1
|
Lu H, Rakhymzhanov A, Buttner U, Alsulaiman D. Making Healthcare Accessible: A Rapid Clean-Room-Free Fabrication Strategy for Microfluidics-Driven Biosensors Based on Coupling Stereolithography and Hot Embossing. ACS OMEGA 2024; 9:38096-38106. [PMID: 39281898 PMCID: PMC11391438 DOI: 10.1021/acsomega.4c05196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
Microfluidics offers transformative potential in healthcare by enabling miniaturized, user-friendly, and cost-effective devices for disease diagnostics among other biomedical applications; however, their meaningful adoption is severely hindered, especially in developing countries and resource-limited settings, by the cost, time, and complexity of their fabrication. To overcome this barrier of access, this work develops a novel approach for highly efficient (<4 h), cost-effective, and clean-room-free fabrication of functional polydimethylsiloxane (PDMS)-based microfluidic devices based on coupling stereolithography three-dimensional (3D) printing with hot embossing. The strategy exhibits high fidelity between the digital design and final device, remarkable transfer accuracy between the 3D print and poly(methyl methacrylate) (PMMA) mold, in addition to highly smooth surfaces (R a < 1 μm). To establish the versatility of the approach and performance quality of the fabricated devices, three advanced microfluidics-driven biosensing platforms are developed: a microsphere droplet generator, a stop-flow lithography-based hydrogel microparticle synthesizer, and a hydrogel postembedded microfluidic device for multiplexed biomarker detection. As a proof-of-concept, the latter platform was applied to the multiplexed detection of microRNA, a highly promising class of liquid biopsy biomarkers for many diseases including cancer. Notably, the ability to demonstrate multiplexed sensing of disease biomarkers within devices made through a facile, rapid, and clean-room-free strategy demonstrates the immense potential of this fabrication approach to accelerate the adoption and advancement of biomedical microfluidic devices in practice and in resource-limited settings.
Collapse
Affiliation(s)
- Haoliang Lu
- Division of Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Almas Rakhymzhanov
- Nanofabrication Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Ulrich Buttner
- Nanofabrication Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| | - Dana Alsulaiman
- Division of Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Moraes da Silva Junior S, Bento Ribeiro LE, Fruett F, Stiens J, Swart JW, Moshkalev S. A Novel Microfluidics Droplet-Based Interdigitated Ring-Shaped Electrode Sensor for Lab-on-a-Chip Applications. MICROMACHINES 2024; 15:672. [PMID: 38930642 PMCID: PMC11205656 DOI: 10.3390/mi15060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0-6.0 mm, velocity of 0.66-2.51 mm/s, and volume of 1.07 nL-113.46 nL. Experimental results demonstrated that the microsensor's performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics.
Collapse
Affiliation(s)
- Salomão Moraes da Silva Junior
- Electronics & Informatics, Vrije Universiteit of Brussel, 1050 Brussels, Belgium
- Center for Semiconductor Components and Nanotechnologies, State University of Campinas, Campinas 13083-852, Brazil;
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
- BioSense Institute, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Luiz Eduardo Bento Ribeiro
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Fabiano Fruett
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Johan Stiens
- Electronics & Informatics, Vrije Universiteit of Brussel, 1050 Brussels, Belgium
| | - Jacobus Willibrordus Swart
- School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-852, Brazil (J.W.S.)
| | - Stanislav Moshkalev
- Center for Semiconductor Components and Nanotechnologies, State University of Campinas, Campinas 13083-852, Brazil;
| |
Collapse
|
3
|
Dowling R, Narkowicz R, Lenz K, Oelschlägel A, Lindner J, Kostylev M. Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:19. [PMID: 38202474 PMCID: PMC10780436 DOI: 10.3390/nano14010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.
Collapse
Affiliation(s)
- Reyne Dowling
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Ryszard Narkowicz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Kilian Lenz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Antje Oelschlägel
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Jürgen Lindner
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Mikhail Kostylev
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
4
|
Moetazedian A, Candeo A, Liu S, Hughes A, Nasrollahi V, Saadat M, Bassi A, Grover LM, Cox LR, Poologasundarampillai G. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline. Adv Healthc Mater 2023; 12:e2300636. [PMID: 37186512 PMCID: PMC11468497 DOI: 10.1002/adhm.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Microfluidics have transformed diagnosis and screening in regenerative medicine. Recently, they are showing much promise in biofabrication. However, their adoption is inhibited by costly and drawn-out lithographic processes thus limiting progress. Here, multi-material fibers with complex core-shell geometries with sizes matching those of human arteries and arterioles are fabricated employing versatile microfluidic devices produced using an agile and inexpensive manufacturing pipeline. The pipeline consists of material extrusion additive manufacturing with an innovative continuously varied extrusion (CONVEX) approach to produce microfluidics with complex seamless geometries including, novel variable-width zigzag (V-zigzag) mixers with channel widths ranging from 100-400 µm and hydrodynamic flow-focusing components. The microfluidic systems facilitated rapid mixing of fluids by decelerating the fluids at specific zones to allow for increased diffusion across the interfaces. Better mixing even at high flow rates (100-1000 µL min-1 ) whilst avoiding turbulence led to high cell cytocompatibility (>86%) even when 100 µm nozzles are used. The presented 3D-printed microfluidic system is versatile, simple and efficient, offering a great potential to significantly advance the microfluidic platform in regenerative medicine.
Collapse
Affiliation(s)
- Amirpasha Moetazedian
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
- EPSRC Future Metrology HubSchool of Computing and EngineeringUniversity of HuddersfieldHuddersfieldHD1 3DUK
| | - Alessia Candeo
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Siyun Liu
- School of DentistryInstitute of Clinical SciencesUniversity of BirminghamEdgbastonBirminghamB5 7EGUK
| | - Arran Hughes
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Vahid Nasrollahi
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Mozafar Saadat
- Department of Mechanical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Andrea Bassi
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Liam M. Grover
- School of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
5
|
Felton H, Schiffmann O, Goudswaard M, Gopsill J, Snider C, Real R, McClenaghan A, Hicks B. Maker communities and the COVID-19 pandemic: a longitudinal analysis of Thingiverse's response to supply shortages. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230790. [PMID: 37771964 PMCID: PMC10523067 DOI: 10.1098/rsos.230790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
The COVID-19 pandemic profoundly affected various aspects of daily life, particularly the supply and demand of essential goods, resulting in critical shortages. This included personal protective equipment for medical professionals and the general public. To address these shortages, online 'maker communities' emerged, aiming to develop and locally manufacture critical products. While some organized efforts existed, the majority of initiatives originated from individuals and groups on platforms like Thingiverse. This paper presents a longitudinal analysis of Thingiverse, one of the largest maker community websites, to examine the pandemic's effects. Our findings reveal a surge in community output during the initial lockdown periods in major contributing nations (primarily those in the Western Hemisphere), followed by a subsequent decline. Additionally, throughout 2020, pandemic-related products dominated uploads and interactions during this period. Based on these observations, we propose recommendations to expedite the community's ability to support local, national and international responses to future disasters.
Collapse
Affiliation(s)
- H. Felton
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - O. Schiffmann
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - M. Goudswaard
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - J. Gopsill
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - C. Snider
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - R. Real
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - A. McClenaghan
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| | - B. Hicks
- Design Manufacturing Futures Laboratory, Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
| |
Collapse
|
6
|
Fadilah NIM, Riha SM, Mazlan Z, Wen APY, Hao LQ, Joseph B, Maarof M, Thomas S, Motta A, Fauzi MB. Functionalised-biomatrix for wound healing and cutaneous regeneration: future impactful medical products in clinical translation and precision medicine. Front Bioeng Biotechnol 2023; 11:1160577. [PMID: 37292094 PMCID: PMC10245056 DOI: 10.3389/fbioe.2023.1160577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Skin tissue engineering possesses great promise in providing successful wound injury and tissue loss treatments that current methods cannot treat or achieve a satisfactory clinical outcome. A major field direction is exploring bioscaffolds with multifunctional properties to enhance biological performance and expedite complex skin tissue regeneration. Multifunctional bioscaffolds are three-dimensional (3D) constructs manufactured from natural and synthetic biomaterials using cutting-edge tissue fabrication techniques incorporated with cells, growth factors, secretomes, antibacterial compounds, and bioactive molecules. It offers a physical, chemical, and biological environment with a biomimetic framework to direct cells toward higher-order tissue regeneration during wound healing. Multifunctional bioscaffolds are a promising possibility for skin regeneration because of the variety of structures they provide and the capacity to customise the chemistry of their surfaces, which allows for the regulated distribution of bioactive chemicals or cells. Meanwhile, the current gap is through advanced fabrication techniques such as computational designing, electrospinning, and 3D bioprinting to fabricate multifunctional scaffolds with long-term safety. This review stipulates the wound healing processes used by commercially available engineered skin replacements (ESS), highlighting the demand for a multifunctional, and next-generation ESS replacement as the goals and significance study in tissue engineering and regenerative medicine (TERM). This work also scrutinise the use of multifunctional bioscaffolds in wound healing applications, demonstrating successful biological performance in the in vitro and in vivo animal models. Further, we also provided a comprehensive review in requiring new viewpoints and technological innovations for the clinical application of multifunctional bioscaffolds for wound healing that have been found in the literature in the last 5 years.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaima Maliha Riha
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn Bhd Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Blessy Joseph
- Business Innovation and Incubation Centre, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabu Thomas
- International and Inter University Centre for Nanosciences and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Mitrogiannopoulou AM, Tselepi V, Ellinas K. Polymeric and Paper-Based Lab-on-a-Chip Devices in Food Safety: A Review. MICROMACHINES 2023; 14:986. [PMID: 37241610 PMCID: PMC10223399 DOI: 10.3390/mi14050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Food quality and safety are important to protect consumers from foodborne illnesses. Currently, laboratory scale analysis, which takes several days to complete, is the main way to ensure the absence of pathogenic microorganisms in a wide range of food products. However, new methods such as PCR, ELISA, or even accelerated plate culture tests have been proposed for the rapid detection of pathogens. Lab-on-chip (LOC) devices and microfluidics are miniaturized devices that can enable faster, easier, and at the point of interest analysis. Nowadays, methods such as PCR are often coupled with microfluidics, providing new LOC devices that can replace or complement the standard methods by offering highly sensitive, fast, and on-site analysis. This review's objective is to present an overview of recent advances in LOCs used for the identification of the most prevalent foodborne and waterborne pathogens that put consumer health at risk. In particular, the paper is organized as follows: first, we discuss the main fabrication methods of microfluidics as well as the most popular materials used, and then we present recent literature examples for LOCs used for the detection of pathogenic bacteria found in water and other food samples. In the final section, we summarize our findings and also provide our point of view on the challenges and opportunities in the field.
Collapse
Affiliation(s)
| | | | - Kosmas Ellinas
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou & Makrygianni St, GR 81400 Myrina, Greece
| |
Collapse
|
8
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
9
|
Jia F, Gao Y, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. Bioengineering (Basel) 2022; 9:625. [PMID: 36354536 PMCID: PMC9687342 DOI: 10.3390/bioengineering9110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Traditional drug therapy faces challenges such as drug distribution throughout the body, rapid degradation and excretion, and extensive adverse reactions. In contrast, micro/nanoparticles can controllably deliver drugs to target sites to improve drug efficacy. Unlike traditional large-scale synthetic systems, microfluidics allows manipulation of fluids at the microscale and shows great potential in drug delivery and precision medicine. Well-designed microfluidic devices have been used to fabricate multifunctional drug carriers using stimuli-responsive materials. In this review, we first introduce the selection of materials and processing techniques for microfluidic devices. Then, various well-designed microfluidic chips are shown for the fabrication of multifunctional micro/nanoparticles as drug delivery vehicles. Finally, we describe the interaction of drugs with lymphatic vessels that are neglected in organs-on-chips. Overall, the accelerated development of microfluidics holds great potential for the clinical translation of micro/nanoparticle drug delivery systems for disease treatment.
Collapse
Affiliation(s)
- Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Gao
- Troop 96901 of the Chinese People’s Liberation Army, Beijing 100094, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Validation of Easy Fabrication Methods for PDMS-Based Microfluidic (Bio)Reactors. SCI 2022. [DOI: 10.3390/sci4040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The common method for producing casting molds for the fabrication of polydimethylsiloxane (PDMS) chips is standard photolithography. This technique offers high resolution from hundreds of nanometers to a few micrometers. However, this mold fabrication method is costly, time-consuming, and might require clean room facilities. Additionally, there is a need for non-micromechanics experts, who do not have specialized equipment to easily and quickly prototype chips themselves. Simple, so-called, makerspace technologies are increasingly being explored as alternatives that have potential to enable anyone to fabricate microfluidic structures. We therefore tested simple fabrication methods for a PDMS-based microfluidic device. On the one hand, channels were replicated from capillaries and tape. On the other hand, different mold fabrication methods, namely laser cutting, fused layer 3D printing, stereolithographic 3D printing, and computer numerical control (CNC) milling, were validated in terms of machine accuracy and tightness. Most of these methods are already known, but the incorporation and retention of particles with sizes in the micrometer range have been less investigated. We therefore tested two different types of particles, which are actually common carriers for the immobilization of enzymes, so that the resulting reactor could ultimately be used as a microfluidic bioreactor. Furthermore, CNC milling provide the most reliable casting mold fabrication method. After some optimization steps with regard to manufacturing settings and post-processing polishing, the chips were tested for the retention of two different particle types (spherical and non-spherical particles). In this way, we successfully tested the obtained PDMS-based microfluidic chips for their potential applicability as (bio)reactors with enzyme immobilization carrier beads.
Collapse
|
11
|
Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202610. [PMID: 35831252 PMCID: PMC9507339 DOI: 10.1002/advs.202202610] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Although 3D printers are becoming more common in households, they are still under-represented in many laboratories worldwide and regarded as toys rather than as laboratory equipment. This short review wants to change this conservative point of view. This mini-review focuses on fused deposition modeling printers and what happens after acquiring your first 3D printer. In short, these printers melt plastic filament and deposit it layer by layer to create the final object. They are getting cheaper and easier to use, and nowadays it is not difficult to find good 3D printers for less than €500. At such a price, a 3D printer is one, if not the most, versatile piece of equipment you can have in a laboratory.
Collapse
Affiliation(s)
- Vittorio Saggiomo
- Department of BioNanoTechnologyWageningen UniversityBornse Weilanden 9Wageningen6708WGThe Netherlands
| |
Collapse
|
12
|
Anshori I, Lukito V, Adhawiyah R, Putri D, Harimurti S, Rajab TLE, Pradana A, Akbar M, Syamsunarno MRAA, Handayani M, Purwidyantri A, Prabowo BA. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing. MICROMACHINES 2022; 13:mi13081197. [PMID: 36014119 PMCID: PMC9413493 DOI: 10.3390/mi13081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
We present a low-cost and simple method to fabricate a novel lock-and-key mixer microfluidics using an economic stereolithography (SLA) three-dimensional (3D) printer, which costs less than USD 400 for the investment. The proposed study is promising for a high throughput fabrication module, typically limited by conventional microfluidics fabrications, such as photolithography and polymer-casting methods. We demonstrate the novel modular lock-and-key mixer for the connector and its chamber modules with optimized parameters, such as exposure condition and printing orientation. In addition, the optimization of post-processing was performed to investigate the reliability of the fabricated hollow structures, which are fundamental to creating a fluidic channel or chamber. We found out that by using an inexpensive 3D printer, the fabricated resolution can be pushed down to 850 µm and 550 µm size for squared- and circled-shapes, respectively, by the gradual hollow structure, applying vertical printing orientation. These strategies opened up the possibility of developing straightforward microfluidics platforms that could replace conventional microfluidics mold fabrication methods, such as photolithography and milling, which are costly and time consuming. Considerably cheap commercial resin and its tiny volume employed for a single printing procedure significantly cut down the estimated fabrication cost to less than 50 cents USD/module. The simulation study unravels the prominent properties of the fabricated devices for biological fluid mixers, such as PBS, urine and plasma blood. This study is eminently prospective toward microfluidics application in clinical biosensing, where disposable, low-cost, high-throughput, and reproducible chips are highly required.
Collapse
Affiliation(s)
- Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
- Correspondence: (I.A.); (B.A.P.)
| | - Vincent Lukito
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Rafita Adhawiyah
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Delpita Putri
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Suksmandhira Harimurti
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Tati Latifah Erawati Rajab
- Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia; (V.L.); (R.A.); (D.P.); (S.H.); (T.L.E.R.)
| | - Arfat Pradana
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung 40132, Indonesia;
| | - Mohammad Akbar
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Padjadjaran and Dr. Hasan Sadikin General Hospital, Bandung 40161, Indonesia;
| | | | - Murni Handayani
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
| | - Agnes Purwidyantri
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Briliant Adhi Prabowo
- National Research and Innovation Agency (BRIN), Tangerang Selatan 15314, Indonesia; (M.H.); (A.P.)
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Correspondence: (I.A.); (B.A.P.)
| |
Collapse
|
13
|
Opportunities for the Application of 3D Printing in the Critical Infrastructure System. ENERGIES 2022. [DOI: 10.3390/en15051656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present article presents an analysis of the potential application of 3D printing in the critical infrastructure system. An attempt has been made to develop case studies for selected critical infrastructure areas, particularly with reference to the area of energy supply. The need for 3D printing applications is identified based on expert research in the energy industry. It identifies the application schemes determined by the technical and logistical possibilities associated with 3D printing in its broadest sense. A review of additive technologies with a view to their application in selected phases of critical infrastructure operation, including in crisis situations, is also carried out. Furthermore, a methodology for incorporating 3D printing into the existing critical infrastructure system is proposed. As a result, the following research hypothesis is adopted: the use of 3D printing can be an important part of measures to ensure the full functionality and efficiency of critical infrastructures, particularly in crisis situations.
Collapse
|
14
|
Sukanya VS, Rath SN. Microfluidic Biosensor-Based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:319-339. [PMID: 35760998 DOI: 10.1007/978-3-031-04039-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Breast cancer with unpredictable metastatic recurrence is the leading cause of cancer-related mortality. Early cancer detection and optimized therapy are the principal determining factors for increased survival rate. Worldwide, researchers and clinicians are in search of efficient strategies for the timely management of cancer progression. Efficient preclinical models provide information on cancer initiation, malignancy progression, relapse, and drug efficacy. The distinct histopathological features and clinical heterogeneity allows no single model to mimic breast tumor. However, engineering three-dimensional (3D) in vitro models incorporating cells and biophysical cues using a combination of organoid culture, 3D printing, and microfluidic technology could recapitulate the tumor microenvironment. These models serve to be preferable predictive models bridging the translational research gap in drug development. Microfluidic device is a cost-effective advanced in vitro model for cancer research, diagnosis, and drug assay under physiologically relevant conditions. Integrating a biosensor with microfluidics allows rapid real-time analytical validation to provide highly sensitive, specific, reproducible, and reliable outcomes. In this manner, the multi-system approach in identifying biomarkers associated with cancer facilitates early detection, therapeutic window optimization, and post-treatment evaluation.This chapter showcases the advancements related to in vitro breast cancer metastasis models focusing on microfluidic devices. The chapter aims to provide an overview of microfluidic biosensor-based devices for cancer detection and high-throughput chemotherapeutic drug screening.
Collapse
Affiliation(s)
- V S Sukanya
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India.
| |
Collapse
|
15
|
A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems. MICROMACHINES 2021; 12:mi12080947. [PMID: 34442569 PMCID: PMC8398763 DOI: 10.3390/mi12080947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Recently published studies have shown that microfluidic devices fabricated by in-house three-dimensional (3D) printing, computer numerical control (CNC) milling and laser engraving have a good quality of performance. The 3-in-1 3D printers, desktop machines that integrate the three primary functions in a single user-friendly set-up are now available for computer-controlled adaptable surface processing, for less than USD 1000. Here, we demonstrate that 3-in-1 3D printer-based micromachining is an effective strategy for creating microfluidic devices and an easier and more economical alternative to, for instance, conventional photolithography. Our aim was to produce plastic microfluidic chips with engraved microchannel structures or micro-structured plastic molds for casting polydimethylsiloxane (PDMS) chips with microchannel imprints. The reproducability and accuracy of fabrication of microfluidic chips with straight, crossed line and Y-shaped microchannel designs were assessed and their microfluidic performance checked by liquid stream tests. All three fabrication methods of the 3-in-1 3D printer produced functional microchannel devices with adequate solution flow. Accordingly, 3-in-1 3D printers are recommended as cheap, accessible and user-friendly tools that can be operated with minimal training and little starting knowledge to successfully fabricate basic microfluidic devices that are suitable for educational work or rapid prototyping.
Collapse
|
16
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|