10.1016/j.annonc.2020.08.2102] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Homologous recombination repair deficiency (HRD) is a frequent feature of high-grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise PARPi use in HGSC but methodologies are diverse and clinical application remains controversial. MATERIALS AND METHODS To define best practice for HRD testing in HGSC the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project that incorporated a systematic review approach. The main aims were to (i) define the term 'HRD test'; (ii) provide an overview of the biological rationale and the level of evidence supporting currently available HRD tests; (iii) provide recommendations on the clinical utility of HRD tests in clinical management of HGSC. RESULTS A broad range of repair genes, genomic scars, mutational signatures and functional assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in ovarian cancer is best assessed, not in terms of biological HRD status per se, but in terms of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two commercially available assays that also incorporate genomic instability for identifying subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit with some variation by clinical scenario. These tests can be used to inform treatment selection and scheduling but their use is limited by a failure to consistently identify a subgroup of patients who derive no benefit from PARPis in most studies. Existing tests lack negative predictive value and inadequately address the complex and dynamic nature of the HRD phenotype. CONCLUSIONS Currently available HRD tests are useful for predicting likely magnitude of benefit from PARPis but better biomarkers are urgently needed to better identify current homologous recombination proficiency status and stratify HGSC management.
Collapse
Affiliation(s)
- R E Miller
- Department of Medical Oncology, University College London, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - A Leary
- Department of Medicine and INSERM U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Paris, France
| | - C L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - V Serra
- Experimental Therapeutics Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - D K Chang
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - J Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J A Ledermann
- UCL Cancer Institute, University College London, London, UK
| | - S Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK; MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - I Ray-Coquard
- Centre Leon Berard, Lyon, France; University Claude Bernard Groupe University of Lyon, France
| | - S P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - X Matias-Guiu
- Departments of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, Universities of Lleida and Barcelona, Irblleida, Idibell, Ciberonc, Barcelona, Spain
| | - E M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - L R Yates
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge; Guy's Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Wan YL, Sapra P, Bolton J, Chua JX, Durrant LG, Stern PL. Combination Treatment with an Antibody-Drug Conjugate (A1mcMMAF) Targeting the Oncofetal Glycoprotein 5T4 and Carboplatin Improves Survival in a Xenograft Model of Ovarian Cancer. Target Oncol 2020; 14:465-477. [PMID: 31332693 PMCID: PMC6684567 DOI: 10.1007/s11523-019-00650-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Recurrence occurs in over 75% of women with epithelial ovarian cancer despite optimal treatment. Selectively killing tumour cells thought to initiate relapse using an antibody–drug conjugate could prolong progression-free survival and offer an improved side-effect profile. A1mcMMAF is an antibody–drug conjugate designed to target cells expressing the tumour-associated antigen 5T4. It has shown to be efficacious in various cell line models and have a greater impact when combined with routine chemotherapeutic regimes. Objectives This study aims to explore the potential for the use of a 5T4 antibody–drug conjugate in women with ovarian cancer both as a monotherapy and in combination with platinum-based chemotherapy. Methods Immunohistochemical analysis was used to assess 5T4 expression in tumours from patients with ovarian cancer. Effectiveness of A1mcMMAF therapy as a single agent and in combination with carboplatin was assessed in vitro in the ovarian cancer cell line SKOV3 and confirmed in vivo using a serial bioluminescence assay in a SKOV3 xenograft model of ovarian cancer. Results 5T4 is confirmed as suitably expressed in epithelial ovarian cancers prior to adjuvant therapy and is an independent predictor of poor survival. A1mcMMAF showed specific activity, both in vitro and in vivo, against SKOV3 ovarian cancer cells. When used in combination with carboplatin, in vivo tumour growth was inhibited resulting in prolonged survival in a SKOV3 xenograft model. Conclusions These data support further investigation of A1mcMMAF in combination with platinum-based chemotherapy in ovarian and other cancer treatments. Electronic supplementary material The online version of this article (10.1007/s11523-019-00650-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Y Louise Wan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., 401 N. Middletown Road, Pearl River, NY, 10954, USA
| | - James Bolton
- Department of Histopathology, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - Jia Xin Chua
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Lindy G Durrant
- Academic Clinical Oncology, The University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Peter L Stern
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
14
|
Bao S, Zhao H, Yuan J, Fan D, Zhang Z, Su J, Zhou M. Computational identification of mutator-derived lncRNA signatures of genome instability for improving the clinical outcome of cancers: a case study in breast cancer. Brief Bioinform 2019; 21:1742-1755. [PMID: 31665214 DOI: 10.1093/bib/bbz118] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic instability. However, identification of genome instability-associated lncRNAs and their clinical significance in cancers remain largely unexplored. Here, we developed a mutator hypothesis-derived computational frame combining lncRNA expression profiles and somatic mutation profiles in a tumor genome and identified 128 novel genomic instability-associated lncRNAs in breast cancer as a case study. We then identified a genome instability-derived two lncRNA-based gene signature (GILncSig) that stratified patients into high- and low-risk groups with significantly different outcome and was further validated in multiple independent patient cohorts. Furthermore, the GILncSig correlated with genomic mutation rate in both ovarian cancer and breast cancer, indicating its potential as a measurement of the degree of genome instability. The GILncSig was able to divide TP53 wide-type patients into two risk groups, with the low-risk group showing significantly improved outcome and the high-risk group showing no significant difference compared with those with TP53 mutation. In summary, this study provided a critical approach and resource for further studies examining the role of lncRNAs in genome instability and introduced a potential new avenue for identifying genomic instability-associated cancer biomarkers.
Collapse
Affiliation(s)
- Siqi Bao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hengqiang Zhao
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Jian Yuan
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Dandan Fan
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Zicheng Zhang
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Jianzhong Su
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Meng Zhou
- School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
15
|
Villalobos VM, Wang YC, Sikic BI. Reannotation and Analysis of Clinical and Chemotherapy Outcomes in the Ovarian Data Set From The Cancer Genome Atlas. JCO Clin Cancer Inform 2019; 2:1-16. [PMID: 30652548 DOI: 10.1200/cci.17.00096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The ovarian cancer data set from The Cancer Genome Atlas integrates genomic and proteomic data with clinical annotations based on chart abstractions. We aimed to develop an algorithm to create a matching, more accessible clinical data set cataloging time to treatment failure (TTF) of sequential lines of treatment in patients with serous ovarian cancers. MATERIALS AND METHODS The master data set of 587 patients with serous ovarian cancer was condensed into a more homogeneous and clinically relevant population comprised of high-risk patients with both grade 3 cancers and stage III or IV disease, resulting in a subgroup of 450 patients. We quantified the TTF of different lines of therapy as well as different therapeutic combinations by extrapolating from the time of starting one therapy to the time of starting a subsequent therapy. RESULTS The overall survival (OS) of patients was highly related to platinum sensitivity status, with median OS times of 56.6, 27.0, and 11.6 months in patients who had platinum-sensitive, -resistant, or -refractory disease, respectively. In high-risk patients, the median TTFs were 14.8, 10.2, 5.7, and 4.1 months with the first, second, third, and fourth lines of chemotherapy, respectively. Patients with stable disease after first-line therapy had similar OS outcomes as patients with partial remissions (34.4 v 33.7 months, respectively). CONCLUSION This new data set enhances the clinical annotation by providing exploitable chemotherapy benefit data that can now be paired with genomic and proteomic data within The Cancer Genome Atlas data. The major determinant of OS in this study was platinum sensitivity status. TTF decreased with each successive line of therapy. However, patients who achieved only stable disease with first-line therapy had OS similar to those with partial remission.
Collapse
Affiliation(s)
- Victor M Villalobos
- Victor M. Villalobos, University of Colorado Denver School of Medicine, Aurora, CO; and Yan C. Wang and Branimir I. Sikic, Stanford University, Stanford, CA
| | - Yan C Wang
- Victor M. Villalobos, University of Colorado Denver School of Medicine, Aurora, CO; and Yan C. Wang and Branimir I. Sikic, Stanford University, Stanford, CA
| | - Branimir I Sikic
- Victor M. Villalobos, University of Colorado Denver School of Medicine, Aurora, CO; and Yan C. Wang and Branimir I. Sikic, Stanford University, Stanford, CA
| |
Collapse
|
16
|
Hoppe MM, Sundar R, Tan DSP, Jeyasekharan AD. Biomarkers for Homologous Recombination Deficiency in Cancer. J Natl Cancer Inst 2019; 110:704-713. [PMID: 29788099 DOI: 10.1093/jnci/djy085] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Defective DNA repair is a common hallmark of cancer. Homologous recombination is a DNA repair pathway of clinical interest due to the sensitivity of homologous recombination-deficient cells to poly-ADP ribose polymerase (PARP) inhibitors. The measurement of homologous recombination deficiency (HRD) in cancer is therefore vital to the appropriate design of clinical trials incorporating PARP inhibitors. However, methods to identify HRD in tumors are varied and controversial. Understanding existing and new methods to measure HRD is important to their appropriate use in clinical trials and practice. The aim of this review is to summarize the biology and clinical validation of current methods to measure HRD, to aid decision-making for patient stratification and translational research in PARP inhibitor trials. We discuss the current clinical development of PARP inhibitors, along with established indicators for HRD such as germline BRCA1/2 mutation status and clinical response to platinum-based therapy. We then examine newer assays undergoing clinical validation, including 1) somatic mutations in homologous recombination genes, 2) "genomic scar" assays using array-based comparative genomic hybridization (aCGH), single nucleotide polymorphism (SNP) analysis or mutational signatures derived from next-generation sequencing, 3) transcriptional profiles of HRD, and 4) phenotypic or functional assays of protein expression and localization. We highlight the strengths and weaknesses of each of these assays, for consideration during the design of studies involving PARP inhibitors.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of Singapore, National University Hospital, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Hospital, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University Hospital, Singapore.,Department of Haematology-Oncology, National University Hospital, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University Hospital, Singapore.,Department of Haematology-Oncology, National University Hospital, Singapore
| |
Collapse
|
17
|
PARP Inhibitors in Ovarian Cancer: The Route to "Ithaca". Diagnostics (Basel) 2019; 9:diagnostics9020055. [PMID: 31109041 PMCID: PMC6627688 DOI: 10.3390/diagnostics9020055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Genomic instability characterizes high-grade serous ovarian cancer (HGSOC), with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Early studies have shown significant efficacy for PARP inhibitors in patients with germline breast related cancer antigens 1 and 2 (BRCA1/2) mutations. It has also become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this treatment. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The choice of which PARP inhibitor is mainly based upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of patients most likely to benefit from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The aim of this review is to describe the current evidence for PARP inhibitors in ovarian cancer, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolution of resistance.
Collapse
|
18
|
Abstract
Cancer research relies on model systems, which reflect the biology of actual human tumours to only a certain extent. One important feature of human cancer is its intra-tumour genomic heterogeneity and instability. However, the extent of such genomic instability in cancer models has received limited attention in research. Here, we review the state of knowledge of genomic instability of cancer models and discuss its biological origins and implications for basic research and for cancer precision medicine. We discuss strategies to cope with such genomic evolution and evaluate both the perils and the emerging opportunities associated with it.
Collapse
Affiliation(s)
- Uri Ben-David
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
19
|
Genetic and transcriptional evolution alters cancer cell line drug response. Nature 2018; 560:325-330. [PMID: 30089904 PMCID: PMC6522222 DOI: 10.1038/s41586-018-0409-3] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/22/2018] [Indexed: 12/12/2022]
Abstract
Human cancer cell lines are the workhorse of cancer research. While cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here, genomic analyses of 106 cell lines grown in two laboratories revealed extensive clonal diversity. Follow-up comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Importantly, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single cell-derived clones demonstrated that ongoing instability quickly translates into cell line heterogeneity. Testing of the 27 MCF7 strains against 321 anti-cancer compounds uncovered strikingly disparate drug response: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origin and consequence of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.
Collapse
|
20
|
Clinical importance of the EMSY gene expression and polymorphisms in ovarian cancer. Oncotarget 2018; 9:17735-17755. [PMID: 29707144 PMCID: PMC5915152 DOI: 10.18632/oncotarget.24878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
EMSY, a BRCA2–associated protein, is amplified and overexpressed in various sporadic cancers. This is the first study assessing the clinical impact of its expression and polymorphisms on ovarian cancer (OvCa) outcome in the context of the chemotherapy regimen used. In 134 frozen OvCa samples, we assessed EMSY mRNA expression with Reverse Transcription-quantitative PCR, and also investigated the EMSY gene sequence using SSCP and/or PCR-sequencing. Clinical relevance of changes in EMSY mRNA expression and DNA sequence was evaluated in two subgroups treated with either taxane/platinum (TP, n=102) or platinum/cyclophosphamide (PC, n=32). High EMSY expression negatively affected overall survival (OS), disease-free survival (DFS) and sensitivity to treatment (PS) in the TP-treated subgroup (p-values: 0.001, 0.002 and 0.010, respectively). Accordingly, our OvCa cell line studies showed that the EMSY gene knockdown sensitized A2780 and IGROV1 cells to paclitaxel. Interestingly, EMSY mRNA expression in surviving cells was similar as in the control cells. Additionally, we identified 24 sequence alterations in the EMSY gene, including the previously undescribed: c.720G>C, p.(Lys240Asn); c.1860G>A, p.(Lys620Lys); c.246-76A>G; c.421+68A>C. In the PC-treated subgroup, a heterozygous genotype comprising five SNPs (rs4300410, rs3814711, rs4245443, rs2508740, rs2513523) negatively correlated with OS (p-value=0.009). The same SNPs exhibited adverse borderline associations with PS in the TP-treated subgroup. This is the first study providing evidence that high EMSY mRNA expression is a negative prognostic and predictive factor in OvCa patients treated with TP, and that the clinical outcome may hinge on certain SNPs in the EMSY gene as well.
Collapse
|
21
|
Xu K, Yang S, Zhao Y. Prognostic significance of BRCA mutations in ovarian cancer: an updated systematic review with meta-analysis. Oncotarget 2018; 8:285-302. [PMID: 27690218 PMCID: PMC5352118 DOI: 10.18632/oncotarget.12306] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
There is no consensus on the syntheses concerning the impact of BRCA mutation on ovarian cancer survival. A systematic review and meta-analysis of observational studies was conducted that evaluated the impact of BRCA mutations on the survival outcomes of patients with ovarian cancer. The primary outcome measure was overall survival (OS) and secondary outcome was progression-free survival (PFS). We presented data with hazard ratios (HRs) and 95% confidence interval (CI) and pooled them using the random-effects models. From 2,624 unique records, 34 eligible studies including 18,396 patients were identified. BRCA1/2 mutations demonstrated both OS and PFS benefits in patients with ovarian cancer (OS: HR = 0.67, 95% CI, 0.57 to 0.78, I2 = 76.5%, P <0.001; PFS: HR = 0.62, 95% CI, 0.53 to 0.73, I2 = 18.1%, P = 0.261). For BRCA1 mutation carriers, the HRs for OS and PFS benefits were 0.73 (95% CI, 0.63 to 0.86) and 0.68 (95% CI, 0.52 to 0.89), respectively. For BRCA2 mutation carriers, the HRs for OS and PFS benefits were 0.57 (95% CI, 0.45 to 0.73) and 0.48 (95% CI, 0.30 to 0.75), respectively. The results of subgroup analyses for OS stratified by study quality, tumor stage, study design, sample size, number of research center, duration of follow-up, baseline characteristics adjusted and tumor histology were mostly constant across BRCA1/2, BRCA1 and BRCA2 mutation subtypes. In summary, for patients with ovarian cancer, BRCA mutations were associated with improved OS and PFS. Further large-scale prospective cohort studies should be conducted to test its benefits in specific patients.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
22
|
Mijnes J, Veeck J, Gaisa NT, Burghardt E, de Ruijter TC, Gostek S, Dahl E, Pfister D, Schmid SC, Knüchel R, Rose M. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/ CtIP is almost exclusively methylated in bladder cancer. Clin Epigenetics 2018; 10:15. [PMID: 29445424 PMCID: PMC5802064 DOI: 10.1186/s13148-018-0447-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023] Open
Abstract
Background Genome-wide studies identified pan-cancer genes and shared biological networks affected by epigenetic dysregulation among diverse tumor entities. Here, we systematically screened for hypermethylation of DNA damage repair (DDR) genes in a comprehensive candidate-approach and exemplarily identify and validate candidate DDR genes as targets of epigenetic inactivation unique to bladder cancer (BLCA), which may serve as non-invasive biomarkers. Methods Genome-wide DNA methylation datasets (2755 CpG probes of n = 7819 tumor and n = 659 normal samples) of the TCGA network covering 32 tumor entities were analyzed in silico for 177 DDR genes. Genes of interest were defined as differentially methylated between normal and cancerous tissues proximal to transcription start sites. The lead candidate gene was validated by methylation-specific PCR (MSP) and/or bisulfite-pyrosequencing in different human cell lines (n = 36), in primary BLCA tissues (n = 43), and in voided urine samples (n = 74) of BLCA patients. Urines from healthy donors and patients with urological benign and malignant diseases were included as controls (n = 78). mRNA expression was determined using qRT-PCR in vitro before (n = 5) and after decitabine treatment (n = 2). Protein expression was assessed by immunohistochemistry (n = 42). R 3.2.0. was used for statistical data acquisition and SPSS 21.0 for statistical analysis. Results Overall, 39 DDR genes were hypermethylated in human cancers. Most exclusively and frequently methylated (37%) in primary BLCA was RBBP8, encoding endonuclease CtIP. RBBP8 hypermethylation predicted longer overall survival (OS) and was found in 2/4 bladder cancer cell lines but not in any of 33 cancer cell lines from entities with another origin like prostate. RBBP8 methylation was inversely correlated with RBBP8 mRNA and nuclear protein expression while RBBP8 was re-expressed after in vitro demethylation. RBBP8 methylation was associated with histological grade in primary BLCA and urine samples. RBBP8 methylation was detectable in urine samples of bladder cancer patients achieving a sensitivity of 52%, at 91% specificity. Conclusions RBBP8 was identified as almost exclusively hypermethylated in BLCA. RBBP8/CtIP has a proven role in homologous recombination-mediated DNA double-strand break repair known to sensitize cancer cells for PARP1 inhibitors. Since RBBP8 methylation was detectable in urines, it may be a complementary marker of high specificity in urine for BLCA detection.
Collapse
Affiliation(s)
- Jolein Mijnes
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jürgen Veeck
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,2Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,3GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Nadine T Gaisa
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Eduard Burghardt
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Tim C de Ruijter
- 2Division of Medical Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands.,3GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sonja Gostek
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Edgar Dahl
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David Pfister
- 5Department of Urology, RWTH Aachen University, Aachen, Germany.,6Department of Urology, Uro-Oncology, Robot Assisted and Reconstructive Urologic Surgery, University Hospital Cologne, Cologne, Germany
| | - Sebastian C Schmid
- 7Department of Urology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ruth Knüchel
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Michael Rose
- 1Institute of Pathology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.,4RWTH Centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
The expression of miRNAs is associated with tumour genome instability and predicts the outcome of ovarian cancer patients treated with platinum agents. Sci Rep 2017; 7:14736. [PMID: 29116111 PMCID: PMC5677022 DOI: 10.1038/s41598-017-12259-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
miRNAs, a class of short but stable noncoding RNA molecules, have been revealed to play important roles in the DNA damage response (DDR). However, their functions in cancer genome instability and the consequent clinical effect as the response to chemotherapy have not been fully elucidated. In this study, we utilized multidimensional TCGA data and the known miRNAs involved in DDR to identify a miRNA-regulatory network that responds to DNA damage. Additionally, based on the expression of ten miRNAs in this network, we developed a 10-miRNA-score that predicts defects in the homologous recombination (HR) pathway and genome instability in ovarian cancer. Importantly, consistent with the association between HR defects and improved response to chemotherapeutic agents, the 10-miRNA-score predicts the outcome of ovarian cancer patients treated with platinum agents, with a surprisingly better performance than the indexes of DNA damage. Therefore, our study demonstrates the implication of miRNA expression on cancer genome instability and provides an alternative method to identify DDR defects in patients who show the best effect with platinum drug treatment.
Collapse
|
24
|
Xu K, Yang S, Zhao Y. Prognostic significance of BRCA mutations in ovarian cancer: an updated systematic review with meta-analysis. Oncotarget 2017. [PMID: 27690218 DOI: 10.18632/oncotarget.12306] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There is no consensus on the syntheses concerning the impact of BRCA mutation on ovarian cancer survival. A systematic review and meta-analysis of observational studies was conducted that evaluated the impact of BRCA mutations on the survival outcomes of patients with ovarian cancer. The primary outcome measure was overall survival (OS) and secondary outcome was progression-free survival (PFS). We presented data with hazard ratios (HRs) and 95% confidence interval (CI) and pooled them using the random-effects models. From 2,624 unique records, 34 eligible studies including 18,396 patients were identified. BRCA1/2 mutations demonstrated both OS and PFS benefits in patients with ovarian cancer (OS: HR = 0.67, 95% CI, 0.57 to 0.78, I2 = 76.5%, P <0.001; PFS: HR = 0.62, 95% CI, 0.53 to 0.73, I2 = 18.1%, P = 0.261). For BRCA1 mutation carriers, the HRs for OS and PFS benefits were 0.73 (95% CI, 0.63 to 0.86) and 0.68 (95% CI, 0.52 to 0.89), respectively. For BRCA2 mutation carriers, the HRs for OS and PFS benefits were 0.57 (95% CI, 0.45 to 0.73) and 0.48 (95% CI, 0.30 to 0.75), respectively. The results of subgroup analyses for OS stratified by study quality, tumor stage, study design, sample size, number of research center, duration of follow-up, baseline characteristics adjusted and tumor histology were mostly constant across BRCA1/2, BRCA1 and BRCA2 mutation subtypes. In summary, for patients with ovarian cancer, BRCA mutations were associated with improved OS and PFS. Further large-scale prospective cohort studies should be conducted to test its benefits in specific patients.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
25
|
Xu K, Yang S, Zhao Y. Prognostic significance of BRCA mutations in ovarian cancer: an updated systematic review with meta-analysis. Oncotarget 2017. [PMID: 27690218 DOI: 10.18632/oncotarget.12306]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There is no consensus on the syntheses concerning the impact of BRCA mutation on ovarian cancer survival. A systematic review and meta-analysis of observational studies was conducted that evaluated the impact of BRCA mutations on the survival outcomes of patients with ovarian cancer. The primary outcome measure was overall survival (OS) and secondary outcome was progression-free survival (PFS). We presented data with hazard ratios (HRs) and 95% confidence interval (CI) and pooled them using the random-effects models. From 2,624 unique records, 34 eligible studies including 18,396 patients were identified. BRCA1/2 mutations demonstrated both OS and PFS benefits in patients with ovarian cancer (OS: HR = 0.67, 95% CI, 0.57 to 0.78, I2 = 76.5%, P <0.001; PFS: HR = 0.62, 95% CI, 0.53 to 0.73, I2 = 18.1%, P = 0.261). For BRCA1 mutation carriers, the HRs for OS and PFS benefits were 0.73 (95% CI, 0.63 to 0.86) and 0.68 (95% CI, 0.52 to 0.89), respectively. For BRCA2 mutation carriers, the HRs for OS and PFS benefits were 0.57 (95% CI, 0.45 to 0.73) and 0.48 (95% CI, 0.30 to 0.75), respectively. The results of subgroup analyses for OS stratified by study quality, tumor stage, study design, sample size, number of research center, duration of follow-up, baseline characteristics adjusted and tumor histology were mostly constant across BRCA1/2, BRCA1 and BRCA2 mutation subtypes. In summary, for patients with ovarian cancer, BRCA mutations were associated with improved OS and PFS. Further large-scale prospective cohort studies should be conducted to test its benefits in specific patients.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shouhua Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 2016; 35:179. [PMID: 27884198 PMCID: PMC5123312 DOI: 10.1186/s13046-016-0456-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) defects imply genomic instability and favor tumor progression but make the cells vulnerable to the pharmacological inhibition of the DNA repairing enzymes. Targeting cellular proteins like PARPs, which cooperate and complement molecular defects of the DDR process, induces a specific lethality in DDR defective cancer cells and represents an anti-cancer strategy. Normal cells can tolerate the DNA damage generated by PARP inhibition because of an efficient homologous recombination mechanism (HR); in contrast, cancer cells with a deficient HR are unable to manage the DSBs and appear especially sensitive to the PARP inhibitors (PARPi) effects. MAIN BODY In this review we discuss the proof of concept for the use of PARPi in different cancer types and the success and failure of their inclusion in clinical trials. The PARP inhibitor Olaparib [AZD2281] has been approved by the FDA for use in pretreated ovarian cancer patients with defective BRCA1/2 genes, and by the EMEA for maintenance therapy in platinum sensitive ovarian cancer patients with defective BRCA1/2 genes. BRCA mutations are now recognised as the molecular targets for PARPi sensitivity in several tumors. However, it is noteworthy that the use of PARPi has shown its efficacy also in non-BRCA related tumors. Several trials are ongoing to test different PARPi in different cancer types. Here we review the concept of BRCAness and the functional loss of proteins involved in DDR/HR mechanisms in cancer, including additional molecules that can influence the cancer cells sensitivity to PARPi. Given the complexity of the existing crosstalk between different DNA repair pathways, it is likely that a single biomarker may not be sufficient to predict the benefit of PARP inhibitors therapies. Novel general assays able to predict the DDR/HR proficiency in cancer cells and the PARPi sensitivity represent a challenge for a personalized therapy. CONCLUSIONS PARP inhibition is a potentially important strategy for managing a significant subset of tumors. The discovery of both germline and somatic DNA repair deficiencies in different cancer patients, together with the development of new PARP inhibitors that can kill selectively cancer cells is a potent example of targeting therapy to molecularly defined tumor subtypes.
Collapse
|
27
|
Greene SB, Dago AE, Leitz LJ, Wang Y, Lee J, Werner SL, Gendreau S, Patel P, Jia S, Zhang L, Tucker EK, Malchiodi M, Graf RP, Dittamore R, Marrinucci D, Landers M. Chromosomal Instability Estimation Based on Next Generation Sequencing and Single Cell Genome Wide Copy Number Variation Analysis. PLoS One 2016; 11:e0165089. [PMID: 27851748 PMCID: PMC5112954 DOI: 10.1371/journal.pone.0165089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/06/2016] [Indexed: 01/06/2023] Open
Abstract
Genomic instability is a hallmark of cancer often associated with poor patient outcome and resistance to targeted therapy. Assessment of genomic instability in bulk tumor or biopsy can be complicated due to sample availability, surrounding tissue contamination, or tumor heterogeneity. The Epic Sciences circulating tumor cell (CTC) platform utilizes a non-enrichment based approach for the detection and characterization of rare tumor cells in clinical blood samples. Genomic profiling of individual CTCs could provide a portrait of cancer heterogeneity, identify clonal and sub-clonal drivers, and monitor disease progression. To that end, we developed a single cell Copy Number Variation (CNV) Assay to evaluate genomic instability and CNVs in patient CTCs. For proof of concept, prostate cancer cell lines, LNCaP, PC3 and VCaP, were spiked into healthy donor blood to create mock patient-like samples for downstream single cell genomic analysis. In addition, samples from seven metastatic castration resistant prostate cancer (mCRPC) patients were included to evaluate clinical feasibility. CTCs were enumerated and characterized using the Epic Sciences CTC Platform. Identified single CTCs were recovered, whole genome amplified, and sequenced using an Illumina NextSeq 500. CTCs were then analyzed for genome-wide copy number variations, followed by genomic instability analyses. Large-scale state transitions (LSTs) were measured as surrogates of genomic instability. Genomic instability scores were determined reproducibly for LNCaP, PC3, and VCaP, and were higher than white blood cell (WBC) controls from healthy donors. A wide range of LST scores were observed within and among the seven mCRPC patient samples. On the gene level, loss of the PTEN tumor suppressor was observed in PC3 and 5/7 (71%) patients. Amplification of the androgen receptor (AR) gene was observed in VCaP cells and 5/7 (71%) mCRPC patients. Using an in silico down-sampling approach, we determined that DNA copy number and genomic instability can be detected with as few as 350K sequencing reads. The data shown here demonstrate the feasibility of detecting genomic instabilities at the single cell level using the Epic Sciences CTC Platform. Understanding CTC heterogeneity has great potential for patient stratification prior to treatment with targeted therapies and for monitoring disease evolution during treatment.
Collapse
Affiliation(s)
| | - Angel E. Dago
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Laura J. Leitz
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Yipeng Wang
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Jerry Lee
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Steven Gendreau
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Premal Patel
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Shidong Jia
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Liangxuan Zhang
- Genentech, Inc./ Roche, San Francisco, CA, United States of America
| | - Eric K. Tucker
- Epic Sciences, Inc., San Diego, CA, United States of America
| | | | - Ryon P. Graf
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Ryan Dittamore
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Dena Marrinucci
- Epic Sciences, Inc., San Diego, CA, United States of America
| | - Mark Landers
- Epic Sciences, Inc., San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
28
|
An Integrative Genomic Analysis of Formalin Fixed Paraffin-Embedded Archived Serous Ovarian Carcinoma Comparing Long-term and Short-term Survivors. Int J Gynecol Cancer 2016; 26:1027-32. [DOI: 10.1097/igc.0000000000000721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ObjectiveThis study aimed to perform an integrative genetic analysis of patients with matched serous ovarian cancer having long-term or short-term survival using formalin fixed paraffin-embedded (FFPE) tissue samples.MethodsAll patients with serous ovarian carcinoma who underwent surgery between 1998 and 2007 at the Department of Gynaecology, Uppsala University Hospital, Sweden were considered. From this cohort, we selected biomaterial from 2 groups of patients with long-term and short-term survival matched for age, stage, histologic grade, and outcome of surgery. Genomic DNA from FFPE sample was analyzed with SNP array and targeted next-generation sequencing of 26 genes.ResultsForty-three samples (primary tumors and metastases) from 23 patients were selected for genomic profiling, the survival in the subgroups were 134 and 36 months, respectively. We observed a tendency toward increased genomic instability in those with long-term survival with higher proportion of somatic copy number alterations (P = 0.083) and higher average ploidy (P = 0.037). TP53 mutations were found in 50% of the patients. Frequency of TP53 mutations did not differ between the survival groups (P = 0.629).ConclusionsWe validated both previous genomic findings in ovarian cancer and the proposed association between increased genomic instability and better survival. These results exemplify that analysis of genomic biomarkers is feasible on archived FFPE tissue.
Collapse
|
29
|
Moschetta M, George A, Kaye SB, Banerjee S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann Oncol 2016; 27:1449-55. [PMID: 27037296 DOI: 10.1093/annonc/mdw142] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/08/2016] [Indexed: 01/22/2023] Open
Abstract
The significant activity of poly(ADP-ribose)polymerase (PARP) inhibitors in the treatment of germline BRCA mutation-associated ovarian cancer, which represents ∼15% of HGS cases, has recently led to European Medicines Agency and food and drug administration approval of olaparib. Accumulating evidence suggests that PARP inhibitors may have a wider application in the treatment of sporadic ovarian cancers. Up to 50% of HGS ovarian cancer patients may exhibit homologous recombination deficiency (HRD) through mechanisms including germline BRCA mutations, somatic BRCA mutations, and BRCA promoter methylation. In this review, we discuss the role of somatic BRCA mutations and BRCA methylation in ovarian cancer. There is accumulating evidence for routine somatic BRCA mutation testing, but the relevance of BRCA epigenetic modifications is less clear. We explore the challenges that need to be addressed if the full potential of these markers of HRD is to be utilised in clinical practice.
Collapse
Affiliation(s)
| | - A George
- Gynaecology Unit and Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | | |
Collapse
|
30
|
Parkes EE, Kennedy RD. Clinical Application of Poly(ADP-Ribose) Polymerase Inhibitors in High-Grade Serous Ovarian Cancer. Oncologist 2016; 21:586-93. [PMID: 27022037 DOI: 10.1634/theoncologist.2015-0438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED : High-grade serous ovarian cancer is characterized by genomic instability, with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Given the action of poly(ADP-ribose) polymerase (PARP) inhibitors in targeting tumors with deficiencies in this repair pathway by loss of BRCA1/2, ovarian tumors could be an attractive population for clinical application of this therapy. PARP inhibitors have moved into clinical practice in the past few years, with approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past 2 years. The U.S. FDA approval of olaparib applies to fourth line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval to olaparib maintenance in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. In order to widen the ovarian cancer patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. Additionally, a better understanding of the toxicity profile is needed if PARP inhibitors are to be used in the curative, rather than the palliative, setting. We reviewed the development of PARP inhibitors in phase I-III clinical trials, including combination trials of PARP inhibitors and chemotherapy/antiangiogenics, the approval for these agents, the mechanisms of resistance, and the outstanding issues, including the development of biomarkers and the rate of long-term hematologic toxicities with these agents. IMPLICATIONS FOR PRACTICE The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib has recently received approval from the Food and Drug Administration (FDA) and European Medicines Agency (EMA), with a second agent (rucaparib) likely to be approved in the near future. However, the patient population with potential benefit from PARP inhibitors is likely wider than that of germline BRCA mutation-associated disease, and biomarkers are in development to enable the selection of patients with the potential for clinical benefit from these agents. Questions remain regarding the toxicities of PARP inhibitors, limiting the use of these agents in the prophylactic or adjuvant setting until more information is available. The indications for olaparib as indicated by the FDA and EMA are reviewed.
Collapse
Affiliation(s)
- Eileen E Parkes
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom
| | - Richard D Kennedy
- Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, United Kingdom Almac Diagnostics, Craigavon, United Kingdom
| |
Collapse
|
31
|
Lin WH. Breast cancer susceptibility gene 1 expression in gastric cancer: Correlations with curative effect of oxaliplatin-based adjuvant chemotherapy and prognosis. Shijie Huaren Xiaohua Zazhi 2015; 23:2440-2444. [DOI: 10.11569/wcjd.v23.i15.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of breast cancer susceptibility gene 1 (BRCA1) in gastric carcinoma tissue, and to analyze its correlation with curative effect of oxaliplatin-based adjuvant chemotherapy and prognosis.
METHODS: One hundred and ten surgically treated gastric cancer patients who received oxaliplatin-based adjuvant chemotherapy at Armed Police Corps Hospital of Sichuan from January 2010 to December 2011 were included. Immunohistochemical method was used for the determination of BRCA1 expression in gastric cancer, and the correlation between BRCA1 expression and clinical efficacy of chemotherapy and prognosis was then analyzed.
RESULTS: The effective rate of treatment in patients with positive expression of BRCA1 vs those with negative expression was 35.9% vs 60.6% (P < 0.05), the 3-year disease-free survival (DFS) rate and overall survival (OS) rate were 30.8% vs 56.3% and 38.5% vs 64.8%, respectively (P < 0.05).
CONCLUSION: BRCA1 expression in gastric cancer can be used as a predictive index for efficacy of oxaliplatin-based adjuvant chemotherapy and as an important indicator of prognosis in patients after radical operation for gastric carcinoma.
Collapse
|