1
|
Zhong D, Chi Y, Ding J, Zhao N, Zeng L, Liu P, Huang Z, Zhou L. Decoupling of nitrogen allocation and energy partitioning in rice after flowering. Ecol Evol 2024; 14:e11297. [PMID: 38623520 PMCID: PMC11017445 DOI: 10.1002/ece3.11297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.
Collapse
Affiliation(s)
- Duwei Zhong
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Yonggang Chi
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Jianxi Ding
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Ning Zhao
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Linhui Zeng
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Pai Liu
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Zhi Huang
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
| | - Lei Zhou
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Wang J, Ouyang F, An S, Wang L, Xu N, Ma J, Wang J, Zhang H, Kong L. Variation, coordination, and trade-offs between needle structures and photosynthetic-related traits across five Picea species: consequences on plant growth. BMC PLANT BIOLOGY 2022; 22:242. [PMID: 35581540 PMCID: PMC9112436 DOI: 10.1186/s12870-022-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/03/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Picea species are distributed and planted world-wide due to their great ecological and economic values. It has been reported that Picea species vary widely in growth traits in a given environment, which reflects genetic and phenotypic differences among species. However, key physiological processes underlying tree growth and the influencing factors on them are still unknown. RESULTS Here, we examined needle structures, needle chemical components, physiological characteristics and growth traits across five Picea species in a common garden in Tianshui, Gansu province in China: Picea glauca, P. mariana, P. likiangensis, P. koraiensis, and P. crassifolia, among which P. glauca and P. mariana were introduced from North America, P. likiangensis was from Lijiang, Yunan province in China, P. koraiensis was from Yichun, Heilongjiang province in China, and P. crassifolia was native to the experimental site. It was found that nearly all traits varied significantly among species. Tissue-level anatomical characteristics and leaf mass per area (LMA) were affected by needle size, but the variations of them were not associated with the variations in photosynthetic and biochemical capacity among species. Variations in area-based maximum photosynthesis (Pnmax) were affected by stomatal conductance (gs), mesophyll conductance (gm) and biochemical parameters including maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax). The fraction of N allocated to different photosynthetic apparatus displayed contrasting values among species, which contributed to the species variations in photosynthetic nitrogen use efficiency (PNUE) and Pnmax. Additionally, all growth traits were positively correlated with Pnmax and PNUE. CONCLUSION Needle structures are less important than needle biochemical parameters in determining the variations in photosynthetic capacity across the five Picea species. Pnmax and PNUE are closedly associated with the fraction of N allocated to photosynthetic apparatus (Pphoto) compared with leaf N content per area (Narea). The tremendous growth differences among the five Picea species were substantially related to the interspecies variation in Pnmax and PNUE.
Collapse
Affiliation(s)
- Junchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China
| | - Fangqun Ouyang
- Beijing Floriculture Engineering Technology Research Centre, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Botanical Garden, Beijing, 100093, China.
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, People's Republic of China
| | - Lifang Wang
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, People's Republic of China
| | - Na Xu
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, People's Republic of China
| | - Jianwei Ma
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, 741022, People's Republic of China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, People's Republic of China
| | - Lisheng Kong
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
3
|
Wu J, Shi Z, Liu S, Centritto M, Cao X, Zhang M, Zhao G. Photosynthetic capacity of male and female Hippophae rhamnoides plants along an elevation gradient in eastern Qinghai-Tibetan Plateau, China. TREE PHYSIOLOGY 2021; 41:76-88. [PMID: 32785643 DOI: 10.1093/treephys/tpaa105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Elevational variations in the growing environment and sex differences in individuals drive the diversification of photosynthetic capacity of plants. However, photosynthetic response of dioecious plants to elevation gradients and the mechanisms that cause these responses are poorly understood. We measured foliar gas exchange, chlorophyll fluorescence and nitrogen allocations of male and female Seabuckthorn (Hippophae rhamnoides L.) at the elevation of 1900-3700 m above sea level (a.s.l.) on the eastern Qinghai-Tibetan Plateau, China. Male and female plants showed increased leaf photosynthetic capacity at higher elevation generally with no sex-specific difference. Photosynthetic photon flux density-saturated photosynthesis (Asat) was limited mostly by diffusional components (77 ± 1%), whereas biochemical components contributed minor limitations (22 ± 1%). Mesophyll conductance (gm) played an essential role in Asat variation, accounting for 40 ± 2% of the total photosynthetic limitations and had a significant positive correlation with Asat. Leaf nitrogen allocations to Rubisco (PR) and bioenergetics (PB) in the photosynthetic apparatus were major drivers for variations in photosynthetic nitrogen-use efficiency. The increase of these resource uptake capacities enables H. rhamnoides to maintain a high level of carbon assimilation and function efficiently to cope with the harsh conditions and shorter growing season at higher elevation.
Collapse
Affiliation(s)
- Jiamei Wu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Mauro Centritto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino 10135, Italy
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangdong Zhao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Tang J, Sun B, Cheng R, Shi Z, Da Luo, Liu S, Centritto M. Effects of soil nitrogen (N) deficiency on photosynthetic N-use efficiency in N-fixing and non-N-fixing tree seedlings in subtropical China. Sci Rep 2019; 9:4604. [PMID: 30872731 PMCID: PMC6418086 DOI: 10.1038/s41598-019-41035-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/11/2022] Open
Abstract
Soil nitrogen (N) deficiencies can affect the photosynthetic N-use efficiency (PNUE), mesophyll conductance (gm), and leaf N allocation. However, lack of information about how these physiological characteristics in N-fixing trees could be affected by soil N deficiency and the difference between N-fixing and non-N-fixing trees. In this study, we chose seedlings of two N-fixing (Dalbergia odorifera and Erythrophleum fordii) and two non-N-fixing trees (Castanopsis hystrix and Betula alnoides) as study objects, and we conducted a pot experiment with three levels of soil N treatments (high nitrogen, set as Control; medium nitrogen, MN; and low nitrogen, LN). Our results showed that soil N deficiency significantly decreased the leaf N concentration and photosynthesis ability of the two non-N-fixing trees, but it had less influence on two N-fixing trees. The LN treatment had lower gm in D. odorifera and lower leaf N allocated to Rubisco (PR), leaf N allocated to bioenergetics (PB), and gm in B. alnoides, eventually resulting in low PNUE values. Our findings suggested that the D. odorifera and E. fordii seedlings could grow well in N-deficient soil, and adding N may increase the growth rates of B. alnoides and C. hystrix seedlings and promote the growth of artificial forests.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China. .,Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Da Luo
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, 830000, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
5
|
Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M. Seedling leaves allocate lower fractions of nitrogen to photosynthetic apparatus in nitrogen fixing trees than in non-nitrogen fixing trees in subtropical China. PLoS One 2019; 14:e0208971. [PMID: 30830910 PMCID: PMC6398865 DOI: 10.1371/journal.pone.0208971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2018] [Accepted: 02/20/2019] [Indexed: 11/26/2022] Open
Abstract
Photosynthetic-nitrogen use efficiency (PNUE) is a useful trait to characterize leaf physiology and survival strategy. PNUE can also be considered as part of ‘leaf economics spectrum’ interrelated with leaf nutrient concentrations, photosynthesis and respiration, leaf life-span and dry-mass investment. However, few studies have paid attention to PNUE of N-fixing tree seedlings in subtropical China. In this study, we investigated the differences in PNUE, leaf nitrogen (N) allocation, and mesophyll conductance (gm) in Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Betula alnoides and Castanopsis hystrix (non-N-fixing trees). PNUE of D. odorifera and E. fordii were significantly lower than those of B. alnoides and C. hystrix mainly because of their allocation of a lower fraction of leaf N to Rubisco (PR) and bioenergetics (PB). Mesophyll conductance had a significant positive correlation with PNUE in D. odorifera, E. fordii, and B. alnoides, but the effect of gm on PNUE was different between species. The fraction of leaf N to cell wall (PCW) had a significant negative correlation with PR in B. alnoides and C. hystrix seedling leaves, but no correlation in D. odorifera and E. fordii seedling leaves, which may indicate that B. alnoides and C. hystrix seedling leaves did not have enough N to satisfy the demand from both the cell wall and Rubisco. Our results indicate that B. alnoides and C. hystrix may have a higher competitive ability in natural ecosystems with fertile soil, and D. odorifera and E. fordii may grow well in N-poor soil. Mixing these non-N-fixing and N-fixing trees for afforestation is useful for improving soil N utilization efficiency in the tropical forests.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, China
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
- * E-mail:
| | - Da Luo
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| |
Collapse
|