1
|
Jung H, Kyun ML, Kwon JI, Kim J, Kim JK, Park D, Lee YB, Moon KS. Amplified response of drug-induced liver fibrosis via immune cell co-culture in a 3D in vitro hepatic fibrosis model. Biomater Sci 2024. [PMID: 39483068 DOI: 10.1039/d4bm00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Liver fibrosis, a critical consequence of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition driven by inflammation. This process involves complex interactions among hepatocytes, hepatic stellate cells (HSCs), and Kupffer cells, the liver's resident macrophages. Kupffer cells are essential in initiating fibrosis through the release of pro-inflammatory cytokines that activate HSCs. Although various in vitro liver fibrosis models have been developed, there is a lack of models that include the immune environment of the liver to clarify the influence of immune cells on the progression of liver fibrosis. We developed an in vitro liver fibrosis model by co-culturing hepatocytes (HepaRG), a hepatic stellate cell line (LX-2), and macrophages (differentiated THP-1). The effects of liver fibrosis inducers, transforming growth factor-beta1 (TGF-β1) and methotrexate (MTX), on the inflammatory response and stellate cell activation were evaluated in this triple co-culture model. A triple co-culture condition was developed as a 3D in vitro model using gelatin methacrylate (GelMA), offering a more biomimetic environment and achieving liver fibrosis via immune cell activation associated ECM deposition. In this study, the developed triple co-culture model has the potential to elucidate cell progression roles in liver fibrosis and can be applied in drug screening and toxicity assessments targeting liver fibrosis.
Collapse
Affiliation(s)
- Hyewon Jung
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34114, Republic of Korea.
| | - Mi-Lang Kyun
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Ji-In Kwon
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Department of Food and Nutrition, University of Hannam, Daejeon, 34054, Republic of Korea
| | - Jeongha Kim
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Department of Food and Nutrition, University of Hannam, Daejeon, 34054, Republic of Korea
| | - Ju-Kang Kim
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Daeui Park
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34114, Republic of Korea.
- Center for Biomimetic Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34114, Republic of Korea.
| | - Kyoung-Sik Moon
- Center for Global Biopharmaceutical Research, Korea Institute of Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
2
|
Valente LC, Bacil GP, Riechelmann-Casarin L, Barbosa GC, Barbisan LF, Romualdo GR. Exploring in vitro modeling in hepatocarcinogenesis research: morphological and molecular features and similarities to the corresponding human disease. Life Sci 2024; 351:122781. [PMID: 38848937 DOI: 10.1016/j.lfs.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | | | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil.
| |
Collapse
|
3
|
Ascheid D, Baumann M, Pinnecker J, Friedrich M, Szi-Marton D, Medved C, Bundalo M, Ortmann V, Öztürk A, Nandigama R, Hemmen K, Ergün S, Zernecke A, Hirth M, Heinze KG, Henke E. A vascularized breast cancer spheroid platform for the ranked evaluation of tumor microenvironment-targeted drugs by light sheet fluorescence microscopy. Nat Commun 2024; 15:3599. [PMID: 38678014 PMCID: PMC11055956 DOI: 10.1038/s41467-024-48010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.
Collapse
Affiliation(s)
- David Ascheid
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Magdalena Baumann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jürgen Pinnecker
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mike Friedrich
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Daniel Szi-Marton
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Cornelia Medved
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Maja Bundalo
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Vanessa Ortmann
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Asli Öztürk
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rajender Nandigama
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Max Planck Institute of Heart and Lung Research, Bad Nauheim, Germany
| | - Katherina Hemmen
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Süleymann Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Matthias Hirth
- Institut für Medientechnik, Technische Universität Illmenau, Illmenau, Germany
| | - Katrin G Heinze
- Chair of Molecular Microscopy, Rudolf-Virchow-Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Graduate School for Life Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Ferreira J, Bicho M, Serejo F. Effects of HCV Clearance with Direct-Acting Antivirals (DAAs) on Liver Stiffness, Liver Fibrosis Stage and Metabolic/Cellular Parameters. Viruses 2024; 16:371. [PMID: 38543737 PMCID: PMC10974411 DOI: 10.3390/v16030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 05/23/2024] Open
Abstract
INTRODUCTION Chronic hepatitis C (CHC) is a clinical and pathological syndrome with various causes and is characterized by varying degrees of hepatocellular necrosis and inflammation. It is a significant cause of liver transplantation and liver-related death worldwide. The hepatic manifestations of CHC are typically characterized by slowly progressing liver fibrosis, which is a non-specific and often disproportionate response to tissue damage. A large majority of HCV patients have extrahepatic manifestations with varying degrees of severity. HCV infection is a risk factor for cardiovascular disease and diabetes mellitus, which increases insulin resistance, oxidative stress, and iron overload and causes chronic systemic inflammation. HCV infection is treated using direct-acting antivirals (DAAs) with cure rates of over 95 percent, minimal side effects, and shorter therapeutic courses. Despite the effective elimination of the virus, it seemed pertinent to understand to what extent HCV clearance eliminates or attenuates all the systemic alterations already induced by the virus during infection and chronicity. OBJECTIVES Our study aimed to determine whether eliminating HCV with DAAs alters the severity of liver disease (liver stiffness and liver fibrosis stage by TE) and the metabolic/cellular profile of patients with CHC. MATERIALS AND METHODS A group of 329 CHC patients from a Gastroenterology and Hepatology outpatient department were prospectively studied. Of these, 134 were also studied with DAAs. The liver fibrosis stage was evaluated by transient elastography (TE) using a FibroScan® device, and two groups were established for the analysis of liver stiffness (LS): mild and moderate stiffness (fibrosis F1 and F2; F1/2) and severe stiffness (fibrosis and cirrhosis F3 and F4; F3/4). Metabolic/cellular parameters were evaluated before and after antiviral treatment using standard methods: alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl-transpeptidase (γ-GT), haptoglobin (Hp), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), free iron (Fe), transferrin saturation (TS), total iron binding capacity (TIBC), ferritin (Ft), glycemia, insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and platelets count. The results were statistically analyzed using SPSS 24.0 for Windows. RESULTS Comparing the fibrosis stage before and after DAAs treatment, we verify a reduction in LS in 85.7% of patients and an improvement in liver fibrosis stage in 22.2% of them after DAAs treatment. Before DAAs treatment, patients showed a 2.410 risk for higher fibrosis stages (F3/4). Comparing metabolic/cellular parameters before and after DAAs treatment, patients showed lower ALP, AST, ALT, γGT, TG, Fe, TIBC, and Ft values and higher TC, LDL, and Hp values after treatment. As such, HCV elimination reduces iron overload and insulin resistance. On the other hand, it caused dyslipidemia, raising total cholesterol and LDL to levels outside the reference values. The improvement in the liver fibrosis stage by TE was mainly associated with higher baseline platelet count and HDL values and lower insulin resistance. CONCLUSIONS With this study, we were able to contribute to the knowledge of the effects of HCV elimination with DAAs on liver disease and metabolic profile to improve the quality of treatment and follow-up of these patients after HCV elimination.
Collapse
Affiliation(s)
- Joana Ferreira
- Institute for Scientific Research Bento Rocha Cabral, 1250-047 Lisbon, Portugal;
- TERRA, ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Manuel Bicho
- Institute for Scientific Research Bento Rocha Cabral, 1250-047 Lisbon, Portugal;
- TERRA, ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Fátima Serejo
- TERRA, ISAMB, Genetics Laboratory, Lisbon Medical School, University of Lisbon, 1649-028 Lisbon, Portugal;
- Gastroenterology and Hepatology Department, Hospital de Santa Maria, 1649-028 Lisbon, Portugal
| |
Collapse
|
5
|
Hopf NB, Suter-Dick L, Huwyler J, Borgatta M, Hegg L, Pamies D, Paschoud H, Puligilla RD, Reale E, Werner S, Zurich MG. Novel Strategy to Assess the Neurotoxicity of Organic Solvents Such as Glycol Ethers: Protocol for Combining In Vitro and In Silico Methods With Human-Controlled Exposure Experiments. JMIR Res Protoc 2024; 13:e50300. [PMID: 38236630 PMCID: PMC10835597 DOI: 10.2196/50300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Chemicals are not required to be tested systematically for their neurotoxic potency, although they may contribute to the development of several neurological diseases. The absence of systematic testing may be partially explained by the current Organisation for Economic Co-operation and Development (OECD) Test Guidelines, which rely on animal experiments that are expensive, laborious, and ethically debatable. Therefore, it is important to understand the risks to exposed workers and the general population exposed to domestic products. In this study, we propose a strategy to test the neurotoxicity of solvents using the commonly used glycol ethers as a case study. OBJECTIVE This study aims to provide a strategy that can be used by regulatory agencies and industries to rank solvents according to their neurotoxicity and demonstrate the use of toxicokinetic modeling to predict air concentrations of solvents that are below the no observed adverse effect concentrations (NOAECs) for human neurotoxicity determined in in vitro assays. METHODS The proposed strategy focuses on a complex 3D in vitro brain model (BrainSpheres) derived from human-induced pluripotent stem cells (hiPSCs). This model is accompanied by in vivo, in vitro, and in silico models for the blood-brain barrier (BBB) and in vitro models for liver metabolism. The data are integrated into a toxicokinetic model. Internal concentrations predicted using this toxicokinetic model are compared with the results from in vivo human-controlled exposure experiments for model validation. The toxicokinetic model is then used in reverse dosimetry to predict air concentrations, leading to brain concentrations lower than the NOAECs determined in the hiPSC-derived 3D brain model. These predictions will contribute to the protection of exposed workers and the general population with domestic exposures. RESULTS The Swiss Centre for Applied Human Toxicology funded the project, commencing in January 2021. The Human Ethics Committee approval was obtained on November 16, 2022. Zebrafish experiments and in vitro methods started in February 2021, whereas recruitment of human volunteers started in 2022 after the COVID-19 pandemic-related restrictions were lifted. We anticipate that we will be able to provide a neurotoxicity testing strategy by 2026 and predicted air concentrations for 6 commonly used propylene glycol ethers based on toxicokinetic models incorporating liver metabolism, BBB leakage parameters, and brain toxicity. CONCLUSIONS This study will be of great interest to regulatory agencies and chemical industries needing and seeking novel solutions to develop human chemical risk assessments. It will contribute to protecting human health from the deleterious effects of environmental chemicals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50300.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Laura Suter-Dick
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Jörg Huwyler
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Lucie Hegg
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - David Pamies
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hélène Paschoud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ramya Deepthi Puligilla
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elena Reale
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Sophie Werner
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Caon E, Forlano R, Mullish BH, Manousou P, Rombouts K. Liver sinusoidal cells in the diagnosis and treatment of liver diseases: Role of hepatic stellate cells. SINUSOIDAL CELLS IN LIVER DISEASES 2024:513-532. [DOI: 10.1016/b978-0-323-95262-0.00025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Boran T, Zengin OS, Seker Z, Gunaydin Akyildiz A, Oztas E, Özhan G. The cyclin-dependent kinase inhibitor abemaciclib-induced hepatotoxicity: Insight on the molecular mechanisms in HepG2/THP-1 co-culture model. Toxicol Lett 2024; 391:1-12. [PMID: 37992977 DOI: 10.1016/j.toxlet.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Drug-induced liver injury (DILI) is one of the widespread causes of liver injury and immune system plays important role. Abemaciclib (ABE) is a cyclin-dependent kinase inhibitor used as monotherapy or combination therapy in the treatment of breast cancer. Like other kinase inhibitors, the underlying mechanisms of ABE-induced hepatotoxicity are not completely known yet. In the current study, hepatotoxicity of ABE was evaluated with HepG2/THP-1 co-culture model which has been developed in recent years for the evaluation of DILI potential. Following ABE treatment, oxidative stress, mitochondrial damage, cytokine secretion levels, apoptotic/necrotic cell death were determined. According to our results, ROS production along with GSH depletion was observed in HepG2 cells after ABE treatment. ABE promoted secretion of pro-inflammatory mediators (TNF-α and MCP-1) and declined anti-inflammatory cytokine IL-10 release. Besides, NFKβ and JNK1 protein expression levels increased following ABE treatment. ABE enhanced intracellular calcium levels, induced early apoptotic and necrotic cell deaths in HepG2 cells. Furthermore, the changes in some mitochondrial parameters including a reducement in intracellular ATP levels and complex V activity; hyperpolarized mitochondrial membrane potential and enhanced mitochondrial ROS levels were observed, whereas mitochondrial mass did not show any differences after ABE treatments. Therefore, ABE-induced hepatotoxic effects is probably via oxidative stress, inflammatory response and necrotic cell death rather than direct mitochondrial toxicity. In conclusion; the study makes a significant contribution to strengthening the infrastructure we have on in vitro toxicity mechanism evaluations, which are the basis of preclinical toxicity studies.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Istanbul University-Cerrahpasa, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34500 Istanbul, Turkey
| | - Ozge Sultan Zengin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Ezgi Oztas
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey.
| |
Collapse
|
8
|
Carvalho AM, Bansal R, Barrias CC, Sarmento B. The Material World of 3D-Bioprinted and Microfluidic-Chip Models of Human Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307673. [PMID: 37961933 DOI: 10.1002/adma.202307673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
9
|
Yoon Y, Gong SC, Kim MY, Baik SK, Hong JE, Rhee KJ, Ryu H, Eom YW. Generation of Fibrotic Liver Organoids Using Hepatocytes, Primary Liver Sinusoidal Endothelial Cells, Hepatic Stellate Cells, and Macrophages. Cells 2023; 12:2514. [PMID: 37947592 PMCID: PMC10647544 DOI: 10.3390/cells12212514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Liver organoids generated with single or multiple cell types have been used to investigate liver fibrosis development, toxicity, pathogenesis, and drug screening. However, organoid generation is limited by the availability of cells isolated from primary tissues or differentiated from various stem cells. To ensure cell availability for organoid formation, we investigated whether liver organoids could be generated with cell-line-based Huh-7 hepatocellular carcinoma cells, macrophages differentiated from THP-1 monocytes, and LX-2 hepatic stellate cells (HSCs) and primary liver sinusoidal endothelial cells (LSECs). In liver organoids, hepatocyte-, LSEC-, macrophage-, and HSC-related gene expression increased relative to that in two-dimensional (2D)-cultured Huh-7/LSEC/THP-1/LX-2 cells without Matrigel. Thioacetamide (TAA) increased α-smooth muscle actin expression in liver organoids but not in 2D-cultured cells, whereas in TAA-treated organoids, the expression of hepatic and LSEC markers decreased and that of macrophage and HSC markers increased. TAA-induced fibrosis was suppressed by treatment with N-acetyl-L-cysteine or tumor-necrosis-factor-stimulated gene 6 protein. The results showed that liver toxicants could induce fibrotic and inflammatory responses in liver organoids comprising Huh-7/LSEC/macrophages/LX-2 cells, resulting in fibrotic liver organoids. We propose that cell-line-based organoids can be used for disease modeling and drug screening to improve liver fibrosis treatment.
Collapse
Affiliation(s)
- Yongdae Yoon
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| | - Seong Chan Gong
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Moon Young Kim
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Soon Koo Baik
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (J.-E.H.); (K.-J.R.)
| | - Hoon Ryu
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Young Woo Eom
- Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea; (Y.Y.); (M.Y.K.); (S.K.B.)
| |
Collapse
|
10
|
Luu RJ, Hoefler BC, Gard AL, Ritenour CR, Rogers MT, Kim ES, Coppeta JR, Cain BP, Isenberg BC, Azizgolshani H, Fajardo-Ramirez OR, García-Cardeña G, Lech MP, Tomlinson L, Charest JL, Williams C. Fibroblast activation in response to TGFβ1 is modulated by co-culture with endothelial cells in a vascular organ-on-chip platform. Front Mol Biosci 2023; 10:1160851. [PMID: 37577751 PMCID: PMC10421749 DOI: 10.3389/fmolb.2023.1160851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFβ1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFβ1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFβ1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.
Collapse
Affiliation(s)
- Rebeccah J. Luu
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - B. Christopher Hoefler
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ashley L. Gard
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | | | - Miles T. Rogers
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Ernest S. Kim
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Jonathan R. Coppeta
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brian P. Cain
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Hesham Azizgolshani
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Oscar R. Fajardo-Ramirez
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Guillermo García-Cardeña
- Laboratory for Systems Mechanobiology, Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | - Joseph L. Charest
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| | - Corin Williams
- Bioengineering Division, The Charles Stark Draper Laboratory Inc., Cambridge, MA, United States
| |
Collapse
|
11
|
Phuangbubpha P, Thara S, Sriboonaied P, Saetan P, Tumnoi W, Charoenpanich A. Optimizing THP-1 Macrophage Culture for an Immune-Responsive Human Intestinal Model. Cells 2023; 12:1427. [PMID: 37408263 DOI: 10.3390/cells12101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Previously established immune-responsive co-culture models with macrophages have limitations due to the dedifferentiation of macrophages in long-term cultures. This study is the first report of a long-term (21-day) triple co-culture of THP-1 macrophages (THP-1m) with Caco-2 intestinal epithelial cells and HT-29-methotrexate (MTX) goblet cells. We demonstrated that high-density seeded THP-1 cells treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h differentiated stably and could be cultured for up to 21 days. THP-1m were identified by their adherent morphology and lysosome expansion. In the triple co-culture immune-responsive model, cytokine secretions during lipopolysaccharide-induced inflammation were confirmed. Tumor necrosis factor-alpha and interleukin 6 levels were elevated in the inflamed state, reaching 824.7 ± 130.0 pg/mL and 609.7 ± 139.5 pg/mL, respectively. Intestinal membrane integrity was maintained with a transepithelial electrical resistance value of 336.4 ± 18.0 Ω·cm2. Overall, our findings suggest that THP-1m can be effectively employed in models of long-term immune responses in both normal and chronic inflammatory states of the intestinal epithelium, making them a valuable tool for future research on the association between the immune system and gut health.
Collapse
Affiliation(s)
- Pornwipa Phuangbubpha
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sanya Thara
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Patsawee Sriboonaied
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Puretat Saetan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wanwiwa Tumnoi
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
12
|
Schmidt S, Messner CJ, Gaiser C, Hämmerli C, Suter-Dick L. Methotrexate-Induced Liver Injury Is Associated with Oxidative Stress, Impaired Mitochondrial Respiration, and Endoplasmic Reticulum Stress In Vitro. Int J Mol Sci 2022; 23:ijms232315116. [PMID: 36499436 PMCID: PMC9735468 DOI: 10.3390/ijms232315116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Low-dose methotrexate (MTX) is a standard therapy for rheumatoid arthritis due to its low cost and efficacy. Despite these benefits, MTX has been reported to cause chronic drug-induced liver injury, namely liver fibrosis. The hallmark of liver fibrosis is excessive scarring of liver tissue, triggered by hepatocellular injury and subsequent activation of hepatic stellate cells (HSCs). However, little is known about the precise mechanisms through which MTX causes hepatocellular damage and activates HSCs. Here, we investigated the mechanisms leading to hepatocyte injury in HepaRG and used immortalized stellate cells (hTERT-HSC) to elucidate the mechanisms leading to HSC activation by exposing mono- and co-cultures of HepaRG and hTERT-HSC to MTX. The results showed that at least two mechanisms are involved in MTX-induced toxicity in HepaRG: (i) oxidative stress through depletion of glutathione (GSH) and (ii) impairment of cellular respiration in a GSH-independent manner. Furthermore, we measured increased levels of endoplasmic reticulum (ER) stress in activated HSC following MTX treatment. In conclusion, we established a human-relevant in vitro model to gain mechanistical insights into MTX-induced hepatotoxicity, linked oxidative stress in HepaRG to a GSH-dependent and -independent pathway, and hypothesize that not only oxidative stress in hepatocytes but also ER stress in HSCs contribute to MTX-induced activation of HSCs.
Collapse
Affiliation(s)
- Saskia Schmidt
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
| | - Carine Gaiser
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Carina Hämmerli
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4055 Basel, Switzerland
- Correspondence:
| |
Collapse
|
13
|
Zhao Q, Bai J, Chen Y, Liu X, Zhao S, Ling G, Jia S, Zhai F, Xiang R. An optimized herbal combination for the treatment of liver fibrosis: Hub genes, bioactive ingredients, and molecular mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115567. [PMID: 35870684 DOI: 10.1016/j.jep.2022.115567] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a chronic liver disease that can lead to cirrhosis, liver failure, and hepatocellular carcinoma, and it is associated with long-term adverse outcomes and mortality. As a primary resource for complementary and alternative medicine, traditional Chinese medicine (TCM) has accumulated a large number of effective formulas for the treatment of liver fibrosis in clinical practice. However, studies on how to systematically optimize TCM formulas are still lacking. AIM OF THE REVIEW To provide a methodological reference for the systematic optimization of TCM formulae against liver fibrosis and explored the underlying molecular mechanisms; To provide an efficient method for searching for lead compounds from natural sources and developing from herbal medicines; To enable clinicians and patients to make more reasonable choices and promote the effective treatment toward those patients with liver fibrosis. MATERIALS AND METHODS TCM formulas related to treating liver fibrosis were collected from the Web of Science, PubMed, the China National Knowledge Infrastructure (CNKI), Wan Fang, and the Chinese Scientific Journals Database (VIP). Furthermore, the TCM compatibility patterns were mined using association analysis. The core TCM combinations were found by designing an optimized formulas algorithm. Finally, the hub target proteins, potential molecular mechanisms, and active compounds were explored through integrative pharmacology and docking-based inverse virtual screening (IVS) approaches. RESULTS We found that the herbs for reinforcing deficiency, activating blood, removing blood stasis, and clearing heat were the basis of TCM formulae patterns. Furthermore, the combination of Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge; Chinese salvia/Danshen), Astragali Radix (Astragalus membranaceus (Fisch.) Bunge; Astragalus/Huangqi), and Radix Bupleuri (Bupleurum chinense DC.; Bupleurum/Chaihu) was identified as core groups. A total of six targets (TNF, STAT3, EGFR, IL2, ICAM1, PTGS2) play a pivotal role in TCM-mediated liver fibrosis inhibition. (-)-Cryptotanshinone, Tanshinaldehyde, Ononin, Thymol, Daidzein, and Formononetin were identified as active compounds in TCM. And mechanistically, TCM could affect the development of liver fibrosis by regulating inflammation, immunity, angiogenesis, antioxidants, and involvement in TNF, MicroRNAs, Jak-STAT, NF-kappa B, and C-type lectin receptors (CLRs) signaling pathways. Molecular docking results showed that key components had good potential to bind to the target genes. CONCLUSION In summary, this study provides a methodological reference for the systematic optimization of TCM formulae and exploration of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Bai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yiwei Chen
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin Liu
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shangfeng Zhao
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Guixia Ling
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Shubing Jia
- Faculty of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Fei Zhai
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Rongwu Xiang
- School of Medical Equipment, Shenyang Pharmaceutical University, Shenyang, 110016, China; Liaoning Professional Technology Innovation Center on Medical Big Data and Artificial Intelligence, Shenyang, 110016, China.
| |
Collapse
|
14
|
Jung HJ, Cho K, Kim SY, Seong JK, Oh SH. Ethanol extract of Pharbitis nil ameliorates liver fibrosis through regulation of the TGFβ1-SMAD2/3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115370. [PMID: 35568114 DOI: 10.1016/j.jep.2022.115370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFβ1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFβ1-induced SMAD2/3 activation.
Collapse
Affiliation(s)
- Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| | - Kyohee Cho
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute of Veterinary Science, BK21 Plus Program for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| |
Collapse
|
15
|
Huangjia Ruangan Granule Inhibits Inflammation in a Rat Model with Liver Fibrosis by Regulating TNF/MAPK and NF-κB Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8105306. [PMID: 35942372 PMCID: PMC9356785 DOI: 10.1155/2022/8105306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Abstract
The Huangjia Ruangan granule (HJRG) is a clinically effective Kampo formula, which has a significant effect on liver fibrosis and early liver cirrhosis. However, the mechanism underlying HJRG in treating liver fibrosis remains unclear. In this study, carbon tetrachloride (CCl4) was used to induce liver fibrosis in rats to clarify the effect of HJRG on liver fibrosis and its mechanism. Using network pharmacology, the potential mechanism of HJRG was initially explored, and a variety of analyses were performed to verify this mechanism. In the liver fibrosis model, treatment with HJRG can maintain the liver morphology, lower the levels of AST and ALT in the serum, and ameliorate pathological damage. Histopathological examinations revealed that the liver structure was significantly improved and fibrotic changes were alleviated. It can effectively inhibit collagen deposition and the expression of α-SMA, reduce the levels of the rat serum (HA, LN, PC III, and Col IV), and inhibit the expression of desmin, vimentin, and HYP content in the liver. Analyzing the results of network pharmacology, the oxidative stress, inflammation, and the related pathways (primarily the TNF signaling pathway) were identified as the potential mechanism of HJRG against liver fibrosis. Experiments confirmed that HJRG can significantly increase the content of superoxide dismutase and glutathione and reduce the levels of malondialdehyde and myeloperoxidase in the rat liver; in addition, HJRG significantly inhibited the content of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and reduced the expression of inflammatory regulators (Cox2 and iNOS). Meanwhile, treatment with HJRG inhibited the phosphorylation of NF-κB P65, IκBα, ERK, JNK, and MAPK P38. Moreover, HJRG treatment reversed the increased expression of TNFR1. The Huangjia Ruangan granule can effectively inhibit liver fibrosis through antioxidation, suppressing liver inflammation by regulating the TNF/MAPK and NF-κB signaling pathways, thereby preventing the effect of liver fibrosis.
Collapse
|
16
|
Yan L, Messner CJ, Tian M, Gou X, Suter-Dick L, Zhang X. Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model. ENVIRONMENTAL RESEARCH 2022; 210:112906. [PMID: 35181307 DOI: 10.1016/j.envres.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
17
|
Gwag T, Ma E, Zhou C, Wang S. Anti-CD47 antibody treatment attenuates liver inflammation and fibrosis in experimental non-alcoholic steatohepatitis models. Liver Int 2022; 42:829-841. [PMID: 35129307 PMCID: PMC9101015 DOI: 10.1111/liv.15182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS With the epidemic burden of obesity and metabolic diseases, nonalcoholic fatty liver disease (NAFLD) including steatohepatitis (NASH) has become the most common chronic liver disease in the western world. NASH may progress to cirrhosis and hepatocellular carcinoma. Currently, no treatment is available for NASH. Therefore, finding a therapy for NAFLD/NASH is in urgent need. Previously we have demonstrated that mice lacking CD47 or its ligand thrombospondin1 (TSP1) are protected from obesity-associated NALFD. This suggests that CD47 blockade might be a novel treatment for obesity-associated metabolic disease. Thus, in this study, the therapeutic potential of an anti-CD47 antibody in NAFLD progression was determined. METHODS Both diet-induced NASH mouse model and human NASH organoid model were utilized in this study. NASH was induced in mice by feeding with diet enriched with fat, fructose and cholesterol (AMLN diet) for 20 weeks and then treated with anti-CD47 antibody or control IgG for 4 weeks. Body weight, body composition and liver phenotype were analysed. RESULTS We found that anti-CD47 antibody treatment did not affect mice body weight, fat mass or liver steatosis. However, liver immune cell infiltration, inflammation and fibrosis were significantly reduced by anti-CD47 antibody treatment. In vitro data further showed that CD47 blockade prevented hepatic stellate cell activation and NASH progression in a human NASH organoid model. CONCLUSION Collectively, these data suggest that anti-CD47 antibody might be a new therapeutic option for obesity-associated NASH and liver fibrosis.
Collapse
Affiliation(s)
- Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502
| | - Eric Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502.,To whom correspondence should be addressed: Shuxia Wang, MD, PhD, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY 40536. Tel: 859-218-1367, Fax: 859-257-3646,
| |
Collapse
|
18
|
Solhi R, Lotfi AS, Lotfinia M, Farzaneh Z, Piryaei A, Najimi M, Vosough M. Hepatic stellate cell activation by TGFβ induces hedgehog signaling and endoplasmic reticulum stress simultaneously. Toxicol In Vitro 2022; 80:105315. [PMID: 35051607 DOI: 10.1016/j.tiv.2022.105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellates (HSCs) is known as the major cause of initiation and progression of liver fibrosis. A wide array of events occurs during HSC activation including induction of hedgehog (Hh) signaling and endoplasmic reticulum (ER) stress. Targeting HSC activation may provide promising insights into liver fibrosis treatment. In this regard, establishing in vitro models which can mimic the molecular pathways of interest is very important. We aimed to activate HSC in which Hh signaling and ER stress are stimulated simultaneously. We used 5 ng/ml TGFβ to activate LX-2 cells, HSC cell line. Gene expression analysis using qRT-PCR, immunostaining and immunoblotting were performed to show HSC activation associated markers. Furthermore, the migration capacity of the TGFβ treated cells is evaluated. The results demonstrated that major fibrogenic markers including collagen1a, lysyl oxidase, and tissue inhibitor of matrix metalloproteinase 1 genes are up-regulated significantly. In addition, our immunofluorescence and immunoblotting results showed that protein levels of GLI-2 and XBP1, were enhanced. Moreover, we found that TGFβ treatment reduced the migration of LX-2 cells. Our results are compatible with high throughput data analysis with respect to differentially expressed genes of activated HSC compared to the quiescent ones. Moreover, our findings suggest that quercetin can reduce fibrogenic markers of activated HSCs as well as osteopontin expression, a target gene of hedgehog signaling.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Abbas Piryaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
19
|
Nrf2/ARE axis signalling in hepatocyte cellular death. Mol Biol Rep 2022; 49:4039-4053. [PMID: 35020121 DOI: 10.1007/s11033-022-07125-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
The Nrf2-ARE transcriptional pathway plays an important role amongst cellular defence systems regulating and ensuring adequacy of redox responses and oxidant signalling factors. Hepatocyte cellular death and injury is a prominent feature underlying liver pathologies. Diverse endogenous molecules and targets contribute to the outcome of cell survival and the consequent mode of cell death. Several research efforts focused on the confirmation of Nrf2 presence in cell death and its vital necessity against cell compromise, however, little they comprehend of such participation. Hepatocyte cell death modes discussed in this review including autophagy, apoptosis, necrosis, ferroptosis, pyroptosis, fibrosis and others, vary in response of the stimuli burdened. The current review presents a handful of highlights and crosstalk involved in the communication of Nrf2 signalling network with the "up to date" reported hepatocyte cell death modes and their underling mechanisms, and addressing key cellular networks of hepatocyte fate, through a perspective of Nrf2 as a critical transcriptional factor. Collectively, labelling the cross-transduction of Nrf2-ARE axis with key cell execution pathways could provide insights to therapeutic interventions and better research outcomes.
Collapse
|
20
|
Ströbel S, Kostadinova R, Fiaschetti-Egli K, Rupp J, Bieri M, Pawlowska A, Busler D, Hofstetter T, Sanchez K, Grepper S, Thoma E. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep 2021; 11:22765. [PMID: 34815444 PMCID: PMC8611054 DOI: 10.1038/s41598-021-01951-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive and severe liver disease, characterized by lipid accumulation, inflammation, and downstream fibrosis. Despite its increasing prevalence, there is no approved treatment yet available for patients. This has been at least partially due to the lack of predictive preclinical models for studying this complex disease. Here, we present a 3D in vitro microtissue model that uses spheroidal, scaffold free co-culture of primary human hepatocytes, Kupffer cells, liver endothelial cells and hepatic stellate cells. Upon exposure to defined and clinically relevant lipotoxic and inflammatory stimuli, these microtissues develop key pathophysiological features of NASH within 10 days, including an increase of intracellular triglyceride content and lipids, and release of pro-inflammatory cytokines. Furthermore, fibrosis was evident through release of procollagen type I, and increased deposition of extracellular collagen fibers. Whole transcriptome analysis revealed changes in the regulation of pathways associated with NASH, such as lipid metabolism, inflammation and collagen processing. Importantly, treatment with anti-NASH drug candidates (Selonsertib and Firsocostat) decreased the measured specific disease parameter, in accordance with clinical observations. These drug treatments also significantly changed the gene expression patterns of the microtissues, thus providing mechanisms of action and revealing therapeutic potential. In summary, this human NASH model represents a promising drug discovery tool for understanding the underlying complex mechanisms in NASH, evaluating efficacy of anti-NASH drug candidates and identifying new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Simon Ströbel
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH, Switzerland.
| | | | | | - Jana Rupp
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | - Donna Busler
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | | | - Sue Grepper
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| |
Collapse
|
21
|
Koda S, Zhang B, Zhou QY, Xu N, Li J, Liu JX, Liu M, Lv ZY, Wang JL, Shi Y, Gao S, Yu Q, Li XY, Xu YH, Chen JX, Tekengne BOT, Adzika GK, Tang RX, Sun H, Zheng KY, Yan C. β2-Adrenergic Receptor Enhances the Alternatively Activated Macrophages and Promotes Biliary Injuries Caused by Helminth Infection. Front Immunol 2021; 12:754208. [PMID: 34733286 PMCID: PMC8558246 DOI: 10.3389/fimmu.2021.754208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system has been studied for its involvement in the control of macrophages; however, the mechanisms underlying the interaction between the adrenergic receptors and alternatively activated macrophages (M2) remain obscure. Using FVB wild-type and beta 2 adrenergic receptors knockout, we found that β2-AR deficiency alleviates hepatobiliary damage in mice infected with C. sinensis. Moreover, β2-AR-deficient mice decrease the activation and infiltration of M2 macrophages and decrease the production of type 2 cytokines, which are associated with a significant decrease in liver fibrosis in infected mice. Our in vitro results on bone marrow-derived macrophages revealed that macrophages from Adrb2-/- mice significantly decrease M2 markers and the phosphorylation of ERK/mTORC1 induced by IL-4 compared to that observed in M2 macrophages from Adrb2+/+ . This study provides a better understanding of the mechanisms by which the β2-AR enhances type 2 immune response through the ERK/mTORC1 signaling pathway in macrophages and their role in liver fibrosis.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System/physiopathology
- Bile Ducts/parasitology
- Bile Ducts/pathology
- Cells, Cultured
- Clonorchiasis/complications
- Clonorchiasis/immunology
- Clonorchiasis/physiopathology
- Cytokines/blood
- Humans
- Liver Cirrhosis/etiology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/parasitology
- Liver Cirrhosis/pathology
- Liver Cirrhosis, Biliary/etiology
- Liver Cirrhosis, Biliary/immunology
- Liver Cirrhosis, Biliary/parasitology
- Liver Cirrhosis, Biliary/pathology
- MAP Kinase Signaling System
- Macrophage Activation
- Macrophages/classification
- Macrophages/immunology
- Male
- Mechanistic Target of Rapamycin Complex 1/physiology
- Mice, Knockout
- Neuroimmunomodulation/physiology
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/physiology
- Specific Pathogen-Free Organisms
- Mice
Collapse
Affiliation(s)
- Stephane Koda
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Beibei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Qian-Yang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Ji-Xin Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Man Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Zi-Yan Lv
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jian-Ling Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yanbiao Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Sijia Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Xiang-Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, World Health Organization (WHO) Collaborating Center of Malaria, Schistosomiasis, and Filariasis, Shanghai, China
| | | | | | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Delineation of the healthy rabbit liver by immunohistochemistry - A technical note. Acta Histochem 2021; 123:151795. [PMID: 34627038 DOI: 10.1016/j.acthis.2021.151795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Liver diseases pose a big global health problem and liver failure may result from viral infection, overnutrition or tumors. Studying pathologic liver tissue demands for accurate and specific histological stainings and immunohistochemical labellings, including chromogenic and fluorescent approaches. Moreover, a reliable set of healthy liver stainings and labellings are required, to provide a baseline or reference for the pathological situation. Here, we used the liver tissue of a healthy rabbit and compared different histological key steps, such as paraffin embedding after formalin fixation versus cryopreservation; or an antigen retrieval (AR) step in processing paraffin sections versus the same procedure without AR; or chromogenic with fluorescent detection system, respectively. Moreover, we provide images of serial sections, where we stained the same morphological structure with different markers, including collagen I, collagen III, fibronectin, α-SMA, elastin, protease-activated receptor-2 (PAR-2) which is an inflammation-related marker, ki67 for proliferating cells, and orcein (as negative control for pathological aberrations like Wilson disease). Differences between conditions were quantitatively assessed by measuring the colour intensity. Generally, we observed that cryosections exhibited a stronger signal intensity in immunohistochemically labelled sections than in paraffin sections; however, the strong staining got slurred, which sometimes hampered proper identification of morphological structures at higher magnifications. Moreover, there was a clear increase in signal intensity for paraffin sections when an AR step was performed compared to condition without AR. Results for mouse isotype staining as a negative control clearly supported those findings. Different stainings of the portal triad, the central vein and the bile ducts revealed a clear-cut distribution of extracellular matrix components, with prominent fibronectin and elastin around the lumen of the central vein as well as a patchy PAR-2 expression. As for the bile ducts, complete absence of α-SMA and PAR-2 was found at the margins, however, collagen I expression and elastin were positive and showed a strong signal. Like this, we provide useful and valuable reference images for researchers using the rabbit liver model. It may help to decide which of the immunohistochemical protocols are valuable to reach a certain aim and which protocols lead to the best visualization of the target structure.
Collapse
|
23
|
Thanapirom K, Caon E, Papatheodoridi M, Frenguelli L, Al-Akkad W, Zhenzhen Z, Vilia MG, Pinzani M, Mazza G, Rombouts K. Optimization and Validation of a Novel Three-Dimensional Co-Culture System in Decellularized Human Liver Scaffold for the Study of Liver Fibrosis and Cancer. Cancers (Basel) 2021; 13:cancers13194936. [PMID: 34638417 PMCID: PMC8508071 DOI: 10.3390/cancers13194936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This study aims to overcome the current methodological limitations in discovering new therapeutic targets. Therefore, we optimized and validated a co-culture system using decellularized human liver three-dimensional (3D) scaffolds obtained from healthy and cirrhotic human livers for anti-fibrotic and anti-cancer dual drug screening. Both platforms mimic the naturally healthy and physio-pathological microenvironment and are able to recapitulate the key cellular and molecular events leading to liver fibrogenesis and cancer. This study demonstrates the differences between single versus co-cultures and the usage of human-derived liver 3D ECM scaffolds from healthy and cirrhotic livers. As lead compounds, we used Sorafenib and Regorafenib, first- and second-line drugs, and identified two different drug-induced mechanisms depending on the 3D ECM microenvironment. The 3D ECM scaffolds may represent innovative platforms for disease modeling, biomarker discovery, and drug testing in fibrosis and primary cancer. Abstract The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib reversed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvironment and could be employed for anti-fibrotic and anti-HCC drug screening.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Elisabetta Caon
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Margarita Papatheodoridi
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Luca Frenguelli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Walid Al-Akkad
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Zhang Zhenzhen
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Maria Giovanna Vilia
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Sheila Sherlock Liver Centre, Royal Free Hospital, London NW3 2QG, UK
| | - Giuseppe Mazza
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London NW3 2PF, UK; (K.T.); (E.C.); (M.P.); (L.F.); (W.A.-A.); (Z.Z.); (M.G.V.); (M.P.); (G.M.)
- Correspondence:
| |
Collapse
|
24
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
25
|
Identification of miR-199a-5p, miR-214-3p and miR-99b-5p as Fibrosis-Specific Extracellular Biomarkers and Promoters of HSC Activation. Int J Mol Sci 2021; 22:ijms22189799. [PMID: 34575957 PMCID: PMC8464755 DOI: 10.3390/ijms22189799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis is characterized by the accumulation of extracellular matrix (ECM) resulting in the formation of fibrous scars. In the clinic, liver biopsies are the standard diagnostic method despite the potential for clinical complications. miRNAs are single-stranded, non-coding RNAs that can be detected in tissues, body fluids and cultured cells. The regulation of many miRNAs has been linked to tissue damage, including liver fibrosis in patients, resulting in aberrant miRNA expression/release. Experimental evidence also suggests that miRNAs are regulated in a similar manner in vitro and could thus serve as translational in vitro–in vivo biomarkers. In this work, we set out to identify and characterize biomarkers for liver fibrosis that could be used in vitro and clinically for research and diagnostic purposes. We focused on miRNAs released from hepatic 3D cultures exposed to methotrexate (MTX), which causes fibrosis, and acetaminophen (APAP), an acute hepatotoxicant with no clinically relevant association to liver fibrosis. Using a 3D in vitro model, we corroborated compound-specific responses as we show MTX induced a fibrotic response, and APAP did not. Performing miRNA-seq of cell culture supernatants, we identified potential miRNA biomarkers (miR-199a-5p, miR-214-3p, niRNA-125a-5p and miR-99b-5p) that were associated with a fibrotic phenotype and not with hepatocellular damage alone. Moreover, transfection of HSC with miR-199a-5p led to decreased expression of caveolin-1 and increased α-SMA expression, suggesting its role in HSC activation. In conclusion, we propose that extracellular miR-214-3p, miR-99b-5p, miR-125a-5p and specifically miR-199a-5p could contribute towards a panel of miRNAs for identifying liver fibrosis and that miR-199a-5p, miR-214-3p and miR-99b-5p are promoters of HSC activation.
Collapse
|
26
|
Cao D, Ge JY, Wang Y, Oda T, Zheng YW. Hepatitis B virus infection modeling using multi-cellular organoids derived from human induced pluripotent stem cells. World J Gastroenterol 2021; 27:4784-4801. [PMID: 34447226 PMCID: PMC8371505 DOI: 10.3748/wjg.v27.i29.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains a global health concern despite the availability of vaccines. To date, the development of effective treatments has been severely hampered by the lack of reliable, reproducible, and scalable in vitro modeling systems that precisely recapitulate the virus life cycle and represent virus-host interactions. With the progressive understanding of liver organogenesis mechanisms, the development of human induced pluripotent stem cell (iPSC)-derived hepatic sources and stromal cellular compositions provides novel strategies for personalized modeling and treatment of liver disease. Further, advancements in three-dimensional culture of self-organized liver-like organoids considerably promote in vitro modeling of intact human liver tissue, in terms of both hepatic function and other physiological characteristics. Combined with our experiences in the investigation of HBV infections using liver organoids, we have summarized the advances in modeling reported thus far and discussed the limitations and ongoing challenges in the application of liver organoids, particularly those with multi-cellular components derived from human iPSCs. This review provides general guidelines for establishing clinical-grade iPSC-derived multi-cellular organoids in modeling personalized hepatitis virus infection and other liver diseases, as well as drug testing and transplantation therapy.
Collapse
Affiliation(s)
- Di Cao
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Yun Wang
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- School of Medicine, Yokohama City University, Yokohama 234-0006, Kanagawa, Japan
| |
Collapse
|
27
|
Ahmad A, Alkharfy KM, Bin Jardan YA, Shahid M, Ansari MA, Alqahtani S, Jan BL, Al-Jenoobi FI, Raish M. Sinapic acid mitigates methotrexate-induced hepatic injuries in rats through modulation of Nrf-2/HO-1 signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:1261-1268. [PMID: 33720507 DOI: 10.1002/tox.23123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The present research has been investigated to study the protective outcomes of sinapic acid (SA) against methotrexate (MTX) encouraged liver damage in rats by modulating the Nrf2/HO-1 and NF-κB signaling pathways. The animals were arbitrarily allocated into four groups: group I rats administered a 0.5% carboxymethyl cellulose (CMC) vehicle orally for 15 consecutive days with a single intravenous standard saline injection (0.9% NaCl) on day seven. Groups II, III, and IV were injected intraperitoneally with 20 mg MTX/kg on 7th day. Animals in group III and IV were treated orally for 14 days with 20 mg of SA/kg dissolved daily in 0.5% CMC respectively. In all experimental groups, liver function, biochemical, histopathological and molecular changes were evaluated. MTX-induced changes in liver function indices like ALT, AST, and ALP are substantially restored with SA pretreatment. Moreover, antioxidant defense mechanisms (GSH, SOD, and CAT) and oxidative/nitrostative stress (MDA and NO) and inflammatory cytokine (TNF-α, IL-β and MPO) were also substantially restored. Furthermore, the conclusions indicate that SA prevents the hepatic damage caused by MTX through apoptosis inhibition and stimulation of Nrf2/HO-1-medial antioxidant enzymes by NF-κB inhibition. Histological findings have shown that SA therapy has greatly protected liver damage caused by MTX.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit L Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Vida C, Carracedo J, de Sequera P, Bodega G, Pérez R, Alique M, Ramírez R. A high magnesium concentration in citrate dialysate prevents oxidative stress and damage in human monocytes in vitro. Clin Kidney J 2021; 14:1403-1411. [PMID: 33959268 PMCID: PMC8087128 DOI: 10.1093/ckj/sfaa131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The use of dialysis fluids (DFs) during haemodialysis has been associated with increased oxidative stress and reduced serum magnesium (Mg) levels, contributing to chronic inflammation. Since the role of Mg in modulating immune function and reducing oxidative stress has been demonstrated, the aim of this study was to characterize in vitro whether increasing the Mg concentration in DFs could protect immune cells from oxidative stress and damage. METHODS The effect of citrate [citrate dialysis fluid (CDF), 1 mM] or acetate [acetate dialysis fluid (ADF), 3 mM] dialysates with low (0.5 mM; routinely used) or high (1 mM, 1.25 mM and 2 mM) Mg concentrations was assessed in THP-1 human monocytes. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and oxidized/reduced (GSSG/GSH) glutathione were quantified under basal and inflammatory conditions (stimulation with lipopolysaccharide, LPS). RESULTS The increase of Mg in CDF resulted in a significant reduction of ROS production under basal and inflammatory conditions (extremely marked in 2 mM Mg; P < 0.001). These effects were not observed in ADF. Interestingly, in a dose-dependent manner, high Mg doses in CDF reduced oxidative stress in monocytes under both basal and inflammatory conditions. In fact, 2 mM Mg significantly decreased the levels of GSH, GSSG and MDA and the GSSG/GSH ratio in relation to 0.5 mM Mg. CONCLUSIONS CDF produces lower oxidative stress than ADF. The increase of Mg content in DFs, especially in CDF, could have a positive and protective effect in reducing oxidative stress and damage in immune cells, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Carmen Vida
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Julia Carracedo
- Dpto Genética, Fisiología y Microbiología (Sección Fisiología), Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
- Dpto de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Guillermo Bodega
- Dpto de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Pérez
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Matilde Alique
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | - Rafael Ramírez
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| |
Collapse
|
29
|
Single Cell Gene Expression Analysis in a 3D Microtissue Liver Model Reveals Cell Type-Specific Responses to Pro-Fibrotic TGF-β1 Stimulation. Int J Mol Sci 2021; 22:ijms22094372. [PMID: 33922101 PMCID: PMC8122664 DOI: 10.3390/ijms22094372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/15/2023] Open
Abstract
3D cell culture systems are widely used to study disease mechanisms and therapeutic interventions. Multicellular liver microtissues (MTs) comprising HepaRG, hTERT-HSC and THP-1 maintain multicellular interactions and physiological properties required to mimic liver fibrosis. However, the inherent complexity of multicellular 3D-systems often hinders the discrimination of cell type specific responses. Here, we aimed at applying single cell sequencing (scRNA-seq) to discern the molecular responses of cells involved in the development of fibrosis elicited by TGF-β1. To obtain single cell suspensions from the MTs, an enzymatic dissociation method was optimized. Isolated cells showed good viability, could be re-plated and cultured in 2D, and expressed specific markers determined by scRNA-seq, qRT-PCR, ELISA and immunostaining. The three cell populations were successfully clustered using supervised and unsupervised methods based on scRNA-seq data. TGF-β1 led to a fibrotic phenotype in the MTs, detected as decreased albumin and increased αSMA expression. Cell-type specific responses to the treatment were identified for each of the three cell types. They included HepaRG damage characterized by a decrease in cellular metabolism, prototypical inflammatory responses in THP-1s and extracellular matrix remodeling in hTERT-HSCs. Furthermore, we identified novel cell-specific putative fibrosis markers in hTERT-HSC (COL15A1), and THP-1 (ALOX5AP and LAPTM5).
Collapse
|
30
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Zubareva EV, Nadezhdin SV, Nadezhdina NA, Belyaeva VS, Burda YE, Avtina TV, Gudyrev OS, Kolesnik IM, Kulikova SY, Mishenin MO. 3D organotypic cell structures for drug development and Microorganism-Host interaction research. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.62118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The article describes a new method of tissue engineering, which is based on the use of three-dimensional multicellular constructs consisting of stem cells that mimic the native tissue in vivo – organoids.
3D cell cultures: The currently existing model systems of three-dimensional cultures are described.
Characteristics of organoids and strategies for their culturing: The main approaches to the fabrication of 3D cell constructs using pluripotent (embryonic and induced) stem cells or adult stem cells are described.
Brain organoids (Cerebral organoids): Organoids of the brain, which are used to study the development of the human brain, are characterized, with the description of biology of generating region-specific cerebral organoids.
Lung organoids: Approaches to the generation of lung organoids are described, by means of pluripotent stem cells and lung tissue cell lines.
Liver organoids: The features of differentiation of stem cells into hepatocyte-like cells and the creation of 3D hepatic organoids are characterized.
Intestinal organoids: The formation of small intestine organoids from stem cells is described.
Osteochondral organoids: Fabrication of osteochondral organoids is characterised.
Use of organoids as test systems for drugs screening: The information on drug screening using organoids is provided.
Using organoids to model infectious diseases and study adaptive responses of microorganisms when interacting with the host: The use of organoids for modeling infectious diseases and studying the adaptive responses of microorganisms when interacting with the host organism is described.
Conclusion: The creation of three-dimensional cell structures that reproduce the structural and functional characteristics of tissue in vivo, makes it possible to study the biology of the body’s development, the features of intercellular interactions, screening drugs and co-cultivating with viruses, bacteria and parasites.
Collapse
|
32
|
Azzam A, Jiyad Z, O'Beirne J. Is methotrexate hepatotoxicity associated with cumulative dose? A systematic review and meta-analysis. Australas J Dermatol 2021; 62:130-140. [PMID: 33769558 DOI: 10.1111/ajd.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVE Methotrexate (MTX) is widely used in various medical specialties. However, hepatotoxicity is an ongoing concern and this is thought to be directly associated with cumulative dose. We sought to synthesise the published literature to evaluate the association between methotrexate hepatotoxicity and cumulative dose. METHODS A systematic review of Medline (PubMed) EMBASE, CINAHL and The Cochrane Library was performed. Full texts of articles were examined, and excluded articles were recorded with reasons for exclusion. A meta-analysis of correlation coefficients was performed using Fisher's z-transformation and a random effects model. Cochran's Q-test and the I2 statistic were calculated to assess heterogeneity. RESULTS A total of 35 studies met inclusion criteria. Measures of hepatotoxicity were highly varied and included liver biopsy, elastography, FibroTest, biochemical tests and scoring systems (Fib-4, APRI, AST:ALT). Some studies analysed for the association with MTX cumulative dose using more than one modality. Overall, 38 analyses found no significant association between MTX cumulative dose and hepatoxicity vs eight that identified a significant association. The pooled correlation coefficient from five studies which utilised elastography was 0.18 (95% CI, -0.09 to 0.42), with significant heterogeneity between studies (P < 0.0001), I2 = 92%). CONCLUSIONS Our synthesis of a large volume of studies in this review found no significant association between MTX cumulative dose and hepatotoxicity, both in terms of vote counting and with regard to the meta-analysis of correlation coefficients from studies that utilised elastography. This challenges the long-held belief that liver injury is a direct result of drug accumulation.
Collapse
Affiliation(s)
- Ali Azzam
- Department of Hepatology, Addenbrooke's Hospital, Cambridge, UK.,Griffith University, Brisbane, Queensland, Australia
| | - Zainab Jiyad
- Dermatology Unit, St. George's University of London, London, UK.,Department of Dermatology, King's College Hospital, London, UK
| | - James O'Beirne
- University of the Sunshine Coast, Maroochydore, Queensland, Australia.,Department of Gastroenterology, Sunshine Coast University Hospital, Maroochydore, Queensland, Australia
| |
Collapse
|
33
|
Ollewagen T, Myburgh KH, van de Vyver M, Smith C. Rheumatoid cachexia: the underappreciated role of myoblast, macrophage and fibroblast interplay in the skeletal muscle niche. J Biomed Sci 2021; 28:15. [PMID: 33658022 PMCID: PMC7931607 DOI: 10.1186/s12929-021-00714-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Although rheumatoid arthritis affects 1% of the global population, the role of rheumatoid cachexia, which occurs in up to a third of patients, is relatively neglected as research focus, despite its significant contribution to decreased quality of life in patients. A better understanding of the cellular and molecular processes involved in rheumatoid cachexia, as well as its potential treatment, is dependent on elucidation of the intricate interactions of the cells involved, such as myoblasts, fibroblasts and macrophages. Persistent RA-associated inflammation results in a relative depletion of the capacity for regeneration and repair in the satellite cell niche. The repair that does proceed is suboptimal due to dysregulated communication from the other cellular role players in this multi-cellular environment. This includes the incomplete switch in macrophage phenotype resulting in a lingering pro-inflammatory state within the tissues, as well as fibroblast-associated dysregulation of the dynamic control of the extracellular matrix. Additional to this endogenous dysregulation, some treatment strategies for RA may exacerbate muscle wasting and no multi-cell investigation has been done in this context. This review summarizes the most recent literature characterising clinical RA cachexia and links these features to the roles of and complex communication between multiple cellular contributors in the muscle niche, highlighting the importance of a targeted approach to therapeutic intervention.
Collapse
Affiliation(s)
- T Ollewagen
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - K H Myburgh
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - M van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - C Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| |
Collapse
|
34
|
Yan L, Messner CJ, Zhang X, Suter-Dick L. Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. ENVIRONMENTAL RESEARCH 2021; 194:110679. [PMID: 33387535 DOI: 10.1016/j.envres.2020.110679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Exposure to environmental chemicals, particularly those with persistent and bioaccumulative properties have been linked to liver diseases. Induction of fibrotic pathways is considered as a pre-requirement of chemical induced liver fibrosis. Here, we applied 3D in vitro human liver microtissues (MTs) composed of HepaRG, THP-1 and hTERT-HSC that express relevant hepatic pathways (bile acid, sterol, and xenobiotic metabolism) and can recapitulate key events of liver fibrosis (e.g. extracellular matrix-deposition). The liver MTs were exposed to a known profibrotic chemical, thioacetamide (TAA) and three representative environmental chemicals (TCDD, benzo [a] pyrene (BaP) and PCB126). Both TAA and BaP triggered fibrotic pathway related events such as hepatocellular damage (cytotoxicity and decreased albumin release), hepatic stellate cell activation (transcriptional upregulation of α-SMA and Col1α1) and extracellular matrix remodelling. TCDD or PCB126 at measured concentrations did not elicit these responses in the 3D liver MTs system, though they caused cytotoxicity in HepaRG monoculture at high concentrations. Reduced human transcriptome (RHT) analysis captured molecular responses involved in liver fibrosis when MTs were treated with TAA and BaP. The results suggest that 3D, multicellular, human liver microtissues represent an alternative, human-relevant, in vitro liver model for assessing fibrotic pathways induced by environmental chemicals.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, 4132, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, 4003, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), 4056, Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Muttenz, 4132, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), 4056, Switzerland
| |
Collapse
|
35
|
Maharjan S, Bonilla D, Sindurakar P, Li H, Li W, Duarte S, Zarrinpar A, Zhang YS. 3D human nonalcoholic hepatic steatosis and fibrosis models. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00121-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2020; 269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Bioprinting is an emergent technology that has already demonstrated the capacity to create complex and/or vascularized multicellular structures with defined and organized architectures, in a reproducible and high throughput way. Here, we present the implementation of a complex liver model by the development of a three-dimensional extrusion bioprinting process, including parameters for matrix polymerization of methacrylated gelatin, using two hepatic cell lines, Huh7 and HepaRG. The printed structures exhibited long-term viability (28 days), proliferative ability, a relevant hepatocyte phenotype and functions equivalent to or better than those of their 2D counterparts using standard DMSO treatment. This work served as a basis for the bioprinting of complex multicellular models associating the hepatic parenchymal cells, HepaRG, with stellate cells (LX-2) and endothelial cells (HUVECs), able of colonizing the surface of the structure and thus recreating a pseudo endothelial barrier. When bioprinted in 3D monocultures, LX-2 expression was modulated by TGFβ-1 toward the induction of myofibroblastic genes such as ACTA2 and COL1A1. In 3D multicellular bioprinted structures comprising HepaRG, LX-2 and endothelial cells, we evidenced fibrillar collagen deposition, which is never observed in monocultures of either HepaRG or LX-2 alone. These observations indicate that a precise control of cellular communication is required to recapitulate key steps of fibrogenesis. Bioprinted 3D co-cultures therefore open up new perspectives in studying the molecular and cellular basis of fibrosis development and provide better access to potential inducers and inhibitors of collagen expression and deposition.
Collapse
Affiliation(s)
- Marie Cuvellier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Hugo Oliveira
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France
| | - Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; CHU Bordeaux, Services D'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Georges Baffet
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| |
Collapse
|
37
|
Ahn J, Ahn JH, Yoon S, Son MY, Cho S, Oh JH. Quantification of non-alcoholic fatty liver disease progression in 3D liver microtissues using impedance spectroscopy. Biomaterials 2020; 268:120599. [PMID: 33341736 DOI: 10.1016/j.biomaterials.2020.120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a global pandemic. However, a pharmacological cure has not been approved for NAFLD treatment. The greatest barriers to the development of new treatments are the ambiguous criteria among the NAFLD stages and the lack of quantitative methodologies for its disease assessment in a translatable preclinical model. In this study, we developed impedance assessment systems to quantify NAFLD progression in three-dimensional (3D) liver microtissue (hMT). The hMT model undergoing NAFLD represents clinical-like characteristics for a range of stages, such as lipid accumulation, cell ballooning, and stiffening. Each stage can be quantitatively assessed by an impedance system with microchannels under constant or dynamic pressure, depending on the relevant mechanical and morphological changes used in the clinical assessment of NAFLD. We determined a correlation between the impedance parameters and pathophysiological characteristics, such as gap widening and cytoplasmic deformation associated with NAFLD progression using bioimpedance simulation, showing hMTs struggling to return to normal states. In addition, we identified the relative stiffness to assess fibrogenesis from the correlation of resistance change and elongation length into the smaller channel of hMTs. We hope this methodology will have a significant impact on drug development by facilitating improved NAFLD assessment.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
38
|
Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:611913. [PMID: 35047893 PMCID: PMC8757888 DOI: 10.3389/fmedt.2020.611913] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.
Collapse
Affiliation(s)
- Christopher R. Cox
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Christopher R. Cox
| | - Stephen Lynch
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Goldring
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Parveen Sharma
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
39
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
40
|
Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020; 9:antiox9100980. [PMID: PMID: 33066023 PMCID: PMC7601324 DOI: 10.3390/antiox9100980] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases represent a critical health problem with 2 million deaths worldwide per year, mainly due to cirrhosis and its complications. Oxidative stress plays an important role in the development of liver diseases. In order to maintain an adequate homeostasis, there must be a balance between free radicals and antioxidant mediators. Nuclear factor erythroid 2-related factor (Nrf2) and its negative regulator Kelch-like ECH-associated protein 1 (Keap1) comprise a defense mechanism against oxidative stress damage, and growing evidence considers this signaling pathway as a key pharmacological target for the treatment of liver diseases. In this review, we provide detailed and updated evidence regarding Nrf2 and its involvement in the development of the main liver diseases such as alcoholic liver damage, viral hepatitis, steatosis, steatohepatitis, cholestatic damage, and liver cancer. The molecular and cellular mechanisms of Nrf2 cellular signaling are elaborated, along with key and relevant antioxidant drugs, and mechanisms on how Keap1/Nrf2 modulation can positively affect the therapeutic response are described. Finally, exciting recent findings about epigenetic modifications and their link with regulation of Keap1/Nrf2 signaling are outlined.
Collapse
Affiliation(s)
- Marina Galicia-Moreno
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Silvia Lucano-Landeros
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Hugo Christian Monroy-Ramirez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Silva-Gomez
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Jorge Gutierrez-Cuevas
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (M.G.-M.); (S.L.-L.); (H.C.M.-R.); (J.S.-G.); (J.G.-C.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, Jalisco, Mexico;
- Correspondence: ; Tel.: +52-333-677-8741
| |
Collapse
|
41
|
miR-125b acts as anti-fibrotic therapeutic target through regulating Gli3 in vivo and in vitro. Ann Hepatol 2020; 18:825-832. [PMID: 31548167 DOI: 10.1016/j.aohep.2019.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/03/2019] [Accepted: 03/26/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Liver fibrosis is a major characteristic of most chronic liver diseases which leads to accumulation of extracellular matrix (ECM) proteins. Hedgehog (Hh) pathway activated by Gli genes participated in the pathogenesis of liver fibrosis. However, the regulatory role of miR-125b in liver fibrosis via targeting Gli genes remains unknown. MATERIALS AND METHODS RT-qPCR and western blot were employed to the expression levels of mRNA and protein, respectively. The fibrosis level of liver tissue was determined by Masson's trichrome staining. The interaction between miR-125b and Gli3 was tested by luciferase reporter assay. In addition, LX2 cells were activated and CCl4-induced rat model was used in this study. RESULTS miR-125b was significantly declined in serum samples of the clinical liver fibrosis patient, activated LX2 cells and the liver tissues of the CCl4-induced rat model. Furthermore, in cellular level, the alpha-smooth muscle actin (α-SMA) and Albumin expressions were ascending and descending in LX2 cells, respectively, with the decline of miR-125b. However, when transfecting with miR-125b mimic, the expressions of α-SMA and Albumin was reversed and Gli3 expression was notably repressed in LX2 cells. The target interaction between miR-125b and Gli3 was determined by dual-luciferase assays. It was further discovered that the changes of α-SMA, Albumin, and Gli3 were similar to the expression trend in LX2 cells with miR-125b mimic transfection. CONCLUSION These results suggested that miR-125b might be protective against liver fibrosis via regulating Gli3 and it might be a promising target in the development of novel therapies to treat pathological fibrotic disorders.
Collapse
|
42
|
Wang L, Sun Y, Luo X, Han H, Yin H, Zhao B, Chen X, Yu Q, Qiu H, Yuan X. Prophylactical Low Dose Whole-Liver Irradiation Inhibited Colorectal Liver Metastasis by Regulating Hepatic Niche in Mice. Onco Targets Ther 2020; 13:8451-8462. [PMID: 32922035 PMCID: PMC7455754 DOI: 10.2147/ott.s263858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background The liver is the most common target for metastatic colorectal cancer. Changes of the local hepatic niche due to hepatic diseases such as cirrhosis decrease the incidence of colorectal cancer liver metastasis. Hepatic niche heterogeneity could influence the risk of hepatic metastasis. Materials and Methods We simulated changes of the hepatic niche via prophylactical liver irradiation with a safe dose of 6 Gy. GEO dataset and GO analysis revealed a difference in the expression of matrix metalloproteinase 1 (MMP1) in primary colorectal cancer versus liver metastasis, as well as synchronous versus metachronous liver metastasis. Western blotting, Immunofluorescence and qRT-PCR were conducted to measure protein expressions, location and RNA expressions. Colony formation, wound-healing, transwell assays experiments were performed to determine the malignant biological properties of colorectal cancer cells. shRNA transfection was used to conduct stable transfected cell lines. Results Tissue inhibitor of metalloproteinases 1 (TIMP1) expression was significantly higher in metastases lesions than primary tumors. In vivo, TIMP1 expression in the hepatic niche increased after a safe dose of 6 Gy irradiation, along with MMP1 decreased, leading to collagen fiber deposition and impairment of hepatic microcirculation. In vitro, irradiated hepatic stellate cells-conditioned media reduced the migration and clone formation ability of colon cancer cells SW480 and HCT116. Low TIMP1 expression in hepatic stellate cells reduced tumor cell invasion and migration. Conclusion Prophylactical 6 Gy whole-liver irradiation could inhibit colorectal cancer liver metastasis by regulating TIMP1/MMP1 balance in the hepatic niche before liver metastatic lesion formed.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yinan Sun
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hu Han
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ben Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
43
|
Wang H, Han B, Wang N, Lu Y, Gao T, Qu Z, Yang H, Yang Q. Oxymatrine attenuates arsenic-induced endoplasmic reticulum stress and calcium dyshomeostasis in hepatic stellate cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1171. [PMID: 33241020 PMCID: PMC7576087 DOI: 10.21037/atm-20-5881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Oxymatrine is the main bioactive component of Sophora flavescens. It exhibits various biological activities and has been used in various liver diseases, including hepatic fibrosis (HF). Hepatic stellate cells (HSCs) are the primary cell type involved during HF progression. Oxymatrine treatment could suppress the proliferation of HSCs and degrade the extracellular cell matrix (ECM), presumed to be associated with HF. However, the mechanism is still unknown. Methods NaAsO2 induces HF in LX2 cells. Oxymatrine was used to treat NaAsO2- induced LX2 cells. Then, the LX2 cell proliferation, apoptosis, ECM secretion protein, oxidative stress index, and intracellular calcium concentration were respectively measured. Furthermore, after knocking down GRP78 [endoplasmic reticulum (ER) chaperone BiP] or overexpressing of SERCA2 (ATPase sarcoplasmic/ER Ca2+ transporting 2) in NaAsO2-induced LX2 cells, we detected the changes in ER stress and calcium homeostasis in LX2 cells. Results NaAsO2 exposure promoted apoptosis, increased ECM secretion, produced ER stress, and disrupted calcium homeostasis, which could be attenuated by oxymatrine treatment. Furthermore, knockdown of GRP78 to alleviate ER stress, or overexpression of SERCA2 to restore intracellular calcium homeostasis can inhibit the NaAsO2 effect. Conclusions Oxymatrine treatment could improve calcium homeostasis and attenuate ER stress to reverse NaAsO2-induced HSC activation and ECM secretion, which are the significant phenotypes of HF. The ER stress and calcium homeostasis may be the therapeutic targets for HF.
Collapse
Affiliation(s)
- Huiqun Wang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Department of Pathophysiology, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Bing Han
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Department of Pathophysiology, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanlan Wang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yang Lu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Ting Gao
- Department of Pathology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zihan Qu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Hongmei Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Qin Yang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
44
|
The fibrotic response of primary liver spheroids recapitulates in vivo hepatic stellate cell activation. Biomaterials 2020; 261:120335. [PMID: 32891040 DOI: 10.1016/j.biomaterials.2020.120335] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/06/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
A major obstacle in the development of efficient therapies for progressive liver fibrosis is the lack of representative in vitro models of liver fibrosis to aid in understanding the mechanisms of the disease and to promote the development of pharmaceuticals. Our aim was to develop a relevant in vitro mouse liver fibrosis model, based on the central hypothesis that liver fibrosis in vitro cannot be studied using only hepatic stellate cells (HSCs)-the main producer of scar tissue during fibrosis-, but requires cultures in which at least hepatocytes are integrated. We established robust methods to generate co-culture spheroids from freshly isolated mouse hepatocytes and HSCs. Characteristics and functionality of these spheroids were analyzed by qPCR of cell-type specific markers, CYP induction and immunohistochemistry. Compound toxicity was determined by ATP-assays. Hepatocytes and HSCs maintained their cell-type specific marker expression over a 15-day culture period without major hepatocyte dedifferentiation or HSC activation. Exposure of spheroids to TGFβ can directly activate HSCs, while acetaminophen exposure mounts a hepatocyte damage dependent activation of HSCs. Pharmaceuticals with known anti-fibrotic properties, such as Valproic acid and Verteporfin, reduce HSC activation in response to hepatocyte damage in these cultures. A comparison between the fibrotic response of the spheroid co-cultures and in vivo activated HSCs showed that these 3D co-cultures are more representative than the commonly used 2D HSC monocultures. Finally, we showed that the 3D cultures can be integrated in microfluidic chips. We conclude that our hepatocyte-stellate cell-spheroid cultures are a robust in vitro model of liver fibrosis. This model could be used to further unravel the mechanism of HSC activation and facilitate the discovery of, or testing for novel anti-fibrotic compounds, as these spheroids better reproduce HSC in vivo activation compared to the more traditional 2D mono-culture models.
Collapse
|
45
|
Padberg F, Hering H, Luch A, Zellmer S. Indirect co-cultivation of HepG2 with differentiated THP-1 cells induces AHR signalling and release of pro-inflammatory cytokines. Toxicol In Vitro 2020; 68:104957. [PMID: 32739440 DOI: 10.1016/j.tiv.2020.104957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
HepG2 and THP-1 cells, the latter differentiated by phorbol 12-myristate 13-acetate (PMA), were co-cultured and characterized for typical liver-specific functions, such as xenobiotic detoxification, lipid and cholesterol metabolism. Furthermore, liver injury-associated pathways, such as inflammation, were studied. In general, the co-cultivation of these cells produced a pro-inflammatory system, as indicated by increased levels of cytokines (IL-8, TGF-α, IL-6, GM-CSF, G-CSF, TGF-β, and hFGF) in the respective supernatant. Increased expression levels of target genes of the aryl hydrocarbon receptor (AHR), e.g., CYP1A1, CYP1A2 and CYP1B1, were detected, accompanied by the increased enzyme activity of CYP1A1. Moreover, transcriptome analyses indicated a significant upregulation of cholesterol biosynthesis, which could be reduced to baseline levels by lovastatin. In contrast, total de novo lipid synthesis was reduced in co-cultured HepG2 cells. Key events of the adverse outcome pathway (AOP) for fibrosis were activated by the co-cultivation, however, no increase in the concentration of extracellular collagen was detected. This indicates, that AOP should be used with care. In summary, the indirect co-culture of HepG2/THP-1 cells results in an increased release of pro-inflammatory cytokines, an activation of the AHR pathway and an increased enzymatic CYP1A activity.
Collapse
Affiliation(s)
- Florian Padberg
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Henrik Hering
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Zellmer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
46
|
Xu T, Pan L, Li L, Hu S, Zhou H, Yang C, Yang J, Li H, Liu Y, Meng X, Li J. MicroRNA-708 modulates Hepatic Stellate Cells activation and enhances extracellular matrix accumulation via direct targeting TMEM88. J Cell Mol Med 2020; 24:7127-7140. [PMID: 32463570 PMCID: PMC7339227 DOI: 10.1111/jcmm.15119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Transmembrane protein 88 (TMEM88) is a potential 2-transmembrane-type protein that interacts with the PDZ domain of Dishevelled-1 (DVL-1), a crucial component of Wnt signalling pathway through its C-terminal Val-Trp-Val (VWV) motif in Xenopus embryo cells. Since the significant function of β-catenin in liver fibrosis, it is urgent to study the TMEM88 mechanism in liver fibrosis. The current research was for evaluating the function of TMEM88 in the process of the liver fibrosis and clarifying the inherent mechanism. The study found that TMEM88 is decreased in human fibrotic liver tissues. Functionally, TMEM88 significantly reduced the expression levels of α-smooth muscle actin (α-SMA) and collagen type I (Col.I) and repressed extracellular matrix (ECM) accumulation by restoring the balance between matrix metalloproteinases (MMPs) and TIMPs (tissue inhibitor of metalloproteinases). TMEM88 inhibited HSCs proliferation and evaluated the apoptosis of activated LX-2 cells by regulating Wnt3a, Wnt2b and β-catenin of Wnt/β-catenin signalling pathway. Moreover, we demonstrated that miR-708 particularly targeted TMEM88 3'-UTR regions and down-regulated the expression level of TMEM88 in TGF-β1-stimulated LX-2 cells. MiR-708 promoted the generation of ECM and cell activation in activated LX-2 cells. These results determined that miR-708 could promote HSCs activation and enhance ECM accumulation via direct targeting TMEM88 by Wnt/β-catenin signalling pathway. This will provide a potential target for future research in the process of liver fibrosis.
Collapse
Affiliation(s)
- Tao Xu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Linxin Pan
- The School of Life Science, Anhui Medical University, Hefei, China
| | - Liangyun Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Shuang Hu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Division of Life Sciences and Medicine, Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Chenchen Yang
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Affiliated Psychological Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China
| | - Junfa Yang
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China.,Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Haodong Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Yuming Liu
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiaoming Meng
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Anhui Provincial laboratory of inflammatory and immunity disease, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune medicines, Ministry of Education, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Hurrell T, Kastrinou-Lampou V, Fardellas A, Hendriks DFG, Nordling Å, Johansson I, Baze A, Parmentier C, Richert L, Ingelman-Sundberg M. Human Liver Spheroids as a Model to Study Aetiology and Treatment of Hepatic Fibrosis. Cells 2020; 9:cells9040964. [PMID: 32295224 PMCID: PMC7227007 DOI: 10.3390/cells9040964] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease affects approximately one billion adults worldwide. Non-alcoholic steatohepatitis (NASH) is a progressive disease and underlies the advancement to liver fibrosis, cirrhosis, and hepatocellular carcinoma, for which there are no FDA-approved drug therapies. We developed a hetero-cellular spheroid system comprised of primary human hepatocytes (PHH) co-cultured with crude fractions of primary human liver non-parenchymal cells (NPC) from several matched or non-matched donors, to identify phenotypes with utility in investigating NASH pathogenesis and drug screening. Co-culture spheroids displayed stable expression of hepatocyte markers (albumin, CYP3A4) with the integration of stellate (vimentin, PDGFRβ), endothelial (vWF, PECAM1), and CD68-positive cells. Several co-culture spheroids developed a fibrotic phenotype either spontaneously, primarily observed in PNPLA3 mutant donors, or after challenge with free fatty acids (FFA), as determined by COL1A1 and αSMA expression. This phenotype, as well as TGFβ1 expression, was attenuated with an ALK5 inhibitor. Furthermore, CYP2E1, which has a strong pro-oxidant effect, was induced by NPCs and FFA. This system was used to evaluate the effects of anti-NASH drug candidates, which inhibited fibrillary deposition following 7 days of exposure. In conclusion, we suggest that this system is suitable for the evaluation of NASH pathogenesis and screening of anti-NASH drug candidates.
Collapse
Affiliation(s)
- Tracey Hurrell
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Vlasia Kastrinou-Lampou
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Achilleas Fardellas
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Delilah F. G. Hendriks
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Åsa Nordling
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Inger Johansson
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
| | - Audrey Baze
- KaLy-Cell, 67115 Plobsheim, France; (A.B.); (C.P.); (L.R.)
| | | | | | - Magnus Ingelman-Sundberg
- Ingelman-Sundberg Group, Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Stockholm, Sweden; (T.H.); (V.K.-L.); (A.F.); (D.F.G.H.); (Å.N.); (I.J.)
- Correspondence:
| |
Collapse
|
48
|
Bell CC, Chouhan B, Andersson LC, Andersson H, Dear JW, Williams DP, Söderberg M. Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. Arch Toxicol 2020; 94:1251-1263. [PMID: 32112222 PMCID: PMC7225187 DOI: 10.1007/s00204-020-02682-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
In addition to hepatocytes, the liver comprises a host of specialised non-parenchymal cells which are important to consider in the development of in vitro models which are both physiologically and toxicologically relevant. We have characterized a 3D co-culture system comprising primary human hepatocytes (PHH) and non-parenchymal cells (NPC) and applied it to the investigation of acetaminophen-induced toxicity. Firstly, we titrated ratios of PHH:NPC and confirmed the presence of functional NPCs via both immunohistochemistry and activation with both LPS and TGF-β. Based on these data we selected a ratio of 2:1 PHH:NPC for further studies. We observed that spheroids supplemented with NPCs were protected against acetaminophen (APAP) toxicity as determined by ATP (up to threefold difference in EC50 at day 14 compared to hepatocytes alone) and glutathione depletion, as well as miR-122 release. APAP metabolism was also altered in the presence of NPCs, with significantly lower levels of APAP-GSH detected. Expression of several CYP450 enzymes involved in the bioactivation of APAP was also lower in NPC-containing spheroids. Spheroids containing NPCs also expressed higher levels of miRNAs which have been implicated in APAP-induced hepatotoxicity, including miR-382 and miR-155 which have potential roles in liver regeneration and inflammation, respectively. These data indicate that the interaction between hepatocytes and NPCs can have significant metabolic and toxicological consequences important for the correct elucidation of hepatic safety mechanisms.
Collapse
Affiliation(s)
- Catherine C Bell
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Bhavik Chouhan
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Håkan Andersson
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - James W Dear
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dominic P Williams
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Magnus Söderberg
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
49
|
Li L, Ran J, Li L, Chen G, Zhang S, Wang Y. Gli3 is a novel downstream target of miR‑200a with an anti‑fibrotic role for progression of liver fibrosis in vivo and in vitro. Mol Med Rep 2020; 21:1861-1871. [PMID: 32319630 PMCID: PMC7057771 DOI: 10.3892/mmr.2020.10997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
GLI family zinc finger 3 (Gli3), as the upstream transcriptional activator of hedgehog signaling, has previously been demonstrated to participate in the process of liver fibrosis. The present study aimed to investigate the potential functions of microRNA (miR)‑200a and Gli3 in the progression of liver fibrosis. The expression levels of miR‑200a and Gli3 in cells and tissues were determined by PCR and western blotting; the interaction of Gli3 and miR‑200a was evaluated by bioinformatics analysis and dual‑luciferase reporter assay. miR‑200a was significantly reduced in serum samples from clinical patients, liver tissues of a carbon tetrachloride (CCl4)‑induced rat model and activated LX2 cells. The expression of α‑smooth muscle actin (α‑SMA) and albumin at the mRNA and protein levels was increased and decreased in LX2 cells, respectively. However, the expression levels of α‑SMA and albumin were reversed and Gli3 expression was markedly decreased in LX2 cells when transfected with miR‑200a mimics. In addition, the dual‑-luciferase reporter assay confirmed the target interaction between miR‑200a and Gli3. Finally, following the administration of miR‑200a mimics to CCl4‑induced rats, it was revealed that the alterations of α‑SMA, albumin and Gli3 presented a similar trend to that in LX2 cells with miR‑200a mimics transfection. Taken together, these results indicated that downregulation of miR‑200a might enhance the formation of liver fibrosis, probably by targeting Gli3, and elevated miR‑200a may attenuate the progression of liver fibrosis by suppressing Gli3. These findings suggested that miR‑200a may function as a novel anti‑fibrotic agent in liver fibrosis via inhibition of the expression of Gli3.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Jianghua Ran
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Lan Li
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Gang Chen
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Shengning Zhang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| | - Yingjia Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Kunming City, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
50
|
Li LY, Yang CC, Yang JF, Li HD, Zhang BY, Zhou H, Hu S, Wang K, Huang C, Meng XM, Zhou H, Zhang L, Li J, Xu T. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol 2019; 865:172787. [DOI: 10.1016/j.ejphar.2019.172787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|