1
|
Fang ZC, Li JL, Yan CB, Zou YR, Tian L, Zhao B, Benton MJ, Cheng L, Lai XL. First filter feeding in the Early Triassic: cranial morphological convergence between Hupehsuchus and baleen whales. BMC Ecol Evol 2023; 23:36. [PMID: 37550649 PMCID: PMC10408079 DOI: 10.1186/s12862-023-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Modern baleen whales are unique as large-sized filter feeders, but their roles were replicated much earlier by diverse marine reptiles of the Mesozoic. Here, we investigate convergence in skull morphology between modern baleen whales and one of the earliest marine reptiles, the basal ichthyosauromorph Hupehsuchus nanchangensis, from the Early Triassic, a time of rapid recovery of life following profound mass extinction. Two new specimens reveal the skull morphology especially in dorsal view. The snout of Hupehsuchus is highly convergent with modern baleen whales, as shown in a morphometric analysis including 130 modern aquatic amniotes. Convergences in the snout include the unfused upper jaw, specialized intermediate space in the divided premaxilla and grooves around the labial margin. Hupehsuchus had enlarged its buccal cavity to enable efficient filter feeding and probably used soft tissues like baleen to expel the water from the oral cavity. Coordinated with the rigid trunk and pachyostotic ribs suggests low speeds of aquatic locomotion, Hupehsuchus probably employed continuous ram filter feeding as in extant bowhead and right whales. The Early Triassic palaeoenvironment of a restrictive lagoon with low productivity drove Hupehsuchus to feed on zooplankton, which facilitated ecosystem recovery in the Nanzhang-Yuan'an Fauna at the beginning of the Mesozoic.
Collapse
Affiliation(s)
- Zi-Chen Fang
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China
| | - Jiang-Li Li
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Chun-Bo Yan
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China
| | - Ya-Rui Zou
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Li Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, P. R. China
| | - Bi Zhao
- Hubei Institute of Geosciences, Hubei Geological Bureau, Wuhan, 430034, P. R. China
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Long Cheng
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, 430205, P. R. China.
| | - Xu-Long Lai
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Cheng L, C. Moon B, Yan C, Motani R, Jiang D, An Z, Fang Z. The oldest record of Saurosphargiformes (Diapsida) from South China could fill an ecological gap in the Early Triassic biotic recovery. PeerJ 2022; 10:e13569. [PMID: 35855428 PMCID: PMC9288826 DOI: 10.7717/peerj.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Accepted: 05/20/2022] [Indexed: 01/17/2023] Open
Abstract
Diversification following the end-Permian mass extinction marks the initiation of Mesozoic reptile dominance and of modern marine ecosystems, yet major clades are best known from the Middle Triassic suggesting delayed recovery, while Early Triassic localities produce poorly preserved specimens or have restricted diversity. Here we describe Pomolispondylus biani gen. et sp. nov. from the Early Triassic Nanzhang-Yuan'an Fauna of China assigned to Saurosphargiformes tax. nov., a clade known only from the Middle Triassic or later, which includes Saurosphargidae, and likely is the sister taxon to Sauropterygia. Pomolispondylus biani is allied to Saurosphargidae by the extended transverse processes of dorsal vertebrae and a low, table-like dorsal surface on the neural spine; however, it does not have the typical extensive osteoderms. Rather an unusual tuberous texture on the dorsal neural spine and rudimentary ossifications lateral to the gastralia are observed. Discovery of Pomolispondylus biani extends the known range of Saurosphargiformes and increases the taxic and ecological diversity of the Nanzhang-Yuan'an Fauna. Its small size fills a different ecological niche with respect to previously found species, but the overall food web remains notably different in structure to Middle Triassic and later ecosystems, suggesting this fauna represents a transitional stage during recovery rather than its endpoint.
Collapse
Affiliation(s)
- Long Cheng
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Benjamin C. Moon
- Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Chunbo Yan
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Ryosuke Motani
- University of California Davis, Department of Earth and Planetary Sciences, Davis, California, United States of America
| | - Dayong Jiang
- Peking University, Department of Geology and Geological Museum, Beijing, P. R. China
| | - Zhihui An
- Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan Center of China Geological Survey, Wuhan, P. R. China
| | - Zichen Fang
- China University of Geoscience, Wuhan, P. R. China
| |
Collapse
|
3
|
Ren J, Jiang H, Xiang K, Sullivan C, He Y, Cheng L, Han F. A new basal ichthyosauromorph from the Lower Triassic (Olenekian) of Zhebao, Guangxi Autonomous Region, South China. PeerJ 2022; 10:e13209. [PMID: 35415016 PMCID: PMC8995025 DOI: 10.7717/peerj.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
Here we describe a newly discovered basal ichthyosauromorph from the Lower Triassic of South China, Baisesaurus robustus gen. et sp. nov. The only known specimen of this new species was collected from the Lower Triassic (Olenekian) Luolou Formation in the Zhebao region of Baise City, on the northwest margin of the Nanpanjiang Basin, and comprises a partial skeleton including the ribs, the gastralia, a limb element, 12 centra, and seven neural arches. Comparisons to a wide variety of Early Triassic marine reptiles show Baisesaurus robustus to be a basal ichthyosauromorph based on the following features: neural arches lack transverse processes; dorsal ribs are slender, and not pachyostotic even proximally; and median gastral elements have long, sharp anterior processes. The limb element is long and robust, and is most likely to be a radius. Baisesaurus robustus is large (estimated length more than 3 m) relative to early ichthyosauromorphs previously discovered in China, and shares noteworthy morphological similarities with Utatsusaurus hataii, particularly with regard to body size and the morphology of the probable radius. Baisesaurus robustus also represents the first record of an Early Triassic ichthyosauromorph from Guangxi Autonomous Region, extending the known geographic distribution of ichthyosauromorphs in South China.
Collapse
Affiliation(s)
- Jicheng Ren
- School of Li Siguang, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| | - Haishui Jiang
- School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| | - Kunpeng Xiang
- Guizhou Geological Survey, Guiyang, Guizhou Province, China
| | - Corwin Sullivan
- Department of Biological Sciences, University of Alberta, Edmonton, Canada,Philip J. Currie Dinosaur Museum, Wembley, Canada
| | - Yongzhong He
- Guizhou Geological Survey, Guiyang, Guizhou Province, China
| | - Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, China
| | - Fenglu Han
- School of Earth Sciences, China University of Geosciences (Wuhan), Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Scheyer TM, Oberli U, Klein N, Furrer H. A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland. SWISS JOURNAL OF PALAEONTOLOGY 2022; 141:1. [PMID: 35250843 PMCID: PMC8866377 DOI: 10.1186/s13358-022-00244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
An important component of the Alpine vertebrate record of Late Triassic age derives from the Kössen Formation, which crops out extensively in the eastern Alps. Here, we present an isolated and only partially preserved large rib, which carries an osteoderm on a low uncinate process. Osteological comparison indicates that the specimen likely belongs to a small clade of marine reptiles, Saurosphargidae. Members of the clade are restricted to the western (today Europe) and eastern margins of the Tethys (today China) and were so far known only from the Anisian stage of the Middle Triassic. The assignment of the new find to cf. Saurosphargidae, with potential affinities to the genus Largocephalosaurus from the Guanling Formation of Yunnan and Guizhou Provinces, China, would extend the occurrence of the clade about 35 million years into the Late Triassic.
Collapse
Affiliation(s)
- Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| | - Urs Oberli
- Waldgutstrasse 21, CH-9010 St.Gallen, Switzerland
| | - Nicole Klein
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| | - Heinz Furrer
- Universität Zürich, Paläontologisches Institut und Museum, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland
| |
Collapse
|
5
|
Nesbitt SJ, Stocker MR, Chatterjee S, Horner JR, Goodwin MB. A remarkable group of thick-headed Triassic Period archosauromorphs with a wide, possibly Pangean distribution. J Anat 2021; 239:184-206. [PMID: 33660262 PMCID: PMC8197959 DOI: 10.1111/joa.13414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022] Open
Abstract
The radiation of archosauromorph reptiles in the Triassic Period produced an unprecedented collection of diverse and disparate forms with a mix of varied ecologies and body sizes. Some of these forms were completely unique to the Triassic, whereas others were converged on by later members of Archosauromorpha. One of the most striking examples of this is with Triopticus primus, the early dome-headed form later mimicked by pachycephalosaurid dinosaurs. Here we fully describe the cranial anatomy of Triopticus primus, but also recognize a second dome-headed form from a Upper Triassic deposit in present-day India. The new taxon, Kranosaura kuttyi gen. et sp. nov., is likely the sister taxon of Triopticus primus based on the presence of a greatly expanded skull roof with a deep dorsal opening (possibly the pineal opening) through the dome, similar cranial sculpturing, and a skull table that is expanded more posterior than the posterior extent of the basioccipital. However, the dome of Kranosaura kuttyi gen. et sp. nov. extends anterodorsally, unlike that of any other archosauromorph. Histological sections and computed tomographic reconstructions through the skull of Kranosaura kuttyi gen. et sp. nov. further reveal the uniqueness of the dome of these early archosauromorphs. Moreover, our integrated analysis further demonstrates that there are many ways to create a dome in Amniota. The presence of 'dome-headed' archosauromorphs at two localities on the western and eastern portions of Pangea suggests that these archosauromorphs were widespread and are likely part of more assemblages than currently recognized.
Collapse
|
6
|
Li Q, Liu J. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Commun Biol 2020; 3:63. [PMID: 32047220 PMCID: PMC7012838 DOI: 10.1038/s42003-020-0778-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
The timing and pattern of biotic recovery from the Permo-Triassic Mass Extinction remains elusive. Here we report new material of the Early Triassic sauropterygian Lariosaurus sanxiaensis and associated fauna from the Jialingjiang Formation in Hubei Province, South China. Phylogenetic analysis based on a novel data matrix of sauropterygians recognizes L. sanxiaensis as a basal nothosaur. Stratigraphic congruence analysis shows that the new phylogenetic consensus tree matches to the stratigraphic distribution of sauropterygians very well. The diversified reptilian fauna and inferred simple food web in the Nanzhang-Yuan'an fauna where L. sanxiaensis was discovered suggest that the Triassic biotic recovery adopted a top-down pattern, in contrast to the prevailing view. Comparison with the Middle Triassic Luoping biota from the same carbonate platform suggests that the Triassic biotic recovery is delayed and healthy ecosystems were not established until the Middle Triassic in South China.
Collapse
Affiliation(s)
- Qiang Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jun Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
- Institute of Geosciences, University of Bonn, Bonn, 53115, Germany.
- Nanjing Institute of Geology and Palaeontology, Nanjing, 210008, China.
| |
Collapse
|
7
|
Cheng L, Motani R, Jiang DY, Yan CB, Tintori A, Rieppel O. Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles indicating non-visual prey detection. Sci Rep 2019; 9:152. [PMID: 30679783 PMCID: PMC6345829 DOI: 10.1038/s41598-018-37754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
The end-Permian mass extinction (EPME) led to reorganization of marine predatory communities, through introduction of air-breathing top predators, such as marine reptiles. We report two new specimens of one such marine reptile, Eretmorhipis carrolldongi, from the Lower Triassic of Hubei, China, revealing superficial convergence with the modern duckbilled platypus (Ornithorhynchus anatinus), a monotreme mammal. Apparent similarities include exceptionally small eyes relative to the body, snout ending with crura with a large internasal space, housing a bone reminiscent of os paradoxum, a mysterious bone of platypus, and external grooves along the crura. The specimens also have a rigid body with triangular bony blades protruding from the back. The small eyes likely played reduced roles during foraging in this animal, as with extant amniotes (group containing mammals and reptiles) with similarly small eyes. Mechanoreceptors on the bill of the animal were probably used for prey detection instead. The specimens represent the oldest record of amniotes with extremely reduced visual capacity, utilizing non-visual cues for prey detection. The discovery reveals that the ecological diversity of marine predators was already high in the late Early Triassic, and challenges the traditional view that the ecological diversification of marine reptiles was delayed following the EPME.
Collapse
Affiliation(s)
- Long Cheng
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, 430023, P. R. China.
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, CA, 95616, USA.
| | - Da-Yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, MOE, Department of Geology and Geological Museum, Peking University, Yiheyuan Str. 5, Beijing, 100871, P. R. China
| | - Chun-Bo Yan
- Wuhan Centre of China Geological Survey, Wuhan, Hubei, 430023, P. R. China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli, 34-20133, Milano, Italy
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL, 60605-2496, USA
| |
Collapse
|
8
|
Motani R, Jiang DY, Tintori A, Ji C, Huang JD. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates. Proc Biol Sci 2018; 284:rspb.2017.0241. [PMID: 28515201 DOI: 10.1098/rspb.2017.0241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates.
Collapse
Affiliation(s)
- Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Da-Yong Jiang
- Department of Geology and Geological Museum, Peking University, Yiheyuan Street 5, Beijing 100871, People's Republic of China.,State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology), 39 East Beijing Road, Nanjing 210008, People's Republic of China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34-20133 Milano, Italy
| | - Cheng Ji
- Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
| | - Jian-Dong Huang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
9
|
Jiang DY, Motani R, Huang JD, Tintori A, Hu YC, Rieppel O, Fraser NC, Ji C, Kelley NP, Fu WL, Zhang R. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction. Sci Rep 2016; 6:26232. [PMID: 27211319 PMCID: PMC4876504 DOI: 10.1038/srep26232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2015] [Accepted: 04/29/2016] [Indexed: 11/30/2022] Open
Abstract
Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation.
Collapse
Affiliation(s)
- Da-Yong Jiang
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education; Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing 100871, People's Republic of China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, United States of America
| | - Jian-Dong Huang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34-20133 Milano, Italy
| | - Yuan-Chao Hu
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL 60605-2496, United States of America
| | - Nicholas C Fraser
- National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, United Kingdom
| | - Cheng Ji
- Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
| | - Neil P Kelley
- Smithsonian Institution, National Museum of Natural History, Washington, DC 20560-0121, United States of America
| | - Wan-Lu Fu
- Laboratory of Orogenic Belt and Crustal Evolution, Ministry of Education; Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing 100871, People's Republic of China
| | - Rong Zhang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|