1
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Chen R, Lu K, Yang L, Jiang J, Li L. Peroxin MoPex22 Regulates the Import of Peroxisomal Matrix Proteins and Appressorium-Mediated Plant Infection in Magnaporthe oryzae. J Fungi (Basel) 2024; 10:143. [PMID: 38392815 PMCID: PMC10890347 DOI: 10.3390/jof10020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Magnaporthe oryzae, the pathogen responsible for rice blast disease, utilizes specialized infection structures known as appressoria to breach the leaf cuticle and establish intracellular, infectious hyphae. Our study demonstrates that the peroxin MoPex22 is crucial for appressorium function, specifically for the development of primary penetration hyphae. The ∆Mopex22 mutant exhibited slow growth, reduced aerial hyphae, and almost complete loss of virulence. Specifically, despite the mutant's capability to form appressoria, it showed abnormalities during appressorium development, including reduced turgor, increased permeability of the appressorium wall, failure to form septin rings, and significantly decreased ability to penetrate host cells. Additionally, there was a delay in the degradation of lipid droplets during conidial germination and appressorium development. Consistent with these findings, the ΔMopex22 mutant showed an inefficient utilization of long-chain fatty acids and defects in cell wall integrity. Moreover, our findings indicate that MoPex22 acts as an anchor for MoPex4, facilitating the localization of MoPex4 to peroxisomes. Together with MoPex4, it affects the function of MoPex5, thus regulating the import of peroxisomal matrix proteins. Overall, these results highlight the essential role of MoPex22 in regulating the transport of peroxisomal matrix proteins, which affect fatty acid metabolism, glycerol accumulation, cell wall integrity, growth, appressorium development, and the pathogenicity of M. oryzae. This study provides valuable insights into the significance of peroxin functions in fungal biology and appressorium-mediated plant infection.
Collapse
Affiliation(s)
- Rangrang Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Kailun Lu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lina Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
3
|
Lu Z, Guo J, Li Q, Han Y, Zhang Z, Hao Z, Wang Y, Sun G, Wang J, Li L. Monitoring peroxisome dynamics using enhanced green fluorescent protein labeling in Alternaria alternata. Front Microbiol 2022; 13:1017352. [PMID: 36386634 PMCID: PMC9640759 DOI: 10.3389/fmicb.2022.1017352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Brown leaf spot on tobacco is a serious fungal disease caused by Alternaria alternata. Peroxisomes are organelles playing an important role in the development and infection of plant pathogenic fungi. But, until now, there is no report on the peroxisome dynamics during the conidia germination of A. alternata. To evaluate the roles of peroxisome in the development of the fungus, in the present work, an enhanced green fluorescent protein (eGFP) cassette tagged with peroxisome targeting signal 2 (PTS2) was integrated into A. alternata to label the organelles, and an eGFP cassette carrying a nuclear located signal (NLS) was performed parallelly. The transformants containing the fusions emitted fluorescence in punctate patterns. The fluorescence of eGFP-PTS2 was distributed exactly in the peroxisomes while those of eGFP-NLS were located in the nucleus. Typical AaGB transformants were selected to be investigated for the peroxisome dynamics. The results showed that during spore germination, the number of peroxisomes in the spores decreased gradually, but increased in the germ tubes. In addition, when the transformants were cultured on lipid media, the numbers of peroxisomes increased significantly, and in a larger portion, present in striped shapes. These findings give some clues for understanding the peroxisomal functions in the development of A. alternata.
Collapse
Affiliation(s)
- Ziqi Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian Guo
- College of Food and Health (College of Modern Food Industry), Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qiang Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yatao Han
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongna Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jiaoyu Wang,
| | - Ling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Ling Li,
| |
Collapse
|
4
|
Peroxisome Proliferator FpPEX11 Is Involved in the Development and Pathogenicity in Fusarium pseudograminearum. Int J Mol Sci 2022; 23:ijms232012184. [PMID: 36293041 PMCID: PMC9603656 DOI: 10.3390/ijms232012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium crown rot (FCR) of wheat, an important soil-borne disease, presents a worsening trend year by year, posing a significant threat to wheat production. Fusarium pseudograminearum cv. b was reported to be the dominant pathogen of FCR in China. Peroxisomes are single-membrane organelles in eukaryotes that are involved in many important biochemical metabolic processes, including fatty acid β-oxidation. PEX11 is important proteins in peroxisome proliferation, while less is known in the fungus F. pseudograminearum. The functions of FpPEX11a, FpPEX11b, and FpPEX11c in F. pseudograminearum were studied using reverse genetics, and the results showed that FpPEX11a and FpPEX11b are involved in the regulation of vegetative growth and asexual reproduction. After deleting FpPEX11a and FpPEX11b, cell wall integrity was impaired, cellular metabolism processes including active oxygen metabolism and fatty acid β-oxidation were significantly blocked, and the production ability of deoxynivalenol (DON) decreased. In addition, the deletion of genes of FpPEX11a and FpPEX11b revealed a strongly decreased expression level of peroxisome-proliferation-associated genes and DON-synthesis-related genes. However, deletion of FpPEX11c did not significantly affect these metabolic processes. Deletion of the three protein-coding genes resulted in reduced pathogenicity of F. pseudograminearum. In summary, FpPEX11a and FpPEX11b play crucial roles in the growth and development, asexual reproduction, pathogenicity, active oxygen accumulation, and fatty acid utilization in F. pseudograminearum.
Collapse
|
5
|
Li L, Yu MX, Guo J, Hao ZN, Zhang Z, Lu ZQ, Wang JY, Zhu XM, Wang YL, Chen J, Sun GC, Lin FC. The peroxins BcPex8, BcPex10, and BcPex12 are required for the development and pathogenicity of Botrytis cinerea. Front Microbiol 2022; 13:962500. [PMID: 36147853 PMCID: PMC9488000 DOI: 10.3389/fmicb.2022.962500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Peroxisomes have been proved playing roles in infection of several plant pathogens. Although the contribution of a portion of peroxins in pathogenicity was demonstrated, most of them are undocumented in fungi, especially, Botrytis cinerea. The homologs of Pex8, Pex10, and Pex12 in B. cinerea were functionally characterized in this work using gene disruption strategies. Compared with the wild-type strain (WT), the Δbcpex8, Δbcpex10, and Δbcpex12 mutants exhibited significant reduction in melanin production, fatty acid utilization, and decreased tolerance to high osmotic pressure and reactive oxygen species (ROS). The mycelial growth and conidiation of were significantly inhibited in Δbcpex8, Δbcpex10, and Δbcpex12 strains. The mycelial growth rates of Δbcpex8, Δbcpex10, and Δbcpex12 were reduced by 32, 35, and 34%, respectively, compared with WT and ectopic transformant (ET), and the conidiation was reduced by approximately 89, 27, and 88%, respectively. The conidial germination, germ tube elongation, and the formation of initiate infection structures (IFSs) were also reduced by the deletion of the genes. The pathogenicity was tested on the leaves of tobacco and strawberry, and fruits of tomato. On the leaves of tobacco and strawberry, the Δbcpex8, Δbcpex10, and Δbcpex12 mutants could not induce necrotic lesions, and the lesions on tomato fruits infected with the mutants were significantly reduced than those of the wide type. The results indicated that BcPEX8, BcPEX10, and BcPEX12 are indispensable for the development and pathogenicity of B. cinerea.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Meng-xue Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian Guo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Zhong-na Hao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zi-qi Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Jiao-yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jiao-yu Wang,
| | - Xue-ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yan-li Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Chen
- College of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Guo-Chang Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Guo-Chang Sun,
| | - Fu-cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
7
|
Zhang L, Liu C, Wang M, Tao Y, Liang Y, Yu J. Peroxin FgPEX22-Like Is Involved in FgPEX4 Tethering and Fusarium graminearum Pathogenicity. Front Microbiol 2021; 12:756292. [PMID: 34956121 PMCID: PMC8702864 DOI: 10.3389/fmicb.2021.756292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Peroxisomes are essential organelles that play important roles in a variety of biological processes in eukaryotic cells. To understand the synthesis of peroxisomes comprehensively, we identified the gene FgPEX22-like, encoding FgPEX22-like, a peroxin, in Fusarium graminearum. Our results showed that although FgPEX22-like was notably different from other peroxins (PEX) in Saccharomyces cerevisiae, it contained a predicted PEX4-binding site and interacted with FgPEX4 as a rivet protein of FgPEX4. To functionally characterize the roles of FgPEX22-like in F. graminearum, we performed homologous recombination to construct a deletion mutant (ΔPEX22-like). Analysis of the mutant showed that FgPEX22-like was essential for sexual and asexual reproduction, fatty acid utilization, pathogenicity, and production of the mycotoxin deoxynivalenol. Deletion of FgPEX22-like also led to increased production of lipid droplets and decreased elimination of reactive oxygen species. In addition, FgPEX22-like was required for the biogenesis of Woronin bodies. Taken together, our data demonstrate that FgPEX22-like is a peroxin in F. graminearum that interacts with PEX4 by anchoring PEX4 at the peroxisomal membrane and contributes to the peroxisome function in F. graminearum.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinfeng Yu
- Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Lubbers RJM, Dilokpimol A, Visser J, de Vries RP. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl Microbiol Biotechnol 2021; 105:4199-4211. [PMID: 33950281 PMCID: PMC8140964 DOI: 10.1007/s00253-021-11311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Abstract Aromatic compounds are important molecules which are widely applied in many industries and are mainly produced from nonrenewable sources. Renewable sources such as plant biomass are interesting alternatives for the production of aromatic compounds. Ferulic acid and p-coumaric acid, a precursor for vanillin and p-vinyl phenol, respectively, can be released from plant biomass by the fungus Aspergillus niger. The degradation of hydroxycinnamic acids such as caffeic acid, ferulic acid, and p-coumaric acid has been observed in many fungi. In A. niger, multiple metabolic pathways were suggested for the degradation of hydroxycinnamic acids. However, no genes were identified for these hydroxycinnamic acid metabolic pathways. In this study, several pathway genes were identified using whole-genome transcriptomic data of A. niger grown on different hydroxycinnamic acids. The genes are involved in the CoA-dependent β-oxidative pathway in fungi. This pathway is well known for the degradation of fatty acids, but not for hydroxycinnamic acids. However, in plants, it has been shown that hydroxycinnamic acids are degraded through this pathway. We identified genes encoding hydroxycinnamate-CoA synthase (hcsA), multifunctional β-oxidation hydratase/dehydrogenase (foxA), 3-ketoacyl CoA thiolase (katA), and four thioesterases (theA-D) of A. niger, which were highly induced by all three tested hydroxycinnamic acids. Deletion mutants revealed that these genes were indeed involved in the degradation of several hydroxycinnamic acids. In addition, foxA and theB are also involved in the degradation of fatty acids. HcsA, FoxA, and KatA contained a peroxisomal targeting signal and are therefore predicted to be localized in peroxisomes. Key points • Metabolism of hydroxycinnamic acid was investigated in Aspergillus niger • Using transcriptome data, multiple CoA-dependent β-oxidative genes were identified. • Both foxA and theB are involved in hydroxycinnamate but also fatty acid metabolism. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11311-0.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - J Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Navarro-Espíndola R, Suaste-Olmos F, Peraza-Reyes L. Dynamic Regulation of Peroxisomes and Mitochondria during Fungal Development. J Fungi (Basel) 2020; 6:E302. [PMID: 33233491 PMCID: PMC7711908 DOI: 10.3390/jof6040302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes and mitochondria are organelles that perform major functions in the cell and whose activity is very closely associated. In fungi, the function of these organelles is critical for many developmental processes. Recent studies have disclosed that, additionally, fungal development comprises a dynamic regulation of the activity of these organelles, which involves a developmental regulation of organelle assembly, as well as a dynamic modulation of the abundance, distribution, and morphology of these organelles. Furthermore, for many of these processes, the dynamics of peroxisomes and mitochondria are governed by common factors. Notably, intense research has revealed that the process that drives the division of mitochondria and peroxisomes contributes to several developmental processes-including the formation of asexual spores, the differentiation of infective structures by pathogenic fungi, and sexual development-and that these processes rely on selective removal of these organelles via autophagy. Furthermore, evidence has been obtained suggesting a coordinated regulation of organelle assembly and dynamics during development and supporting the existence of regulatory systems controlling fungal development in response to mitochondrial activity. Gathered information underscores an important role for mitochondrial and peroxisome dynamics in fungal development and suggests that this process involves the concerted activity of these organelles.
Collapse
Affiliation(s)
| | | | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.N.-E.); (F.S.-O.)
| |
Collapse
|
10
|
Chittem K, Yajima WR, Goswami RS, del Río Mendoza LE. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One 2020; 15:e0229844. [PMID: 32160211 PMCID: PMC7065775 DOI: 10.1371/journal.pone.0229844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Sclerotinia stem rot is an economically important disease of canola (Brassica napus) and is caused by the fungal pathogen Sclerotinia sclerotiorum. This study evaluated the differential gene expression patterns of S. sclerotiorum during disease development on two canola lines differing in susceptibility to this pathogen. Sequencing of the mRNA libraries derived from inoculated petioles and mycelium grown on liquid medium generated approximately 164 million Illumina reads, including 95 million 75-bp-single reads, and 69 million 50-bp-paired end reads. Overall, 36% of the quality filter-passed reads were mapped to the S. sclerotiorum reference genome. On the susceptible line, 1301 and 1214 S. sclerotiorum genes were differentially expressed at early (8-16 hours post inoculation (hpi)) and late (24-48 hpi) infection stages, respectively, while on the resistant line, 1311 and 1335 genes were differentially expressed at these stages, respectively. Gene ontology (GO) categories associated with cell wall degradation, detoxification of host metabolites, peroxisome related activities like fatty acid ß-oxidation, glyoxylate cycle, oxidoreductase activity were significantly enriched in the up-regulated gene sets on both susceptible and resistant lines. Quantitative RT-PCR of six selected DEGs further validated the RNA-seq differential gene expression analysis. The regulation of effector genes involved in host defense suppression or evasion during the early infection stage, and the expression of effectors involved in host cell death in the late stage of infection provide supporting evidence for a two-phase infection model involving a brief biotrophic phase during early stages of infection. The findings from this study emphasize the role of peroxisome related pathways along with cell wall degradation and detoxification of host metabolites as the key mechanisms underlying pathogenesis of S. sclerotiorum on B. napus.
Collapse
Affiliation(s)
- Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - William R. Yajima
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Rubella S. Goswami
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- USDA-APHIS, Riverdale, Maryland, United States of America
| | - Luis E. del Río Mendoza
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
11
|
Wang JY, Li L, Chai RY, Qiu HP, Zhang Z, Wang YL, Liu XH, Lin FC, Sun GC. Pex13 and Pex14, the key components of the peroxisomal docking complex, are required for peroxisome formation, host infection and pathogenicity-related morphogenesis in Magnaporthe oryzae. Virulence 2020; 10:292-314. [PMID: 30905264 PMCID: PMC6527019 DOI: 10.1080/21505594.2019.1598172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfill multiple important metabolisms. Pex13 and Pex14 are key components of the peroxisomal docking complex in yeasts and mammals. In the present work, we functionally characterized the homologues of Pex13 and Pex14 (Mopex13 and Mopex14) in the rice blast fungus Magnaporthe oryzae. Mopex13 and Mopex14 were peroxisomal membrane distributed and were both essential for the maintenance of Mopex14/17 on the peroxisomal membrane. Mopex13 and Mopex14 interacted with each other, and with Mopex14/17 and peroxisomal matrix protein receptors. Disruption of Mopex13 and Mopex14 resulted in a cytoplasmic distribution of peroxisomal matrix proteins and the Woronin body protein Hex1. In the ultrastructure of Δmopex13 and Δmopex14 cells, peroxisomes were detected on fewer occasions, and the Woronin bodies and related structures were dramatically affected. The Δmopex13 and Δmopex14 mutants were reduced in vegetative growth, conidial generation and mycelial melanization, in addition, Δmopex13 showed reduced conidial germination and appressorial formation and abnomal appressorial morphology. Both Δmopex13 and Δmopex14 were deficient in appressorial turgor and nonpathogenic to their hosts. The infection failures in Δmopex13 and Δmopex14 were also due to their reduced ability to degrade fatty acids and to endure reactive oxygen species and cell wall-disrupting compounds. Additionally, Mopex13 and Mopex14 were required for the sexual reproduction of the fungus. These data indicate that Mopex13 and Mopex14, as key components of the peroxisomal docking complex, are indispensable for peroxisomal biogenesis, fungal development and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Jiao-Yu Wang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Ling Li
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China.,b The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agricultural and Food Sciences , Zhejiang Agriculture and Forest University , Hangzhou , China
| | - Rong-Yao Chai
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Hai-Ping Qiu
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Zhen Zhang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Yan-Li Wang
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| | - Xiao-Hong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Fu-Cheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Guo-Chang Sun
- a State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection Microbiology , Zhejiang Academy of Agricultural Sciences , Hangzhou , China
| |
Collapse
|
12
|
Wang J, Li L, Chai R, Zhang Z, Qiu H, Mao X, Hao Z, Wang Y, Sun G. Succinyl-proteome profiling of Pyricularia oryzae, a devastating phytopathogenic fungus that causes rice blast disease. Sci Rep 2019; 9:3490. [PMID: 30837482 PMCID: PMC6401317 DOI: 10.1038/s41598-018-36852-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 11/21/2022] Open
Abstract
Pyricularia oryzae is the pathogen for rice blast disease, which is a devastating threat to rice production worldwide. Lysine succinylation, a newly identified post-translational modification, is associated with various cellular processes. Here, liquid chromatography tandem-mass spectrometry combined with a high-efficiency succinyl-lysine antibody was used to identify the succinylated peptides in P. oryzae. In total, 2109 lysine succinylation sites in 714 proteins were identified. Ten conserved succinylation sequence patterns were identified, among which, K*******Ksuc, and K**Ksuc, were two most preferred ones. The frequency of lysine succinylation sites, however, greatly varied among organisms, including plants, animals, and microbes. Interestingly, the numbers of succinylation site in each protein of P. oryzae were significantly greater than that of most previous published organisms. Gene ontology and KEGG analysis showed that these succinylated peptides are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Further analyses determined that lysine succinylation occurs on several key enzymes of the tricarboxylic acid cycle and glycolysis pathway, indicating that succinylation may play important roles in the regulation of basal metabolism in P. oryzae. Furthermore, more than 40 pathogenicity-related proteins were identified as succinylated proteins, suggesting an involvement of succinylation in pathogenicity. Our results provide the first comprehensive view of the P. oryzae succinylome and may aid to find potential pathogenicity-related proteins to control the rice blast disease. Significance Plant pathogens represent a great threat to world food security, and enormous reduction in the global yield of rice was caused by P. oryzae infection. Here, the succinylated proteins in P. oryzae were identified. Furthermore, comparison of succinylation sites among various species, indicating that different degrees of succinylation may be involved in the regulation of basal metabolism. This data facilitates our understanding of the metabolic pathways and proteins that are associated with pathogenicity.
Collapse
Affiliation(s)
- Jiaoyu Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Ling Li
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
- The key laboratory for quality improvement of agricultural products of Zhejiang province, School of agricultural and food sciences, Zhejiang agriculture and forest university, Hangzhou, 311300, China
| | - Rongyao Chai
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhen Zhang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Haiping Qiu
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Xueqin Mao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Zhongna Hao
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Yanli Wang
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China
| | - Guochang Sun
- State key laboratory breeding base for Zhejiang sustainable pest and disease control, Institute of plant protection and microbiology, Zhejiang academy of agricultural sciences, Hangzhou, 310021, China.
| |
Collapse
|
13
|
Li L, Wang J, Chen H, Chai R, Zhang Z, Mao X, Qiu H, Jiang H, Wang Y, Sun G. Pex14/17, a filamentous fungus-specific peroxin, is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1238-1252. [PMID: 27571711 PMCID: PMC6638247 DOI: 10.1111/mpp.12487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 08/28/2016] [Indexed: 05/27/2023]
Abstract
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
- School of Agricultural and Food SciencesZhejiang Agriculture and Forest UniversityHangzhou311300China
| | - Jiaoyu Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Haili Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Rongyao Chai
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Zhen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Xueqin Mao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Haiping Qiu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Yanli Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Guochang Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural SciencesHangzhou310021China
| |
Collapse
|
14
|
Chen X, Shen M, Yang J, Xing Y, Chen D, Li Z, Zhao W, Zhang Y. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2017; 18:222-237. [PMID: 26950649 PMCID: PMC6638267 DOI: 10.1111/mpp.12395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.
Collapse
Affiliation(s)
- Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and Technology, Huazhong Agricultural UniversityWuhan430070China
| | - Mi Shen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yunfei Xing
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Deng Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhigang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
15
|
MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae. PLoS Pathog 2016; 12:e1005823. [PMID: 27556292 PMCID: PMC4996533 DOI: 10.1371/journal.ppat.1005823] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 11/24/2022] Open
Abstract
Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. Dynamin superfamily members are involved in budding of transport vesicles and division of organelles in eukaryotic cells. To further understand how dynamins function in phytopathogenic fungi, we characterized several dynamin-related proteins from the rice blast fungus M. oryzae. In addition to revealing major conserved dynamin functions, we described how MoDnm1 interacts with mitochondrial fission protein MoFis1 and WD repeat adaptor protein MoMdv1 to mediate peroxisomal and mitochondrial fission, pexophagy and mitophagy. Importantly, we provided evidence to demonstrate that MoDnm1-, MoFis1- and MoMdv1-dependent peroxisomal and mitochondrial functions are linked to differentiation and pathogenicity of the rice blast fungus.
Collapse
|
16
|
Roles of Peroxisomes in the Rice Blast Fungus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9343417. [PMID: 27610388 PMCID: PMC5004026 DOI: 10.1155/2016/9343417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The rice blast fungus, Magnaporthe oryzae, is a model plant pathogenic fungus and is a severe threat to global rice production. Over the past two decades, it has been found that the peroxisomes play indispensable roles during M. oryzae infection. Given the importance of the peroxisomes for virulence, we review recent advances of the peroxisomes roles during M. oryzae infection processes. We firstly introduce the molecular mechanisms and life cycles of the peroxisomes. And then, metabolic functions related to the peroxisomes are also discussed. Finally, we provide an overview of the relationship between peroxisomes and pathogenicity.
Collapse
|