1
|
Yang H, Sun W, Yang M, Li J, Zhang J, Zhang X. Variations to plasma H 2O 2 levels and TAC in chronical medicated and treatment-resistant male schizophrenia patients: Correlations with psychopathology. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:45. [PMID: 38605069 PMCID: PMC11009317 DOI: 10.1038/s41537-024-00468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Accumulating evidence suggests that imbalanced oxidative stress (OS) may contribute to the mechanism of schizophrenia. The aim of the present study was to evaluate the associations of OS parameters with psychopathological symptoms in male chronically medicated schizophrenia (CMS) and treatment-resistant schizophrenia (TRS) patients. Levels of hydrogen peroxide (H2O2), hydroxyl radical (·OH), peroxidase (POD), α-tocopherol (α-toc), total antioxidant capacity (TAC), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) were assayed in males with CMS and TRS, and matched healthy controls. Schizophrenia symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). The results demonstrated significant differences in the variables H2O2 (F = 5.068, p = 0.008), ·OH (F = 31.856, p < 0.001), POD (F = 14.043, p < 0.001), α-toc (F = 3.711, p = 0.027), TAC (F = 24.098, p < 0.001), and MMP-9 (F = 3.219, p = 0.043) between TRS and CMS patients and healthy controls. For TRS patients, H2O2 levels were correlated to the PANSS positive subscale (r = 0.386, p = 0.032) and smoking (r = -0,412, p = 0.021), while TAC was significantly negatively correlated to the PANSS total score (r = -0.578, p = 0.001) and POD and TAC levels were positively correlated to body mass index (r = 0.412 and 0.357, p = 0.021 and 0.049, respectively). For patients with CMS, ·OH levels and TAC were positively correlated to the PANSS general subscale (r = 0.308, p = 0.031) and negatively correlated to the PANSS total score (r = -0.543, p < 0.001). Furthermore, H2O2, α-toc, and ·OH may be protective factors against TRS, and POD was a risk factor. Patients with CMS and TRS exhibit an imbalance in OS, thus warranting future investigations.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, China.
| |
Collapse
|
2
|
Elkama A, İlik N, Ak M, Karahalil B. Are changes in olanzapine-induced liver enzyme levels associated with GSTT1, GSTM1, GSTP1, and OGG1 gene polymorphisms? Arh Hig Rada Toksikol 2024; 75:61-67. [PMID: 38548381 PMCID: PMC10978158 DOI: 10.2478/aiht-2024-75-3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024] Open
Abstract
Olanzapine treatment sometimes produces transient liver biochemistry abnormalities, and such drug-induced liver injuries are mainly monitored by measuring blood levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), whereas alpha-glutathione-S-transferase (α-GST) is not routinely measured in clinics, even though it can serve as an earlier and more specific biomarker of liver damage. Susceptibility to drug-induced liver injury can much depend on the gene polymorphisms regulating the activity of DNA detoxification and repair enzymes. The aim of this study was to evaluate which of the three liver enzymes - α-GST, ALT, and AST - is the most sensitive biomarker of olanzapine-induced liver injury and how their blood levels are affected by the GSTT1, GSTM1, GSTP1, and OGG1 gene polymorphisms in 30 olanzapine-treated patients. Contrary to our hypothesis, the increase in serum α-GST levels was not significantly greater than that of the transaminases. ALT turned out to be an earlier biomarker of liver injury than the other two enzymes. No significant association was found between gene polymorphisms and liver enzyme levels, save for GSTP1 Ile/Val + Val/Val and ALT, which points to this genotype as a risk factor for drug-induced liver injury. Future studies might help to identify the underlying mechanisms of transient liver enzyme increase associated with this genotype.
Collapse
Affiliation(s)
- Aylin Elkama
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Nazlıcan İlik
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Mehmet Ak
- Necmettin Erbakan University, Meram Faculty of Medicine, Department of Psychiatry, Konya, Turkey
| | - Bensu Karahalil
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
- Eastern Mediterranean University Faculty of Pharmacy, Department of Toxicology, Famagusta, North Cyprus
| |
Collapse
|
3
|
Lokmer A, Alladi CG, Troudet R, Bacq-Daian D, Boland-Auge A, Latapie V, Deleuze JF, RajKumar RP, Shewade DG, Bélivier F, Marie-Claire C, Jamain S. Risperidone response in patients with schizophrenia drives DNA methylation changes in immune and neuronal systems. Epigenomics 2023; 15:21-38. [PMID: 36919681 DOI: 10.2217/epi-2023-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Background: The choice of efficient antipsychotic therapy for schizophrenia relies on a time-consuming trial-and-error approach, whereas the social and economic burdens of the disease call for faster alternatives. Material & methods: In a search for predictive biomarkers of antipsychotic response, blood methylomes of 28 patients were analyzed before and 4 weeks into risperidone therapy. Results: Several CpGs exhibiting response-specific temporal dynamics were identified in otherwise temporally stable methylomes and noticeable global response-related differences were observed between good and bad responders. These were associated with genes involved in immunity, neurotransmission and neuronal development. Polymorphisms in many of these genes were previously linked with schizophrenia etiology and antipsychotic response. Conclusion: Antipsychotic response seems to be shaped by both stable and medication-induced methylation differences.
Collapse
Affiliation(s)
- Ana Lokmer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Charanraj Goud Alladi
- Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France
| | - Réjane Troudet
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Violaine Latapie
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, F-91057, France
| | - Ravi Philip RajKumar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Deepak Gopal Shewade
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India.,Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, F-91000, France
| | - Frank Bélivier
- Fondation FondaMental, Créteil, F-94000, France.,Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France.,Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord, Département de Psychiatrie et de Médecine Addicto-logique, Paris, F-75010, France
| | - Cynthia Marie-Claire
- Université de Paris, INSERM UMRS 1144, Optimisation Thérapeutique en Neuropsychopharmacologie (OTeN), Paris, F-75006, France
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, Créteil, F-94000, France.,Fondation FondaMental, Créteil, F-94000, France
| |
Collapse
|
4
|
Treatment-Resistant Schizophrenia, Clozapine Resistance, Genetic Associations, and Implications for Precision Psychiatry: A Scoping Review. Genes (Basel) 2023; 14:genes14030689. [PMID: 36980961 PMCID: PMC10048540 DOI: 10.3390/genes14030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment-resistant schizophrenia (TRS) is often associated with severe burden of disease, poor quality of life and functional impairment. Clozapine is the gold standard for the treatment of TRS, although it is also known to cause significant side effects in some patients. In view of the burgeoning interest in the role of genetic factors in precision psychiatry, we conducted a scoping review to narratively summarize the current genetic factors associated with TRS, clozapine resistance and side effects to clozapine treatment. We searched PubMed from inception to December 2022 and included 104 relevant studies in this review. Extant evidence comprised associations between TRS and clozapine resistance with genetic factors related to mainly dopaminergic and serotoninergic neurotransmitter systems, specifically, TRS and rs4680, rs4818 within COMT, and rs1799978 within DRD2; clozapine resistance and DRD3 polymorphisms, CYP1A2 polymorphisms; weight gain with LEP and SNAP-25 genes; and agranulocytosis risk with HLA-related polymorphisms. Future studies, including replication in larger multi-site samples, are still needed to elucidate putative risk genes and the interactions between different genes and their correlations with relevant clinical factors such as psychopathology, psychosocial functioning, cognition and progressive changes with treatment over time in TRS and clozapine resistance.
Collapse
|
5
|
Liu H, Xu Y, Peng J. Glutathione S-Transferase M1/ T1 Polymorphisms and Schizophrenia Risk: A New Method for Quality Assessment and a Systematic Review. Neuropsychiatr Dis Treat 2023; 19:97-107. [PMID: 36643584 PMCID: PMC9833125 DOI: 10.2147/ndt.s376942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND GST genes were reported to be involved in susceptibility to mental disorder. The results between deletions of GST genes and schizophrenia were inconclusive and confusing. Therefore, we performed this updated meta-analysis to outline the association using a new method for quality assessment. METHODS Sixteen reported studies were selected, and the overall OR and 95% CI were calculated and analyzed by Review Manager 5.4 and STATE 12. The Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control studies was rewritten to evaluate the quality of published studies, as there was no "Exposure" in these studies and other factors should be suggested to assess the quality. RESULTS There was no significant association between deletions of GST genes and SZ risk (p > 0.05 in Random model). We also failed to find a significant relation between null genotypes and SZ risk in East Asian population. Based on further analysis of PCR methods, GSTM1 null was weakly associated with SZ risk in 8 studies using multiplex PCR (OR = 1.17, 95% CI = 1.00-1.37, p = 0.05), but GSTT1 null was a protective factor for SZ risk (OR = 0.73, 95% CI = 0.56-0.94, p = 0.02). When stratified by rewritten NOS stars and deductions, GSTM1 null was significantly associated with SZ risk in 9 studies with high quality (OR = 1.24, 95% CI = 1.08-1.43, p = 0.002), and in 10 studies with no deductions (OR = 1.20, 95% CI = 1.05-1.38, p = 0.007). CONCLUSION GSTM1 null genotype may be a genetic risk factor for SZ in studies using multiplex PCR and high-quality studies. However, GSTT1 null might be a protective factor. Besides, we provided a new method for quality assessment and it was useful and should be promoted in further analysis.
Collapse
Affiliation(s)
- Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Yang H, Zhang J, Yang M, Xu L, Chen W, Sun Y, Zhang X. Catalase and interleukin-6 serum elevation in a prediction of treatment-resistance in male schizophrenia patients. Asian J Psychiatr 2023; 79:103400. [PMID: 36521406 DOI: 10.1016/j.ajp.2022.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress (OS) and neuroinflammatory pathways play an important role in the pathophysiology of schizophrenia. The present study investigated the relationship between OS, inflammatory cytokines, and clinical features in male patients with treatment-resistant schizophrenia (TRS). METHOD We measured plasma OS parameters, including manganese-superoxide dismutase (Mn-SOD), copper/zinc-containing SOD (CuZn-SOD), total-SOD (T-SOD), malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px); and serum inflammatory cytokines, including interleukin (IL)- 1α, IL-6, tumor necrosis factor-alpha (TNF-α), and interferon (IFN)-γ, from 80 male patients with chronic schizophrenia (31 had TRS and 49 had chronic stable schizophrenia (CSS)), and 42 healthy controls. The severity of psychotic symptoms was evaluated using the Positive and Negative Syndrome Scale (PANSS). RESULTS Compared with healthy controls, plasma Mn-SOD, CuZn-SOD, T-SOD, GSH-Px, and MDA levels were significantly lower, while CAT and serum IL-6 levels were higher in both TRS and CSS male patients (all P < 0.05). Significant differences in the activities of CAT (F = 6.068, P = 0.016) and IL-6 levels (F = 6.876, P = 0.011) were observed between TRS and CSS male patients after analysis of covariance. Moreover, a significant positive correlation was found between IL-6 levels and PANSS general psychopathology subscores (r = 0.485, P = 0.006) and between CAT activity and PANSS total scores (r = 0.409, P = 0.022) in TRS male patients. CAT and IL-6 levels were predictors for TRS. Additionally, in chronic schizophrenia patients, a significant positive correlation was observed between IL-6 and GSH-Px (r = 0.292, P = 0.012), and the interaction effect of IL-6 and GSH-Px was positively associated with PANSS general psychopathology scores (r = 0.287, P = 0.014). CONCLUSION This preliminary study indicated that variations in OS and inflammatory cytokines may be involved in psychopathology for patients with chronic schizophrenia, especially in male patients with TRS.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Jing Zhang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China; Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China.
| | - Yujun Sun
- Department of Psychiatry, Kunshan Mental Health Center, Kunshan 215311, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, PR China.
| |
Collapse
|
7
|
Mayén-Lobo YG, Alcaraz-Zubeldia M, Montellano DJDOD, Motilla-Frías BA, García-Manteca MY, Ortega-Vázquez A, Aviña-Cervantes CL, Crail-Meléndez ED, Ríos C, López-López M, Monroy-Jaramillo N. Influence of glutathione-related genetic variants in oxidative stress profile of Mexican patients with psychotic disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2022; 45:117-126. [PMID: 36318479 PMCID: PMC10154007 DOI: 10.47626/1516-4446-2022-2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Patients with psychotic disorders (PD) exhibit divergent outcomes in their clinical trajectories, which in part may result from glutathione (GSH)-related high-risk genotypes affecting their clinical course. We aimed to determine clozapine pharmacokinetic parameters, GSH levels, GSH peroxidase (GPx) activity, variants of genes involved in the synthesis and metabolism of GSH and its association with PD in Mexican patients on clozapine treatment and controls. METHODS 75 PD patients on clozapine therapy and 40 paired healthy controls were included. Plasma clozapine/N-desmethylclozapine, GSH concentrations and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1 and GSTM1. Clinical, molecular and biochemical data were analyzed by a logistic regression model. RESULTS GSH levels were significantly reduced and, conversely, GPx activity was higher in PD patients compared to controls. GCLC_GAG-7/9 genotype (OR=4.3, CI95=1.40-14.31, p=0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR=6.09, CI95=1.93-22.59, p=0.003) were found as risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or to metabolic ratio. CONCLUSIONS GCLC variants were associated with the oxidative stress profile of PD patients raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.
Collapse
Affiliation(s)
- Yerye G Mayén-Lobo
- Master's Program in Pharmaceutical Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Mireya Alcaraz-Zubeldia
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico
| | | | - Blanca A Motilla-Frías
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Mayumi Y García-Manteca
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Carlos L Aviña-Cervantes
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Edgar D Crail-Meléndez
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico. Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
8
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
9
|
Francisco RD, Fernando V, Norma E, Madai ME, Marcelo B. Glial changes in schizophrenia: Genetic and epigenetic approach. Indian J Psychiatry 2022; 64:3-12. [PMID: 35400734 PMCID: PMC8992743 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_104_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/24/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental illness that affects one percent of the population, affecting how people think, feel, and behave. Evidence suggests glial cell alteration and some researchers have found genetic risk loci and epigenetic marks that may regulate glia-related genes implicated in SCZ. AIM The aim of this study is to identify genetic and epigenetic changes that have been reported in glial cells or glial-associated genes in SCZ. MATERIALS AND METHODS We searched the articles from PubMed, PubMed Central, Medline, Medscape, and Embase databases up to December 2020 to identify relevant peer-reviewed articles in English. The titles and abstracts were screened to eliminate irrelevant citations. RESULTS Twenty-four original articles were included in the review. Studies were categorized into the following four thematic via: (1) oligodendrocytes, (2) microglia, (3) astrocytes, and (4) perspectives. CONCLUSION This study is the first of its kind to review research on genetic variants and epigenetic modifications associated with glia-related genes implicated in SCZ. Epigenetic evidence is considerably less than genetic evidence in this field. Understanding the pathways of some risk genes and their genetic and epigenetic regulation allows us to understand and find potential targets for future interventions in this mental illness.
Collapse
Affiliation(s)
- Ramos Daniel Francisco
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Vazquez Fernando
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico.,Research Unit, General Hospital 450, Durango, Mexico
| | - Estrada Norma
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| | - Méndez Edna Madai
- Scientific Research Institute, Juarez University of the State of Durango, Durango, Mexico
| | - Barraza Marcelo
- Faculty of Chemical Sciences, Juarez University of the State of Durango, Durango, Mexico
| |
Collapse
|
10
|
Chen Y, Luo Z, Sun Y, Li F, Han Z, Qi B, Lin J, Lin WW, Yao M, Kang X, Huang J, Sun C, Ying C, Guo C, Xu Y, Chen J, Chen S. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration. Front Pharmacol 2022; 13:1010785. [PMID: 36188600 PMCID: PMC9523215 DOI: 10.3389/fphar.2022.1010785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown that physical activities can prevent aging-related neurodegeneration. Exercise improves the metabolic landscape of the body. However, the role of these differential metabolites in preventing neurovascular unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis of brain tissue from young and old mice. Normalized mutual information (NMI) was used to measure heterogeneity between each pair of cells using the non-negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus epithelial cells (CPC), two types of CNS glial cells, differed significantly in heterogeneity depending on their aging status and intercellular interactions. The MetaboAnalyst 5.0 database and the scMetabolism package were used to analyze and calculate the differential metabolic pathways associated with aging in the CPC. These mRNAs and corresponding proteins were involved in the metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized glutathione pathways in CPC. Our results showed that CPC age heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and LDHB) might be directly targeted by the metabolite of oxidized glutathione (GSSG). Further molecular dynamics and free-energy simulations confirmed the insight into GSSG's targeting function and free-energy barrier on these CPC age heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG inhibits brain energy metabolism, whereas exercise improves the metabolic pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to develop drugs targeting neurodegenerative diseases, further studies are needed to understand how physical exercise enhances NVU function and metabolism by modulating CPC-glial cell interactions.
Collapse
Affiliation(s)
- Yisheng Chen
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Luo
- Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Huashan Hospital, Fudan University, Shanghai, China
| | - Fangqi Li
- Huashan Hospital, Fudan University, Shanghai, China
| | - Zhihua Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Beijie Qi
- Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Wei Lin
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengxuan Yao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei
| | - Xueran Kang
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, Hebei
| | - Jiebin Huang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, United States
| | - Chenting Ying
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyang Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Shiyi Chen, ; Jiwu Chen, ; Yuzhen Xu,
| | - Jiwu Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shiyi Chen, ; Jiwu Chen, ; Yuzhen Xu,
| | - Shiyi Chen
- Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Shiyi Chen, ; Jiwu Chen, ; Yuzhen Xu,
| |
Collapse
|
11
|
No association between GSTM1 and GSTT1 deletion polymorphisms and Amyotrophic Lateral Sclerosis: a genetic study in Brazilian patients. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Usman M, Priya K, Pandit S, Gupta P. Cancer risk and nullity of Glutathione-S-transferase mu and theta 1 in occupational pesticide workers. Curr Pharm Biotechnol 2021; 23:932-945. [PMID: 34375184 DOI: 10.2174/1389201022666210810092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/08/2022]
Abstract
Occupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells - that are devoid of GSTT1/GSTM1 - from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Piyush Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| |
Collapse
|
13
|
Iwata Y, Nakajima S, Plitman E, Truong P, Bani-Fatemi A, Caravaggio F, Kim J, Shah P, Mar W, Chavez S, Remington G, Gerretsen P, De Luca V, Sailasuta N, Graff-Guerrero A. Glutathione Levels and Glutathione-Glutamate Correlation in Patients With Treatment-Resistant Schizophrenia. ACTA ACUST UNITED AC 2021; 2:sgab006. [PMID: 33969302 PMCID: PMC8086698 DOI: 10.1093/schizbullopen/sgab006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatment-resistant schizophrenia (TRS) has been suggested to involve glutamatergic dysfunction. Glutathione (GSH), a dominant antioxidant, is known to be involved in glutamatergic neurotransmission. To date, no study has examined GSH levels in patients with TRS. The aim of this study was to examine GSH levels in the dorsal anterior cingulate cortex (dACC) of patients with TRS. Patients with schizophrenia were categorized into 3 groups with respect to their antipsychotic response: (1) clozapine (CLZ) nonresponders, (2) CLZ responders, and (3) first-line responders (FLR). GSH and glutamine + glutamate (Glx) levels were measured using 3T proton magnetic resonance spectroscopy. Firstly, dACC GSH levels were compared among the patient groups and healthy controls (HCs). Further, relationships between GSH and Glx levels were compared between the groups and GSH levels were explored stratifying the patient groups based on the glutamate-cysteine ligase catalytic (GCLC) subunit polymorphism. There was no difference in GSH levels between the groups. FLR showed a more negative relationship between GSH and Glx levels in the dACC compared to HCs. There were no effects of GCLC genotype on the GSH levels. However, CLZ responders had a higher ratio of high-risk GCLC genotype compared to CLZ nonresponders. This study demonstrated different relationships between GSH and Glx in the dACC between groups. In addition, the results suggest a potential link between CLZ response and GCLC genotype. However, it still remains unclear how these differences are related to the underlying pathophysiology of schizophrenia subtypes or the mechanisms of action of CLZ.
Collapse
Affiliation(s)
- Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, Japan
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ali Bani-Fatemi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Parita Shah
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sofia Chavez
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Gary Remington
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Vincenzo De Luca
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Tropical Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Campbell Institute Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
14
|
Pagnotta PA, Melito VA, Lavandera JV, Parera VE, Rossetti MV, Zuccoli JR, Buzaleh AM. Role of ABCB1 and glutathione S-transferase gene variants in the association of porphyria cutanea tarda and human immunodeficiency virus infection. Biomed Rep 2020; 14:22. [PMID: 33335728 PMCID: PMC7739863 DOI: 10.3892/br.2020.1398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
In Argentina, porphyria cutanea tarda (PCT) is strongly associated with infection with human immunodeficiency virus (HIV); however, whether the onset of this disease is associated with HIV infection and/or the antiretroviral therapy has not been determined. The ABCB1 gene variants c.1236C>T, c.2677G>T/A and c.3435C>T affect drug efflux. The GSTT1 null, GSTM1 null and GSTP1 (c.313A>G) gene variants alter Glutathione S-transferase (GST) activity, modifying the levels of xenobiotics. The aim of the present study was to evaluate the role of genetic variants in initiation of PCT and to analyze the genetic basis of the PCT-HIV association. Control individuals, and HIV, PCT and PCT-HIV patients were recruited, PCR-restriction fragment length polymorphism was used to genotype the ABCB1 and GSTP1 variants, and multiplex PCR was used to study the GSTM1 and GSTT1 variants. The high frequency of c.3435C>T (PCT and PCT-HIV) and c.1236C>T (PCT) suggested that the onset of PCT were not specifically related to HIV infection or antiretroviral therapy for these variants. c.2677G>T/A frequencies in the PCT-HIV patients were higher compared with the other groups, suggesting that a mechanism involving antiretroviral therapy served a role in this association. PCT-HIV patients also had a high frequency of GSTT1 null and low frequency for GSTM1 null variants; thus, the genetic basis for PCT onset may involve a combination between the absence of GSTT1 and the presence of GSTM1. In conclusion, genes encoding for proteins involved in the flow and metabolism of xenobiotics may influence the PCT-HIV association. The present study is the first to investigate the possible role of GST and ABCB1 gene variants in the triggering of PCT in HIV-infected individuals, to the best of our knowledge, and may provide novel insights into the molecular basis of the association between PCT and HIV.
Collapse
Affiliation(s)
- Priscila Ayelén Pagnotta
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Viviana Alicia Melito
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - María Victoria Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Ana Maria Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
15
|
Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, Marder SR, Olfson M, Howes OD. The Neurobiology of Treatment-Resistant Schizophrenia: Paths to Antipsychotic Resistance and A Roadmap for Future Research. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2020; 18:456-465. [PMID: 33343259 DOI: 10.1176/appi.focus.18309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(Reprinted with permission from NPJ Schizophrenia (2020) 6:1).
Collapse
|
16
|
Zhang X, Yang J, Liu X, Zhao G, Li X, Xun G. Glutathione S-transferase gene polymorphisms (GSTT1 and GSTM1) and risk of schizophrenia: A case-control study in Chinese Han population. Medicine (Baltimore) 2020; 99:e21918. [PMID: 32899025 PMCID: PMC7478483 DOI: 10.1097/md.0000000000021918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Schizophrenia (SCZ) is a chronic disability disorder related to oxidative stress. Glutathione S-transferase (GST) is a group enzyme that protects cells and tissues from oxidative stress damage. Among GSTs, GSTT1 and GSTM1 have well defined genetic polymorphisms. The purpose of our research was to explore the correlation between GSTT1 and GSTM1 polymorphism and SCZ risk in Chinese Han population.A total of 650 subjects (386 SCZ patients and 264 healthy individuals) were included in this case-control designed study. The GSTT1 and GSTM1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). We explored the relationship between these 2 polymorphisms and the risk of SCZ.We found that the GSTT1 null genotype had a protective effect on the development of SCZ [odds ratio (OR) = 0.601, 95% confidence interval (95% CI) = 0.412-0.986, P = .031]. We also found that the combination of null genotypes of the GSTT1 and GSTM1 genes was made at a lower risk of SCZ (OR = 0.452, 95% CI = 0.238-0.845, P = .028). However, we found no correction between Positive and Negative Syndrome Scale score (PANSS) and GSTM1, GSST1 genotypes in SCZ patients.Our finding revealed that GSTT1 null polymorphisms may be related to the reduced risk of SCZ in Chinese Han population, and this risk was further reduced with the combination of GSTT1 null polymorphisms and GSTM1 null polymorphisms.
Collapse
Affiliation(s)
- Xin Zhang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Jinmei Yang
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xia Liu
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Gaofeng Zhao
- Jining Psychiatric Hospital, Jining, Shandong Province, China
| | - Xue Li
- Jining Medical University, Jining, Shandong Province, China
| | - Guanglei Xun
- Shandong Mental Health Center, Jinan, Shandong Province, China
| |
Collapse
|
17
|
Potkin SG, Kane JM, Correll CU, Lindenmayer JP, Agid O, Marder SR, Olfson M, Howes OD. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ SCHIZOPHRENIA 2020; 6:1. [PMID: 31911624 PMCID: PMC6946650 DOI: 10.1038/s41537-019-0090-z] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023]
Abstract
Treatment-resistant schizophrenia (TRS), the persistence of positive symptoms despite ≥2 trials of adequate dose and duration of antipsychotic medication with documented adherence, is a serious clinical problem with heterogeneous presentations. TRS can vary in its onset (at the first episode of psychosis or upon relapse), in its severity, and in the response to subsequent therapeutic interventions (i.e., clozapine, electroconvulsive therapy). The heterogeneity of TRS indicates that the underlying neurobiology of TRS may differ not only from treatment-responsive schizophrenia but also among patients with TRS. Several hypotheses have been proposed for the neurobiological mechanisms underlying TRS, including dopamine supersensitivity, hyperdopaminergic and normodopaminergic subtypes, glutamate dysregulation, inflammation and oxidative stress, and serotonin dysregulation. Research supporting these hypotheses is limited in part by variations in the criteria used to define TRS, as well as by the biological and clinical heterogeneity of TRS. Clinical trial designs for new treatments should be informed by this heterogeneity, and further clinical research is needed to more clearly understand the underlying neurobiology of TRS and to optimize treatment for patients with TRS.
Collapse
Affiliation(s)
| | - John M Kane
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA
- The Zucker Hillside Hospital, Glen Oaks, NY, USA
- The Feinstein Institute for Medical Research, Psychiatric Neuroscience Center of Excellence, Manhasset, NY, USA
| | - Christoph U Correll
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA
- The Zucker Hillside Hospital, Glen Oaks, NY, USA
- The Feinstein Institute for Medical Research, Psychiatric Neuroscience Center of Excellence, Manhasset, NY, USA
- Charité Universitätsmedizin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| | | | - Ofer Agid
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen R Marder
- The Semel Institute for Neuroscience at UCLA, Los Angeles, CA, USA
- The VA Desert Pacific Mental Illness Research, Education, and Clinical Center, Los Angeles, CA, USA
| | - Mark Olfson
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Oliver D Howes
- King's College, London, UK.
- MRC London Institute of Medical Sciences, Imperial College, London, UK.
| |
Collapse
|
18
|
Yan C, Duan L, Fu C, Tian C, Zhang B, Shao X, Zhu G. Association Between Glutathione S-Transferase (GST) Polymorphisms and Schizophrenia in a Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:479-487. [PMID: 32110022 PMCID: PMC7038391 DOI: 10.2147/ndt.s235043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glutathione S-transferase (GST) is an important antioxidant enzyme in the body. The weakening of the antioxidant system causes damage to the cells and tissues that make up the organism, adversely affects the function of the nervous system, and ultimately leads to schizophrenia (SCZ). Previous studies have yielded inconsistent results across different ethnic populations. PURPOSE This case-control study was carried out to investigate whether genetic polymorphisms in GST could be associated with SCZ in the Chinese Han population. PATIENTS AND METHODS A total of 794 participants, including 379 SCZ patients (case group) and 415 healthy individuals (control group), were genotyped by polymerase chain reaction-restriction fragment length for polymorphisms in GST genes. RESULTS The study found that the frequency of the GSTM1 null genotype was higher in case group than control group (p=0.003). The frequency of the GSTM1 and GSTT1 double null genotype was also higher in case group than control group (p=0.008). CONCLUSION We conclude that the GSTM1 null genotype and the GSTM1 and GSTT1 double null genotype may be related to the onset of SCZ in Chinese Han population.
Collapse
Affiliation(s)
- Ci Yan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Bihui Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Department of Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
19
|
Dual roles of glutathione S-transferase mu 1 in the development and metastasis of hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109532. [PMID: 31605953 DOI: 10.1016/j.biopha.2019.109532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Reactive oxygen species (ROS) are implicated in carcinogenesis, and cellular antioxidant systems are important for detoxifying ROS and reversing oxidant-mediated modifications. Glutathione S-transferase mu (GSTM) belongs to a family of phase II detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a wide range of endogenous and exogenous electrophilic compounds. The genotype of GSTM1 was associated with the risk and prognosis of cancer in several meta-analyses. This study explored the function of GSTM1 in hepatocellular carcinoma (HCC). METHODS Polymerase chain reaction (PCR) and western blotting (WB) were used to detect the levels of gene and protein expression. MTS assays, Transwell assays, and flow cytometry were used to explore the function of GSTM1 in vitro. The xenograft assay and tail vein injection model were used to explore the function of GSTM1 in vivo. RESULTS The mRNA and protein expression of GSTM1 was downregulated in HCC, but the expression levels of GSTM1 were not correlated with patient survival time. In vitro, Transwell and doxorubicin (DOX)-induced apoptosis assays revealed that GSTM1 showed opposite functions in different HCC cell lines with varied TP53 genotype statuses. The overexpression of GSTM1 in the above cell lines led to a significant decrease in ROS and an increase in GSH concentration and TP53 levels, suggesting that the controversial role of GSTM1 resulted from the TP53 genotype of HCC cells. The overexpression of GSTM1 promoted cell migration and inhibited apoptosis in the MHCC-97H cell line (TP53, R249S), but inhibited cell migration and increased apoptosis in the SMMC-7721 cell line (TP53 wildtype). CONCLUSION GSTM1 down-regulation may partially account for ROS-mediated oxidative damage and HCC carcinogenesis. GSTM1 also regulates tumor progression by disrupting the ROS-TP53 axis in HCC cells with different genetic backgrounds.
Collapse
|
20
|
Kim E, Keskey Z, Kang M, Kitchen C, Bentley WE, Chen S, Kelly DL, Payne GF. Validation of oxidative stress assay for schizophrenia. Schizophr Res 2019; 212:126-133. [PMID: 31399268 DOI: 10.1016/j.schres.2019.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023]
Abstract
Accumulating evidence implicates oxidative stress in a range of diseases, yet no objective measurement has emerged that characterizes the global nature of oxidative stress. Previously, we reported a measurement that employs the moderately strong oxidant iridium (Ir) to probe the oxidative damage in a serum sample and reported that in a small study (N = 15) the Ir-reducing capacity assay could distinguish schizophrenia from healthy control groups based on their levels of oxidative stress. Here, we used a larger sample size to evaluate the Ir-reducing capacity assay to assess its ability to discriminate the schizophrenia (N = 73) and healthy control groups (N = 45). Each serum sample was measured (in triplicate) at three different times that were separated by several weeks. The Intraclass Correlation Coefficient (ICC = 0.69) for these repeated measurements indicates the assay detects stable components in the sample (i.e., it is not detecting transient reactive species or air-oxidizable serum components). Correlations between the Ir-reducing capacity assay and independently-measured total serum protein levels (r = +0.74, p < 2.2 × 10-16) suggest the assay is detecting information in the protein pool. For cross-validation of the discrimination ability, we used machine learning and receiver operating characteristic (ROC) analysis. After adjusting for potential confounders (age and smoking status), an area under the curve (AUC) of ROC curve was calculated to be 0.89 (p = 9.3 × 10-5). In conclusion, this validation indicates the Ir-reducing capacity assay provides a simple global measure of oxidative stress, and further supports the hypothesis that oxidative stress is linked with schizophrenia.
Collapse
Affiliation(s)
- Eunkyoung Kim
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Zoe Keskey
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Mijeong Kang
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Christopher Kitchen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - William E Bentley
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
21
|
Pisanu C, Squassina A. Treatment-Resistant Schizophrenia: Insights From Genetic Studies and Machine Learning Approaches. Front Pharmacol 2019; 10:617. [PMID: 31191325 PMCID: PMC6548883 DOI: 10.3389/fphar.2019.00617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia (SCZ) is a severe psychiatric disorder affecting approximately 23 million people worldwide. It is considered the eighth leading cause of disability according to the World Health Organization and is associated with a significant reduction in life expectancy. Antipsychotics represent the first-choice treatment in SCZ, but approximately 30% of patients fail to respond to acute treatment. These patients are generally defined as treatment-resistant and are eligible for clozapine treatment. Treatment-resistant patients show a more severe course of the disease, but it has been suggested that treatment-resistant schizophrenia (TRS) may constitute a distinct phenotype that is more than just a more severe form of SCZ. TRS is heritable, and genetics has been shown to play an important role in modulating response to antipsychotics. Important efforts have been put into place in order to better understand the genetic architecture of TRS, with the main goal of identifying reliable predictive markers that might improve the management and quality of life of TRS patients. However, the number of candidate gene and genome-wide association studies specifically focused on TRS is limited, and to date, findings do not allow the disentanglement of its polygenic nature. More recent studies implemented polygenic risk score, gene-based and machine learning methods to explore the genetics of TRS, reporting promising findings. In this review, we present an overview on the genetics of TRS, particularly focusing our discussion on studies implementing polygenic approaches.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|