1
|
Jörges B, Bury N, McManus M, Bansal A, Allison RS, Jenkin M, Harris LR. The impact of gravity on perceived object height. NPJ Microgravity 2024; 10:95. [PMID: 39367015 PMCID: PMC11452668 DOI: 10.1038/s41526-024-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Altering posture relative to the direction of gravity, or exposure to microgravity has been shown to affect many aspects of perception, including size perception. Our aims in this study were to investigate whether changes in posture and long-term exposure to microgravity bias the visual perception of object height and to test whether any such biases are accompanied by changes in precision. We also explored the possibility of sex/gender differences. Two cohorts of participants (12 astronauts and 20 controls, 50% women) varied the size of a virtual square in a simulated corridor until it was perceived to match a reference stick held in their hands. Astronauts performed the task before, twice during, and twice after an extended stay onboard the International Space Station. On Earth, they performed the task of sitting upright and lying supine. Earth-bound controls also completed the task five times with test sessions spaced similarly to the astronauts; to simulate the microgravity sessions on the ISS they lay supine. In contrast to earlier studies, we found no immediate effect of microgravity exposure on perceived object height. However, astronauts robustly underestimated the height of the square relative to the haptic reference and these estimates were significantly smaller 60 days or more after their return to Earth. No differences were found in the precision of the astronauts' judgments. Controls underestimated the height of the square when supine relative to sitting in their first test session (simulating Pre-Flight) but not in later sessions. While these results are largely inconsistent with previous results in the literature, a posture-dependent effect of simulated eye height might provide a unifying explanation. We were unable to make any firm statements related to sex/gender differences. We conclude that no countermeasures are required to mitigate the acute effects of microgravity exposure on object height perception. However, space travelers should be warned about late-emerging and potentially long-lasting changes in this perceptual skill.
Collapse
Affiliation(s)
- Björn Jörges
- Center for Vision Research, York University, Toronto, ON, Canada.
| | - Nils Bury
- Center for Vision Research, York University, Toronto, ON, Canada
- Institute of Visual Computing, Hochschule Bonn-Rhein-Sieg, St. Augustin, Germany
| | - Meaghan McManus
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Ambika Bansal
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Robert S Allison
- Center for Vision Research, York University, Toronto, ON, Canada
| | - Michael Jenkin
- Center for Vision Research, York University, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Morfoisse T, Herrera Altamira G, Angelini L, Clément G, Beraneck M, McIntyre J, Tagliabue M. Modality-Independent Effect of Gravity in Shaping the Internal Representation of 3D Space for Visual and Haptic Object Perception. J Neurosci 2024; 44:e2457202023. [PMID: 38267257 PMCID: PMC10977025 DOI: 10.1523/jneurosci.2457-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.
Collapse
Affiliation(s)
- Theo Morfoisse
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Gabriela Herrera Altamira
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Leonardo Angelini
- HumanTech Institute, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
- School of Management Fribourg, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
| | - Gilles Clément
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, Caen 14000, France
| | - Mathieu Beraneck
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Joseph McIntyre
- Tecnalia, Basque Research and Technology Alliance, San Sebastian 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Michele Tagliabue
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| |
Collapse
|
3
|
Dontre AJ. Weighing the impact of microgravity on vestibular and visual functions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:51-61. [PMID: 38245348 DOI: 10.1016/j.lssr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.
Collapse
Affiliation(s)
- Alexander J Dontre
- School of Psychology, Fielding Graduate University, 2020 De La Vina Street, Santa Barbara, CA 93105, USA; Department of Communications, Behavioral, and Natural Sciences, Franklin University, 201 South Grant Avenue, Columbus, OH 43215, USA.
| |
Collapse
|
4
|
Kuldavletova O, Navarro Morales DC, Quarck G, Denise P, Clément G. Spaceflight alters reaction time and duration judgment of astronauts. Front Physiol 2023; 14:1141078. [PMID: 37007995 PMCID: PMC10063900 DOI: 10.3389/fphys.2023.1141078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
We report a study on astronauts aimed at characterizing duration judgment before, during, and after long-duration stays on board the International Space Station. Ten astronauts and a control group of 15 healthy (non-astronaut) participants performed a duration reproduction task and a duration production task using a visual target duration ranging from 2 to 38 s. Participants also performed a reaction time test for assessing attention. Compared to control participants and preflight responses, the astronauts' reaction time increased during spaceflight. Also, during spaceflight, time intervals were under-produced while counting aloud and under-reproduced when there was a concurrent reading task. We hypothesize that time perception during spaceflight is altered by two mechanisms: (a) an acceleration of the internal clock through the changes in vestibular inputs in microgravity, and (b) difficulties in attention and working memory when a concurrent reading task is present. Prolonged isolation in confined areas, weightlessness, stress related to workload, and high-performance expectations could account for these cognitive impairments.
Collapse
Affiliation(s)
| | | | | | | | - Gilles Clément
- University of Caen Normandy, INSERM, COMETE U1075, CYCERON, CHU of Caen, Caen, France
| |
Collapse
|
5
|
Navarro Morales DC, Kuldavletova O, Quarck G, Denise P, Clément G. Time perception in astronauts on board the International Space Station. NPJ Microgravity 2023; 9:6. [PMID: 36658133 PMCID: PMC9852442 DOI: 10.1038/s41526-023-00250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
We perceive the environment through an elaborate mental representation based on a constant integration of sensory inputs, knowledge, and expectations. Previous studies of astronauts on board the International Space Station have shown that the mental representation of space, such as the perception of object size, distance, and depth, is altered in orbit. Because the mental representations of space and time have some overlap in neural networks, we hypothesized that perception of time would also be affected by spaceflight. Ten astronauts were tested before, during, and after a 6-8-month spaceflight. Temporal tasks included judging when one minute had passed and how long it had been since the start of the workday, lunch, docking of a vehicle, and a spacewalk. Compared to pre-flight estimates, there is a relative overestimation for the 1-min interval during the flight and a relative underestimation of intervals of hours in duration. However, the astronauts quite accurately estimated the number of days since vehicle dockings and spacewalks. Prolonged isolation in confined areas, stress related to workload, and high-performance expectations are potential factors contributing to altered time perception of daily events. However, reduced vestibular stimulations and slower motions in weightlessness, as well as constant references to their timeline and work schedule could also account for the change in the estimation of time by the astronauts in space.
Collapse
Affiliation(s)
- Deborah C. Navarro Morales
- grid.412043.00000 0001 2186 4076UNICAEN, INSERM, CHU Caen, Normandy University, COMETE, CYCERON, Esplanade de la Paix, 14032 Caen, France
| | - Olga Kuldavletova
- grid.412043.00000 0001 2186 4076UNICAEN, INSERM, CHU Caen, Normandy University, COMETE, CYCERON, Esplanade de la Paix, 14032 Caen, France
| | - Gaëlle Quarck
- grid.412043.00000 0001 2186 4076UNICAEN, INSERM, CHU Caen, Normandy University, COMETE, CYCERON, Esplanade de la Paix, 14032 Caen, France
| | - Pierre Denise
- grid.412043.00000 0001 2186 4076UNICAEN, INSERM, CHU Caen, Normandy University, COMETE, CYCERON, Esplanade de la Paix, 14032 Caen, France
| | - Gilles Clément
- grid.412043.00000 0001 2186 4076UNICAEN, INSERM, CHU Caen, Normandy University, COMETE, CYCERON, Esplanade de la Paix, 14032 Caen, France
| |
Collapse
|
6
|
Eudave L, Martínez M, Luis EO, Pastor MA. Egocentric distance perception in older adults: Results from a functional magnetic resonance imaging and driving simulator study. Front Aging Neurosci 2022; 14:936661. [PMID: 36275008 PMCID: PMC9584650 DOI: 10.3389/fnagi.2022.936661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to appropriately perceive distances in activities of daily living, such as driving, is necessary when performing complex maneuvers. With aging, certain driving behaviors and cognitive functions change; however, it remains unknown if egocentric distance perception (EDP) performance is altered and whether its neural activity also changes as we grow older. To that end, 19 young and 17 older healthy adults drove in a driving simulator and performed an functional magnetic resonance imaging (fMRI) experiment where we presented adults with an EDP task. We discovered that (a) EDP task performance was similar between groups, with higher response times in older adults; (b) older adults showed higher prefrontal and parietal activation; and (c) higher functional connectivity within frontal and parietal-occipital-cerebellar networks; and (d) an association between EDP performance and hard braking behaviors in the driving simulator was found. In conclusion, EDP functioning remains largely intact with aging, possibly due to an extended and effective rearrangement in functional brain resources, and may play a role in braking behaviors while driving.
Collapse
Affiliation(s)
- Luis Eudave
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
- *Correspondence: Luis Eudave,
| | - Martín Martínez
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Elkin O. Luis
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - María A. Pastor
- Neuroimaging Laboratory, Division of Neurosciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
- María A. Pastor,
| |
Collapse
|
7
|
Arshad I, Ferrè ER. Express: Cognition in Zero Gravity: Effects of Non-Terrestrial Gravity on Human Behaviour. Q J Exp Psychol (Hove) 2022; 76:979-994. [PMID: 35786100 PMCID: PMC10119906 DOI: 10.1177/17470218221113935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
As humanity prepares for deep space exploration, understanding the impact of spaceflight on bodily physiology is critical. While the effects of non-terrestrial gravity on the body are well established, little is known about its impact on human behaviour and cognition. Astronauts often describe dramatic alterations in sensorimotor functioning, including orientation, postural control and balance. Changes in cognitive functioning as well as in socio-affective processing have also been observed. Here we have reviewed the key literature and explored the impact of non-terrestrial gravity across three key functional domains: sensorimotor, cognition, and socio-affective processing. We have proposed a neuroanatomical model to account for the effects of non-terrestrial gravity in these domains. Understanding the impact of non-terrestrial gravity on human behaviour has never been more timely and it will help mitigate against risks in both commercial and non-commercial spaceflight.
Collapse
Affiliation(s)
- Iqra Arshad
- Department of Psychology, Royal Holloway University of London, Egham, UK 3162
| | - Elisa Raffaella Ferrè
- Department of Psychological Sciences, Birkbeck University of London, London, UK 3162
| |
Collapse
|
8
|
Abstract
Here, we investigate how body orientation relative to gravity affects the perceived size of visual targets. When in virtual reality, participants judged the size of a visual target projected at simulated distances of between 2 and 10 m and compared it to a physical reference length held in their hands while they were standing or lying prone or supine. Participants needed to make the visual size of the target 5.4% larger when supine and 10.1% larger when prone, compared to when they were in an upright position to perceive that it matched the physical reference length. Needing to make the target larger when lying compared to when standing suggests some not mutually exclusive possibilities. It may be that while tilted participants perceived the targets as smaller than when they were upright. It may be that participants perceived the targets as being closer while tilted compared to when upright. It may also be that participants perceived the physical reference length as longer while tilted. Misperceiving objects as larger and/or closer when lying may provide a survival benefit while in such a vulnerable position.
Collapse
Affiliation(s)
- John J-J Kim
- Centre for Vision Research, 7991York University, Canada
| | | | | |
Collapse
|
9
|
Tays GD, Hupfeld KE, McGregor HR, Salazar AP, De Dios YE, Beltran NE, Reuter-Lorenz PA, Kofman IS, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Front Neural Circuits 2021; 15:723504. [PMID: 34764856 PMCID: PMC8577506 DOI: 10.3389/fncir.2021.723504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Astronauts returning from spaceflight typically show transient declines in mobility and balance. Other sensorimotor behaviors and cognitive function have not been investigated as much. Here, we tested whether spaceflight affects performance on various sensorimotor and cognitive tasks during and after missions to the International Space Station (ISS). We obtained mobility (Functional Mobility Test), balance (Sensory Organization Test-5), bimanual coordination (bimanual Purdue Pegboard), cognitive-motor dual-tasking and various other cognitive measures (Digit Symbol Substitution Test, Cube Rotation, Card Rotation, Rod and Frame Test) before, during and after 15 astronauts completed 6 month missions aboard the ISS. We used linear mixed effect models to analyze performance changes due to entering the microgravity environment, behavioral adaptations aboard the ISS and subsequent recovery from microgravity. We observed declines in mobility and balance from pre- to post-flight, suggesting disruption and/or down weighting of vestibular inputs; these behaviors recovered to baseline levels within 30 days post-flight. We also identified bimanual coordination declines from pre- to post-flight and recovery to baseline levels within 30 days post-flight. There were no changes in dual-task performance during or following spaceflight. Cube rotation response time significantly improved from pre- to post-flight, suggestive of practice effects. There was also a trend for better in-flight cube rotation performance on the ISS when crewmembers had their feet in foot loops on the “floor” throughout the task. This suggests that tactile inputs to the foot sole aided orientation. Overall, these results suggest that sensory reweighting due to the microgravity environment of spaceflight affected sensorimotor performance, while cognitive performance was maintained. A shift from exocentric (gravity) spatial references on Earth toward an egocentric spatial reference may also occur aboard the ISS. Upon return to Earth, microgravity adaptions become maladaptive for certain postural tasks, resulting in transient sensorimotor performance declines that recover within 30 days.
Collapse
Affiliation(s)
- Grant D Tays
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Kathleen E Hupfeld
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R McGregor
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ana Paula Salazar
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States
| | | | | | | | | | - Scott J Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | | | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Friedl-Werner A, Machado ML, Balestra C, Liegard Y, Philoxene B, Brauns K, Stahn AC, Hitier M, Besnard S. Impaired Attentional Processing During Parabolic Flight. Front Physiol 2021; 12:675426. [PMID: 34054584 PMCID: PMC8155259 DOI: 10.3389/fphys.2021.675426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2021] [Accepted: 04/09/2021] [Indexed: 11/19/2022] Open
Abstract
Previous studies suggest that altered gravity levels during parabolic flight maneuvers affect spatial updating. Little is known about the impact of the experimental setting and psychological stressors associated with parabolic flight experiments on attentional processes. To address this gap, we investigated the level of alertness, selective and sustained attention in 1 and 0 g using a Go/No-Go Continuous Performance Task. We also identified several parameters associated with the experimental set-up of a parabolic flight that could be expected to affect attentional processing. These included the use of scopolamine, sleep quality prior to the flight day, participant’s stress level as well as mood and anxiety state before and after the parabolic flight. We observed a deterioration in attentional processing prior to the first parabola that was further aggravated in weightlessness and returned to baseline after the last parabola. Reaction Time, Hit and False Alarm Rate were moderately correlated with self-reported anxiety state, but not cortisol levels or emotional states. The use of scopolamine had minor effects on Reaction Time. Our results confirm previous studies reporting impairments of cognitive performance in 0 g, and highlight important aspects that should be considered for the design of behavioral research experiments in future parabolic flight campaigns.
Collapse
Affiliation(s)
- Anika Friedl-Werner
- Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Université de Normandie, INSERM U1075 COMETE, Caen, France
| | | | - Costantino Balestra
- Environmental, Occupational & Ageing "Integrative Physiology" Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium.,DAN Europe Research Division (Roseto (It)-Brussels (B)), Brussels, Belgium
| | | | | | - Katharina Brauns
- Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Alexander C Stahn
- Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany.,Unit of Experimental Psychiatry, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Martin Hitier
- Université de Normandie, INSERM U1075 COMETE, Caen, France.,Department of Otolaryngology Head and Neck Surgery, Centre Hospitalier Universitaire de Caen Normandie, Caen, France.,Department of Anatomy, Université de Normandie, Caen, France
| | - Stephane Besnard
- Université de Normandie, INSERM U1075 COMETE, Caen, France.,Aix Marseille Université, CNRS, UMR 7260, Laboratoire de Neurosciences Sensorielles et Cognitives - Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Marseille, France
| |
Collapse
|
11
|
Stahn AC, Riemer M, Wolbers T, Werner A, Brauns K, Besnard S, Denise P, Kühn S, Gunga HC. Spatial Updating Depends on Gravity. Front Neural Circuits 2020; 14:20. [PMID: 32581724 PMCID: PMC7291770 DOI: 10.3389/fncir.2020.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
As we move through an environment the positions of surrounding objects relative to our body constantly change. Maintaining orientation requires spatial updating, the continuous monitoring of self-motion cues to update external locations. This ability critically depends on the integration of visual, proprioceptive, kinesthetic, and vestibular information. During weightlessness gravity no longer acts as an essential reference, creating a discrepancy between vestibular, visual and sensorimotor signals. Here, we explore the effects of repeated bouts of microgravity and hypergravity on spatial updating performance during parabolic flight. Ten healthy participants (four women, six men) took part in a parabolic flight campaign that comprised a total of 31 parabolas. Each parabola created about 20–25 s of 0 g, preceded and followed by about 20 s of hypergravity (1.8 g). Participants performed a visual-spatial updating task in seated position during 15 parabolas. The task included two updating conditions simulating virtual forward movements of different lengths (short and long), and a static condition with no movement that served as a control condition. Two trials were performed during each phase of the parabola, i.e., at 1 g before the start of the parabola, at 1.8 g during the acceleration phase of the parabola, and during 0 g. Our data demonstrate that 0 g and 1.8 g impaired pointing performance for long updating trials as indicated by increased variability of pointing errors compared to 1 g. In contrast, we found no support for any changes for short updating and static conditions, suggesting that a certain degree of task complexity is required to affect pointing errors. These findings are important for operational requirements during spaceflight because spatial updating is pivotal for navigation when vision is poor or unreliable and objects go out of sight, for example during extravehicular activities in space or the exploration of unfamiliar environments. Future studies should compare the effects on spatial updating during seated and free-floating conditions, and determine at which g-threshold decrements in spatial updating performance emerge.
Collapse
Affiliation(s)
- Alexander Christoph Stahn
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | - Martin Riemer
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anika Werner
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany.,Normandie Université, UNICAEN, INSERM, COMETE, Caen, France
| | - Katharina Brauns
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| | | | - Pierre Denise
- Normandie Université, UNICAEN, INSERM, COMETE, Caen, France
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Hanns-Christian Gunga
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Berlin, Germany
| |
Collapse
|
12
|
Clément G, Bukley A, Loureiro N, Lindblad L, Sousa D, Zandvilet A. Horizontal and Vertical Distance Perception in Altered Gravity. Sci Rep 2020; 10:5471. [PMID: 32214172 PMCID: PMC7096486 DOI: 10.1038/s41598-020-62405-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 11/25/2022] Open
Abstract
The perception of the horizontal and vertical distances of a visual target to an observer was investigated in parabolic flight during alternating short periods of normal gravity (1 g). microgravity (0 g), and hypergravity (1.8 g). The methods used for obtaining absolute judgments of egocentric distance included verbal reports and visually directed motion toward a memorized visual target by pulling on a rope with the arms (blind pulling). The results showed that, for all gravity levels, the verbal reports of distance judgments were accurate for targets located between 0.6 and 6.0 m. During blind pulling, subjects underestimated horizontal distances as distances increased, and this underestimation decreased in 0 g. Vertical distances for up targets were overestimated and vertical distances for down targets were underestimated in both 1 g and 1.8 g. This vertical asymmetry was absent in 0 g. The results of the present study confirm that blind pulling and verbal reports are independently influenced by gravity. The changes in distance judgments during blind pulling in 0 g compared to 1 g support the view that, during an action-based task, subjects base their perception of distance on the estimated motor effort of navigating to the perceived object.
Collapse
Affiliation(s)
| | - Angie Bukley
- International Space University Org., Inc., Webster, Massachusetts, USA
| | - Nuno Loureiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - André Zandvilet
- European Space Research and Technology Center, Noordwijk, The Netherlands
| |
Collapse
|
13
|
|