1
|
Metthew Lam LK, Oatman E, Eckart KA, Klingensmith NJ, Flowers E, Sayegh L, Yuen J, Clements RL, Meyer NJ, Jurado KA, Vaughan AE, Eisenbarth SC, Mangalmurti NS. Human red blood cells express the RNA sensor TLR7. Sci Rep 2024; 14:15789. [PMID: 38982195 PMCID: PMC11233670 DOI: 10.1038/s41598-024-66410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Red blood cells (RBCs) express the nucleic acid-binding toll-like receptor 9 (TLR9) and bind CpG-containing DNA. However, whether human RBCs express other nucleic acid-binding TLRs is unknown. Here we show that human RBCs express the RNA sensor TLR7. TLR7 is present on the red cell membrane and is associated with the RBC membrane protein Band 3. In patients with SARS-CoV2-associated sepsis, TLR7-Band 3 interactions in the RBC membrane are increased when compared with healthy controls. In vitro, RBCs bind synthetic ssRNA and RNA from ssRNA viruses. Thus, RBCs may serve as a previously unrecognized sink for exogenous RNA, expanding the repertoire of non-gas exchanging functions performed by RBCs.
Collapse
Affiliation(s)
- L K Metthew Lam
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily Oatman
- Division of Traumatology, Surgical Critical Care, and Emergency Surgical Services, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kaitlyn A Eckart
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nathan J Klingensmith
- Division of Traumatology, Surgical Critical Care, and Emergency Surgical Services, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily Flowers
- Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Layal Sayegh
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Yuen
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rebecca L Clements
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kellie A Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, 19104, USA
| | - Stephanie C Eisenbarth
- Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nilam S Mangalmurti
- Division of Pulmonary, Allergy, and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Proestler E, Donzelli J, Nevermann S, Breitwieser K, Koch LF, Best T, Fauth M, Wickström M, Harter PN, Kogner P, Lavieu G, Larsson K, Saul MJ. The multiple functions of miR-574-5p in the neuroblastoma tumor microenvironment. Front Pharmacol 2023; 14:1183720. [PMID: 37731742 PMCID: PMC10507178 DOI: 10.3389/fphar.2023.1183720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood and arises from neural crest cells of the developing sympathetic nervous system. Prostaglandin E2 (PGE2) has been identified as a key pro-inflammatory mediator of the tumor microenvironment (TME) that promotes neuroblastoma progression. We report that the interaction between the microRNA miR-574-5p and CUG-binding protein 1 (CUGBP1) induces the expression of microsomal prostaglandin E2 synthase 1 (mPGES-1) in neuroblastoma cells, which contributes to PGE2 biosynthesis. PGE2 in turn specifically induces the sorting of miR-574-5p into small extracellular vesicles (sEV) in neuroblastoma cell lines. sEV are one of the major players in intercellular communication in the TME. We found that sEV-derived miR-574-5p has a paracrine function in neuroblastoma. It acts as a direct Toll-like receptor 7/8 (TLR7/8) ligand and induces α-smooth muscle actin (α-SMA) expression in fibroblasts, contributing to fibroblast differentiation. This is particularly noteworthy as it has an opposite function to that in the TME of lung carcinoma, another PGE2 dependent tumor type. Here, sEV-derived miR-574-5p has an autokrine function that inhibits PGE2 biosynthesis in lung cancer cells. We report that the tetraspanin composition on the surface of sEV is associated with the function of sEV-derived miR-574-5p. This suggests that the vesicles do not only transport miRs, but also appear to influence their mode of action.
Collapse
Affiliation(s)
- Eva Proestler
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Donzelli
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sheila Nevermann
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kai Breitwieser
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Leon F. Koch
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tatjana Best
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Merck KGaA, Darmstadt, Germany
| | - Maria Fauth
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
- Prolytic GmbH, a Kymos Company, Frankfurt, Germany
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Patrick N. Harter
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Frankfurt, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Children’s and Women’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Grégory Lavieu
- INSERM U1316, UMR7057, Centre National de la Recherche Scientifique (CNRS), Université Paris Cité, Paris, France
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Meike J. Saul
- Fachbereich Biologie, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Alexopoulou L. Nucleic acid-sensing toll-like receptors: Important players in Sjögren’s syndrome. Front Immunol 2022; 13:980400. [PMID: 36389822 PMCID: PMC9659959 DOI: 10.3389/fimmu.2022.980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.
Collapse
|
4
|
Zhang C, Wang H, Wang H, Shi S, Zhao P, Su Y, Wang H, Yang M, Fang M. A microsatellite DNA-derived oligodeoxynucleotide attenuates lipopolysaccharide-induced acute lung injury in mice by inhibiting the HMGB1-TLR4-NF-κB signaling pathway. Front Microbiol 2022; 13:964112. [PMID: 35992691 PMCID: PMC9386506 DOI: 10.3389/fmicb.2022.964112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) with uncontrolled inflammatory response has high morbidity and mortality rates in critically ill patients. Pathogen-associated molecular patterns (PAMPs) are involved in the development of uncontrolled inflammatory response injury and associated lethality. In this study, we investigated the inhibit effect of MS19, a microsatellite DNA-derived oligodeoxynucleotide (ODN) with AAAG repeats, on the inflammatory response induced by various PAMPs in vitro and in vivo. In parallel, a microsatellite DNA with AAAC repeats, named as MS19-C, was used as controls. We found that MS19 extensively inhibited the expression of inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α induced by various PAMPs stimulation, including DNA viruses, RNA viruses, bacterial components lipopolysaccharide (LPS), and curdlan, as well as the dsDNA and dsRNA mimics, in primed bone marrow-derived macrophage (BMDM). Other than various PAMPs, MS19 also demonstrated obvious effects on blocking the high mobility group box1 (HMGB1), a representative damage-associated-molecular pattern (DAMP), nuclear translocation and secretion. With the base substitution from G to C, MS19-C has been proved that it has lost the inhibitory effect. The inhibition is associated with nuclear factor kappa B (NF-κB) signaling but not the mitogen-activated protein kinase (MAPK) transduction. Moreover, MS19 capable of inhibiting the IL-6 and TNF-α production and blocking the HMGB1 nuclear translocation and secretion in LPS-stimulated cells was used to treat mice ALI induced by LPS in vivo. In the ALI mice model, MS19 significantly inhibited the weight loss and displayed the dramatic effect on lessening the ALI by reducing consolidation, hemorrhage, intra-alveolar edema in lungs of the mice. Meanwhile, MS19 could increase the survival rate of ALI by downregulating the inflammation cytokines HMGB1, TNF-a, and IL-6 production in the bronchoalveolar lavage fluid (BALF). The data suggest that MS19 might display its therapeutic role on ALI by inhibiting the HMGB1-TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chenghua Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Endoscopy, Jilin Provincial Cancer Hospital, Changchun, China
| | - Hui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hua Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- Ming Yang,
| | - Mingli Fang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Mingli Fang,
| |
Collapse
|
5
|
Badal D, Sachdeva N, Maheshwari D, Basak P. Role of nucleic acid sensing in the pathogenesis of type 1 diabetes. World J Diabetes 2021; 12:1655-1673. [PMID: 34754369 PMCID: PMC8554372 DOI: 10.4239/wjd.v12.i10.1655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via several exogenous and cytosolic pattern recognition receptors, such as the toll-like receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding and oligomerization domain-like receptors. The binding of the pathogen-derived nucleic acids to their corresponding sensors initiates certain downstream signaling cascades culminating in the release of type-I interferons (IFNs), especially IFN-α and other cytokines to induce proinflammatory responses towards invading pathogens leading to their clearance from the host. Although these sensors are hardwired to recognize pathogen associated molecular patterns, like viral and bacterial nucleic acids, under unusual physiological conditions, such as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids like DNA, RNA, and mitochondrial DNA are also released. The presence of these self-nucleic acids in extranuclear compartments or extracellular spaces or their association with certain proteins sometimes leads to the failure of discriminating mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to some extent in type 1 diabetes (T1D). This review discusses the involvement of various nucleic acid sensors in autoimmunity and discusses how aberrant recognition of self-nucleic acids by their sensors activates the innate immune responses during the pathogenesis of T1D.
Collapse
Affiliation(s)
- Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deep Maheshwari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Preetam Basak
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
6
|
Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021; 11:biom11091291. [PMID: 34572504 PMCID: PMC8464963 DOI: 10.3390/biom11091291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.
Collapse
|
7
|
Storci G, Bonifazi F, Garagnani P, Olivieri F, Bonafè M. The role of extracellular DNA in COVID-19: Clues from inflamm-aging. Ageing Res Rev 2021; 66:101234. [PMID: 33321254 PMCID: PMC7833688 DOI: 10.1016/j.arr.2020.101234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Epidemiological data convey severe prognosis and high mortality rate for COVID-19 in elderly men affected by age-related diseases. These subjects develop local and systemic hyper-inflammation, which are associated with thrombotic complications and multi-organ failure. Therefore, understanding SARS-CoV-2 induced hyper-inflammation in elderly men is a pressing need. Here we focus on the role of extracellular DNA, mainly mitochondrial DNA (mtDNA) and telomeric DNA (telDNA) in the modulation of systemic inflammation in these subjects. In particular, extracellular mtDNA is regarded as a powerful trigger of the inflammatory response. On the contrary, extracellular telDNA pool is estimated to be capable of inhibiting a variety of inflammatory pathways. In turn, we underpin that telDNA reservoir is progressively depleted during aging, and that it is scarcer in men than in women. We propose that an increase in extracellular mtDNA, concomitant with the reduction of the anti-inflammatory telDNA reservoir may explain hyper-inflammation in elderly male affected by COVID-19. This scenario is reminiscent of inflamm-aging, the portmanteau word that depicts how aging and aging related diseases are intimately linked to inflammation.
Collapse
Affiliation(s)
- Gianluca Storci
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy.
| | | | - Paolo Garagnani
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Regenerative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental and Diagnostic Medicine, University of Bologna, Italy.
| |
Collapse
|
8
|
Chaichian Y, Strand V. Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update. Clin Rheumatol 2021; 40:3027-3037. [PMID: 33411137 DOI: 10.1007/s10067-020-05526-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022]
Abstract
The interferon (IFN) pathway, especially type I IFN, plays a critical role in the immunopathogenesis of systemic lupus erythematosus (SLE). We have gained significant insights into this pathway over the past two decades, including a better understanding of the key mediators of inflammation upstream and downstream of type I IFN. This has led to the identification of multiple potential targets for the treatment of SLE, for which a significant unmet need remains due to the failure of many patients to adequately respond to standard-of-care medications. Unfortunately, most new therapies in SLE have disappointed in preclinical or clinical trials to date, including a number that target type I IFN. Nevertheless, several IFN-directed therapies aimed at specific steps within this immunologic pathway have recently shown promise, and additional agents are in the treatment pipeline. In this review, we focus on the results of key therapeutic studies targeting the type I IFN pathway and discuss the future state of IFN-blockade in SLE.
Collapse
Affiliation(s)
- Yashaar Chaichian
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA.
| | - Vibeke Strand
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
9
|
Mathias LM, Stohl W. Systemic lupus erythematosus (SLE): emerging therapeutic targets. Expert Opin Ther Targets 2020; 24:1283-1302. [PMID: 33034541 DOI: 10.1080/14728222.2020.1832464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a heterogeneous clinical presentation whose etiologies are multifactorial. A myriad of genetic, hormonal, immunologic, and environmental factors contribute to its pathogenesis, and its diverse biological basis and phenotypic presentations make development of therapeutics difficult. In the past decade, tens of therapeutic targets with hundreds of individual candidate therapeutics have been investigated. AREAS COVERED We used a PUBMED database search through April 2020 to review the relevant literature. This review discusses therapeutic targets in the adaptive and innate immune systems, specifically: B cell surface antigens, B cell survival factors, Bruton's tyrosine kinase, costimulators, IL-12/IL-23, the calcineurin pathway, the JAK/STAT pathway, and interferons. EXPERT OPINION Our ever-improving understanding of SLE pathophysiology in the past decade has allowed us to identify new therapeutic targets. Multiple new drugs are on the horizon that target different elements of the adaptive and innate immune systems. SLE research remains challenging due to the heterogenous clinical presentation of SLE, confounding from background immunosuppressives being taken by SLE patients, animal models that inadequately recapitulate human disease, and imperfect and complicated outcome measures. Despite these limitations, research is promising and ongoing. The search for new therapies that target specific elements of SLE pathophysiology are discussed as well as key findings, pitfalls, and questions surrounding these targets.
Collapse
Affiliation(s)
- Lauren M Mathias
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
10
|
Patinote C, Karroum NB, Moarbess G, Cirnat N, Kassab I, Bonnet PA, Deleuze-Masquéfa C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur J Med Chem 2020; 193:112238. [PMID: 32203790 PMCID: PMC7173040 DOI: 10.1016/j.ejmech.2020.112238] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
The discovery of the TLRs family and more precisely its functions opened a variety of gates to modulate immunological host responses. TLRs 7/8 are located in the endosomal compartment and activate a specific signaling pathway in a MyD88-dependant manner. According to their involvement into various autoimmune, inflammatory and malignant diseases, researchers have designed diverse TLRs 7/8 ligands able to boost or block the inherent signal transduction. These modulators are often small synthetic compounds and most act as agonists and to a much lesser extent as antagonists. Some of them have reached preclinical and clinical trials, and only one has been approved by the FDA and EMA, imiquimod. The key to the success of these modulators probably lies in their combination with other therapies as recently demonstrated. We gather in this review more than 360 scientific publications, reviews and patents, relating the extensive work carried out by researchers on the design of TLRs 7/8 modulators, which are classified firstly by their biological activities (agonist or antagonist) and then by their chemical structures, which total syntheses are not discussed here. This review also reports about 90 clinical cases, thereby showing the biological interest of these modulators in multiple pathologies.
Collapse
Affiliation(s)
- Cindy Patinote
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nour Bou Karroum
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Georges Moarbess
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | - Natalina Cirnat
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Issam Kassab
- Tumorigenèse et Pharmacologie Antitumorale, Lebanese University, EDST, BP 90656, Fanar Jdeideh, Lebanon
| | | | | |
Collapse
|
11
|
Feuerstein R, Gres V, Elias Perdigó N, Baasch S, Freudenhammer M, Elling R, Henneke P. Macrophages Are a Potent Source of Streptococcus-Induced IFN-β. THE JOURNAL OF IMMUNOLOGY 2019; 203:3416-3426. [PMID: 31732532 DOI: 10.4049/jimmunol.1900542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022]
Abstract
IFN-β essentially modulates the host response against mucocutaneous colonizers and potential pathogens, such as group B Streptococcus (GBS). It has been reported that the dominant signaling cascade driving IFN-β in macrophages (MΦ) in streptococcal infection is the cGAS-STING pathway, whereas conventional dendritic cells (DC) exploit endosomal recognition by intracellular TLRs. In this study, we revisited this issue by precisely monitoring the phenotypic dynamics in mixed mouse MΦ/DC cultures with GM-CSF, which requires snapshot definition of cellular identities. We identified four mononuclear phagocyte populations, of which two were transcriptionally and morphologically distinct MΦ-DC-like subsets, and two were transitional types. Notably, GBS induced a TLR7-dependent IFN-β signal only in MΦ-like but not in DC-like cells. IFN-β induction did not require live bacteria (i.e., the formation of cytolytic toxins), which are essential for IFN-β induction via cGAS-STING. In contrast to IFN-β, GBS induced TNF-α independently of TLR7. Subsequent to the interaction with streptococci, MΦ changed their immunophenotype and gained some typical DC markers and DC-like morphology. In summary, we identify IFN-β formation as part of the antistreptococcal repertoire of GM-CSF differentiated MΦ in vitro and in vivo and delineate their plasticity.
Collapse
Affiliation(s)
- Reinhild Feuerstein
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Vitka Gres
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Núria Elias Perdigó
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Sebastian Baasch
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Mirjam Freudenhammer
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and .,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
12
|
Bonegio RG, Lin JD, Beaudette-Zlatanova B, York MR, Menn-Josephy H, Yasuda K. Lupus-Associated Immune Complexes Activate Human Neutrophils in an FcγRIIA-Dependent but TLR-Independent Response. THE JOURNAL OF IMMUNOLOGY 2019; 202:675-683. [PMID: 30610165 DOI: 10.4049/jimmunol.1800300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of autoantibodies against nucleic acids and nucleoproteins. Anti-dsDNA Abs are considered a hallmark of SLE, and previous studies have indicated that nucleic acid-containing immune complexes (ICs) induce B cell and dendritic cell activation in a TLR-dependent process. How ICs containing nucleic acids affect neutrophil function has not been well investigated. In this study, we report that nucleic acid-containing ICs derived from the sera of SLE patients induce human and mouse neutrophil activation through TLR-independent mechanisms. Soluble ICs containing Sm/RNP, an RNA Ag, activate human neutrophils to produce reactive oxygen species (ROS) and IL-8. In contrast, ICs containing DNA have to be immobilized to efficiently activate neutrophils. We found that deleting TLR7 or TLR9, the receptors for RNA and DNA, had no effect on mouse neutrophil activation induced by RNA-containing and immobilized DNA-containing ICs. Binding of ICs are mediated through FcγRIIA and FcγRIIIB. However, neutrophil activation induced by RNA- and DNA-containing ICs requires FcγRIIA, as blocking FcγRIIA inhibited ROS release from neutrophils. RNA-containing ICs induce calcium flux, whereas TLR7/8 ligand R848 do not. Surprisingly, chloroquine inhibits calcium flux induced by RNA-containing ICs, suggesting that this lesser known function of chloroquine is involved in the neutrophil activation induced by ICs. These data indicate the SLE-derived ICs activate neutrophils to release ROS and chemokines in an FcγRIIA-dependent and TLR7- and TLR9-independent manner that likely contributes to local tissue inflammation and damage.
Collapse
Affiliation(s)
- Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118.,Renal Section, VA Boston Healthcare System, Boston, MA 02130; and
| | - Jessica D Lin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | | | - Michael R York
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Hanni Menn-Josephy
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Kei Yasuda
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118;
| |
Collapse
|
13
|
Ishida H, Ohto U, Shibata T, Miyake K, Shimizu T. Structural basis for species‐specific activation of mouse Toll‐like receptor 9. FEBS Lett 2018; 592:2636-2646. [DOI: 10.1002/1873-3468.13176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Hanako Ishida
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| | - Takuma Shibata
- Division of Innate Immunity Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Minato‐ku Japan
| | - Kensuke Miyake
- Division of Innate Immunity Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Minato‐ku Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences The University of Tokyo Hongo, Bunkyo‐ku Japan
| |
Collapse
|
14
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
15
|
DNA Sensing across the Tree of Life. Trends Immunol 2017; 38:719-732. [DOI: 10.1016/j.it.2017.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
|
16
|
Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation. J Immunol Res 2017; 2017:7807313. [PMID: 28894754 PMCID: PMC5574364 DOI: 10.1155/2017/7807313] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.
Collapse
|
17
|
Gao W, Xiong Y, Li Q, Yang H. Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Front Physiol 2017; 8:508. [PMID: 28769820 PMCID: PMC5516312 DOI: 10.3389/fphys.2017.00508] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
The recognition of invading pathogens and endogenous molecules from damaged tissues by toll-like receptors (TLRs) triggers protective self-defense mechanisms. However, excessive TLR activation disrupts the immune homeostasis by sustained pro-inflammatory cytokines and chemokines production and consequently contributes to the development of many inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE), infection-associated sepsis, atherosclerosis, and asthma. Therefore, inhibitors/antagonists targeting TLR signals may be beneficial to treat these disorders. In this article, we first briefly summarize the pathophysiological role of TLRs in the inflammatory diseases. We then focus on reviewing the current knowledge in both preclinical and clinical studies of various TLR antagonists/inhibitors for the prevention and treatment of inflammatory diseases. These compounds range from conventional small molecules to therapeutic biologics and nanodevices. In particular, nanodevices are emerging as a new class of potent TLR inhibitors for their unique properties in desired bio-distribution, sustained circulation, and preferred pharmacodynamic and pharmacokinetic profiles. More interestingly, the inhibitory activity of these nanodevices can be regulated through precise nano-functionalization, making them the next generation therapeutics or “nano-drugs.” Although, significant efforts have been made in developing different kinds of new TLR inhibitors/antagonists, only limited numbers of them have undergone clinical trials, and none have been approved for clinical uses to date. Nevertheless, these findings and continuous studies of TLR inhibition highlight the pharmacological regulation of TLR signaling, especially on multiple TLR pathways, as future promising therapeutic strategy for various inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Wei Gao
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Ye Xiong
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical UniversityShanghai, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Hong Yang
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
18
|
Misra DP, Negi VS. Interferon targeted therapies in systemic lupus erythematosus. Mediterr J Rheumatol 2017; 28:13-19. [PMID: 32185249 PMCID: PMC7045923 DOI: 10.31138/mjr.28.1.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
Type I interferons secreted by plasmacytoid dendritic cells (pDCs) play a crucial role in the pathogenesis of systemic lupus erythematosus by driving the formation of autoantibodies against nuclear debris. Inherited mutations causing activation of the Type I interferon pathway result in a phenotype of systemic autoimmunity which resembles some of the manifestations of lupus. Patients with lupus have increased expression of interferon-stimulated genes in the peripheral blood mononuclear cells which is abrogated following immunosuppressive treatment. Recent therapeutic approaches have involved monoclonal antibodies directly targeting interferon alpha (sifalimumab, rontalizumab) or the use of interferon alpha kinoid to stimulate endogenous production of anti-interferon antibodies in lupus. Other drugs used in lupus such as hydroxychloroquine and bortezomib also reduce circulating levels of type I interferons. Newer therapeutic strategies being investigated in preclinical models of lupus that reduce the production of Type I interferons include dihydroartemisinin, Bruton’s tyrosine kinase antagonists, Bcl-2 antagonists and sphingosine-1 phosphate agonists.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| |
Collapse
|
19
|
Yun Z, Jianping P. [Progress on the role of Toll-like receptors in Candida albicans infections]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2016; 45:302-7. [PMID: 27651197 PMCID: PMC10396928 DOI: 10.3785/j.issn.1008-9292.2016.05.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/20/2016] [Indexed: 06/06/2023]
Abstract
Toll like receptors (TLRs) are expressed mainly on innate immunocytes such as dendritic cells and macrophages, and may have the potential to recognize and bind to pathogen-associated molecular patterns (PAMPs) from Candida albicans, thereby triggering the downstream signals. The genetic polymorphism of TLRs is associated with susceptibility to Candida albicans. The activation of TLRs by PAMPs from Candida albicans can induce the production of proinflammatory cytokines that play key roles in the anti-infection of Candida albicans. However, in order to evade the immune response of host,Candida albicans can also change its bacterial phase. Understanding of the interaction between TLRs and Candida albicans will provide novel evidence to further clarify the mechanisms of anti-fungal immune response.
Collapse
Affiliation(s)
- Zhou Yun
- Zhejiang University City College School of Medicine, Hangzhou 310015, China;Department of Pathogen Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pan Jianping
- Zhejiang University City College School of Medicine, Hangzhou 310015, China.
| |
Collapse
|
20
|
Klaeschen AS, Wenzel J. Upcoming therapeutic targets in cutaneous lupus erythematous. Expert Rev Clin Pharmacol 2016; 9:567-578. [DOI: 10.1586/17512433.2016.1145543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Pan X, Li B, Kuang M, Liu X, Cen Y, Qin R, Ding G, Zheng J, Zhou H. Synthetic Human TLR9-LRR11 Peptide Attenuates TLR9 Signaling by Binding to and thus Decreasing Internalization of CpG Oligodeoxynucleotides. Int J Mol Sci 2016; 17:242. [PMID: 26907260 PMCID: PMC4783973 DOI: 10.3390/ijms17020242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/04/2015] [Accepted: 01/22/2016] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor (TLR) 9 is an endosomal receptor recognizing bacterial DNA/CpG-containing oligodeoxynucleotides (CpG ODN). Blocking CpG ODN/TLR9 activity represents a strategy for therapeutic prevention of immune system overactivation. Herein, we report that a synthetic peptide (SP) representing the leucine-rich repeat 11 subdomain of the human TLR9 extracellular domain could attenuate CpG ODN/TLR9 activity in RAW264.7 cells by binding to CpG ODN and decreasing its internalization. Our results demonstrate that preincubation with SP specifically inhibited CpG ODN- but not lipopolysaccharide (LPS)- and lipopeptide (PAM3CSK4)-stimulated TNF-α and IL-6 release. Preincubation of SP with CpG ODN dose-dependently decreased TLR9-driven phosphorylation of IκBα and ERK and activation of NF-κB/p65. Moreover, SP dose-dependently decreased FAM-labeled CpG ODN internalization, whereas non-labeled CpG ODN reversed the inhibition. The KD value of SP-CpG ODN binding was within the micromolar range. Our results demonstrated that SP was a specific inhibitor of CpG ODN/TLR9 activity via binding to CpG ODN, leading to reduced ODN internalization and decreased activation of subsequent pathways within cells. Thus, SP could be used as a potential CpG ODN antagonist to block TLR9 signaling.
Collapse
Affiliation(s)
- Xichun Pan
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Bin Li
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Mei Kuang
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Xin Liu
- Medical Research Center, Southwestern Hospital, the Third Military Medical University, Chongqing 400038, China.
| | - Yanyan Cen
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Rongxin Qin
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Guofu Ding
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| | - Jiang Zheng
- Medical Research Center, Southwestern Hospital, the Third Military Medical University, Chongqing 400038, China.
| | - Hong Zhou
- Department of Pharmacology, College of Pharmacy, the Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
22
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Wu YW, Tang W, Zuo JP. Toll-like receptors: potential targets for lupus treatment. Acta Pharmacol Sin 2015; 36:1395-407. [PMID: 26592511 DOI: 10.1038/aps.2015.91] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. Accumulating evidence shows that Toll-like receptors (TLRs), previously proven to be critical for host defense, are implicated in the pathogenesis of autoimmune diseases by recognition of self-molecules. Genome-wide association studies, experimental mouse models and clinical sample studies have provided evidence for the involvement of TLRs, including TLR2/4, TLR5, TLR3 and TLR7/8/9, in SLE pathogenesis. A number of downstream proteins in the TLR signaling cascade (such as MyD88, IRAKs and IFN-α) are identified as potential therapeutic targets for SLE treatment. Numerous antagonists targeting TLR signaling, including oligonucleotides, small molecular inhibitors and antibodies, are currently under preclinical studies or clinical trials for SLE treatment. Moreover, the emerging new manipulation of TLR signaling by microRNA (miRNA) regulation shows promise for the future treatment of SLE.
Collapse
|
24
|
Rhinovirus stimulated IFN-α production: how important are plasmacytoid DCs, monocytes and endosomal pH? Clin Transl Immunology 2015; 4:e46. [PMID: 26682054 PMCID: PMC4673444 DOI: 10.1038/cti.2015.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
Human rhinovirus (HRV) infection is a major cause of asthma exacerbations, which appears to be linked to a defective innate immune response to infection. Although the type I interferons (IFN-α and IFN-β) have a critical role in protecting against most viral infections, the cells responsible for IFN production in response to HRV and the relative importance of pattern recognition receptors located in endosomes has not been fully elucidated. In the current study we demonstrate that, using intracellular flow cytometry, >90% of the IFN-α-producing cells in human blood mononuclear cells following HRV16 exposure are plasmacytoid dendritic cells, whereas monocytes and myeloid dendritic cells contribute only 10% and <1%, respectively, of the IFN-α production. Bafilomycin and chloroquine, agents that inhibit the function of endosomal toll-like receptors (TLRs), significantly reduced the capacity of TLR3-, TLR7- and TLR-9-stimulated cells to produce IFN-α and the IFN-induced chemokine CXCL10 (IP-10). In contrast, only bafilomycin (but not chloroquine) effectively suppressed HRV16-stimulated IFN-α and IP-10 production, whereas neither bafilomycin or chloroquine inhibited HRV16-stimulated interleukin-6 release. Attempts to block IFN-α production with commercially available TLR-specific oligonucleotides were unsuccessful due to major ‘off-target' effects. These findings suggest that among circulating haemopoietic cells, plasmacytoid dendritic cells and TLRs located within endosomes are critical for inducing efficient IFN-I production in response to HRVs.
Collapse
|
25
|
U1-RNP and Toll-like receptors in the pathogenesis of mixed connective tissue diseasePart II. Endosomal TLRs and their biological significance in the pathogenesis of mixed connective tissue disease. Reumatologia 2015; 53:143-51. [PMID: 27407241 PMCID: PMC4847297 DOI: 10.5114/reum.2015.53136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Mixed connective tissue disease (MCTD) is a chronic autoimmune immunopathological disease of unknown etiology, which is characterized by the presence of various clinical symptoms and the presence of autoantibodies against U1-RNP particles. The U1-RNP component engages immune cells and their receptors in a complex network of interactions that ultimately lead to autoimmunity, inflammation, and tissue injury. The anti-U1-RNP autoantibodies form an immune complex with self-RNA, present in MCTD serum, which can act as endosomal Toll-like receptor (TLR) ligands. Inhibition of TLRs by nucleic acids is a promising area of research for the development of novel therapeutic strategies against pathogenic infection, tumorigenesis and autoimmunity. In this review we summarize current knowledge of endogenous TLRs and discuss their biological significance in the pathogenesis of MCTD. In part I we described the structure, biological function and significance of the U1-RNP complex in MCTD.
Collapse
|