1
|
Strobel J, Yousefzadeh-Nowshahr E, Deininger K, Bohn KP, von Arnim CAF, Otto M, Solbach C, Anderl-Straub S, Polivka D, Fissler P, Glatting G, Riepe MW, Higuchi M, Beer AJ, Ludolph A, Winter G. Exploratory Tau PET/CT with [11C]PBB3 in Patients with Suspected Alzheimer's Disease and Frontotemporal Lobar Degeneration: A Pilot Study on Correlation with PET Imaging and Cerebrospinal Fluid Biomarkers. Biomedicines 2024; 12:1460. [PMID: 39062033 PMCID: PMC11274645 DOI: 10.3390/biomedicines12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Accurately diagnosing Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) is challenging due to overlapping symptoms and limitations of current imaging methods. This study investigates the use of [11C]PBB3 PET/CT imaging to visualize tau pathology and improve diagnostic accuracy. Given diagnostic challenges with symptoms and conventional imaging, [11C]PBB3 PET/CT's potential to enhance accuracy was investigated by correlating tau pathology with cerebrospinal fluid (CSF) biomarkers, positron emission tomography (PET), computed tomography (CT), amyloid-beta, and Mini-Mental State Examination (MMSE). We conducted [11C]PBB3 PET/CT imaging on 24 patients with suspected AD or FTLD, alongside [11C]PiB PET/CT (13 patients) and [18F]FDG PET/CT (15 patients). Visual and quantitative assessments of [11C]PBB3 uptake using standardized uptake value ratios (SUV-Rs) and correlation analyses with clinical assessments were performed. The scans revealed distinct tau accumulation patterns; 13 patients had no or faint uptake (PBB3-negative) and 11 had moderate to pronounced uptake (PBB3-positive). Significant inverse correlations were found between [11C]PBB3 SUV-Rs and MMSE scores, but not with CSF-tau or CSF-amyloid-beta levels. Here, we show that [11C]PBB3 PET/CT imaging can reveal distinct tau accumulation patterns and correlate these with cognitive impairment in neurodegenerative diseases. Our study demonstrates the potential of [11C]PBB3-PET imaging for visualizing tau pathology and assessing disease severity, offering a promising tool for enhancing diagnostic accuracy in AD and FTLD. Further research is essential to validate these findings and refine the use of tau-specific PET imaging in clinical practice, ultimately improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Joachim Strobel
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Deininger
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Halle University, 06120 Halle, Germany
| | - Christoph Solbach
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Dörte Polivka
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Patrick Fissler
- Psychiatric Services Thurgau (Academic Teaching Hospital of the University of Konstanz), 8596 Münsterlingen, Switzerland
| | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Matthias W. Riepe
- Department of Psychiatry and Psychotherapy II, Ulm University, 89075 Ulm, Germany
| | - Makoto Higuchi
- National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ambros J. Beer
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gordon Winter
- Department of Nuclear Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
2
|
Lin KJ, Huang SY, Huang KL, Huang CC, Hsiao IT. Human biodistribution and radiation dosimetry for the tau tracer [ 18F]Florzolotau in healthy subjects. EJNMMI Radiopharm Chem 2024; 9:27. [PMID: 38563872 PMCID: PMC10987466 DOI: 10.1186/s41181-024-00259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Tau pathology plays a crucial role in neurodegeneration diseases including Alzheimer's disease (AD) and non-AD diseases such as progressive supranuclear palsy. Tau positron emission tomography (PET) is an in-vivo and non-invasive medical imaging technique for detecting and visualizing tau deposition within a human brain. In this work, we aim to investigate the biodistribution of the dosimetry in the whole body and various organs for the [18F]Florzolotau tau-PET tracer. A total of 12 healthy controls (HCs) were enrolled at Chang Gung Memorial Hospital. All subjects were injected with approximately 379.03 ± 7.03 MBq of [18F]Florzolotau intravenously, and a whole-body PET/CT scan was performed for each subject. For image processing, the VOI for each organ was delineated manually by using the PMOD 3.7 software. Then, the time-activity curve of each organ was acquired by optimally fitting an exponential uptake and clearance model using the least squares method implemented in OLINDA/EXM 2.1 software. The absorbed dose for each target organ and the effective dose were finally calculated. RESULTS From the biodistribution results, the elimination of [18F]Florzolotau is observed mainly from the liver to the intestine and partially through the kidneys. The highest organ-absorbed dose occurred in the right colon wall (255.83 μSv/MBq), and then in the small intestine (218.67 μSv/MBq), gallbladder wall (151.42 μSv/MBq), left colon wall (93.31 μSv/MBq), and liver (84.15 μSv/MBq). Based on the ICRP103, the final computed effective dose was 34.9 μSv/MBq with CV of 10.07%. CONCLUSIONS The biodistribution study of [18F]Florzolotau demonstrated that the excretion of [18F]Florzolotau are mainly through the hepatobiliary and gastrointestinal pathways. Therefore, a routine injection of 370 MBq or 185 MBq of [18F]Florzolotau leads to an estimated effective dose of 12.92 or 6.46 mSv, and as a result, the radiation exposure to the whole-body and each organ remains within acceptable limits and adheres to established constraints. TRIAL REGISTRATION Retrospectively Registered at Clinicaltrials.gov (NCT03625128) on 12 July, 2018, https://clinicaltrials.gov/study/NCT03625128 .
Collapse
Affiliation(s)
- Kun-Ju Lin
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Shao-Yi Huang
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chin-Chang Huang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, No. 259, Wen-Hua 1St Road, Guishan Dist., Taoyuan City, 333, Taiwan.
| |
Collapse
|
3
|
Wang Y, Zhang Y, Yu E. Targeted examination of amyloid beta and tau protein accumulation via positron emission tomography for the differential diagnosis of Alzheimer's disease based on the A/T(N) research framework. Clin Neurol Neurosurg 2024; 236:108071. [PMID: 38043158 DOI: 10.1016/j.clineuro.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the older population. Its main pathological features include the abnormal deposition of extracellular amyloid-β plaques and the intracellular neurofibrillary tangles of tau proteins. Its clinical presentation is complex. This review introduces the pathological processes in AD and other common neurodegenerative diseases. It then discusses the positron emission tomography (PET) probes that target amyloid-β plaques and tau proteins for diagnosing AD. According to the A/T(N) research framework, combined targeted amyloid-β and tau protein detection via PET to further improve the diagnostic accuracy of AD. In particular, the properties of the 18F-flortaucipir and 18F-MK6240 tracers-may be more beneficial in helping to differentiate AD from other common neurodegenerative diseases, such as dementia with Lewy bodies, Parkinson's disease dementia, and frontotemporal dementia. Furthermore, the A/T(N) research framework should be used as the clinical diagnosis model of AD in the future.
Collapse
Affiliation(s)
- Ye Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China
| | - Yuhan Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Enyan Yu
- Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China.
| |
Collapse
|
4
|
Pauwels EK, Boer GJ. Friends and Foes in Alzheimer's Disease. Med Princ Pract 2023; 32:313-322. [PMID: 37788649 PMCID: PMC10727688 DOI: 10.1159/000534400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/01/2023] [Indexed: 10/05/2023] Open
Abstract
Alzheimer's disease (AD) is a disabling neurodegenerative disease. The prognosis is poor, and currently there are no proven effective therapies. Most likely, the etiology is related to cerebral inflammatory processes that cause neuronal damage, resulting in dysfunction and apoptosis of nerve cells. Pathogens that evoke a neuroinflammatory response, collectively activate astrocytes and microglia, which contributes to the secretion of pro-inflammatory cytokines. This leads to the deposit of clustered fragments of beta-amyloid and misfolded tau proteins which do not elicit an adequate immune reaction. Apart from the function of astrocytes and microglia, molecular entities such as TREM2, SYK, C22, and C33 play a role in the physiopathology of AD. Furthermore, bacteria and viruses may trigger an overactive inflammatory response in the brain. Pathogens like Helicobacter pylori, Chlamydia pneumonia, and Porphyromonas gingivalis (known for low-grade infection in the oral cavity) can release gingipains, which are enzymes that can damage and destroy neurons. Chronic infection with Borrelia burgdorferi (the causative agent of Lyme disease) can co-localize with tau tangles and amyloid deposits. As for viral infections, herpes simplex virus 1, cytomegalovirus, and Epstein-Barr virus can play a role in the pathogenesis of AD. Present investigations have resulted in the development of antibodies that can clear the brain of beta-amyloid plaques. Trials with humanized aducanumab, lecanemab, and donanemab revealed limited success in AD patients. However, AD should be considered as a continuum in which the initial preclinical phase may take 10 or even 20 years. It is generally thought that this phase offers a window for efficacious treatment. Therefore, research is also focused on the identification of biomarkers for early AD detection. In this respect, the plasma measurement of neurofilament light chain in patients treated with hydromethylthionine mesylate may well open a new way to prevent the formation of tau tangles and represents the first treatment for AD at its roots.
Collapse
Affiliation(s)
- Ernest K.J. Pauwels
- Leiden University and Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard J. Boer
- Netherlands Institute for Brain Research, Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Wang YTT, Rosa-Neto P, Gauthier S. Advanced brain imaging for the diagnosis of Alzheimer disease. Curr Opin Neurol 2023; 36:481-490. [PMID: 37639461 DOI: 10.1097/wco.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW The purpose is to review the latest advances of brain imaging for the diagnosis of Alzheimer disease (AD). RECENT FINDINGS Brain imaging techniques provide valuable and complementary information to support the diagnosis of Alzheimer disease in clinical and research settings. The recent FDA accelerated approvals of aducanumab, lecanemab and donanemab made amyloid-PET critical in helping determine the optimal window for anti-amyloid therapeutic interventions. Tau-PET, on the other hand, is considered of key importance for the tracking of disease progression and for monitoring therapeutic interventions in clinical trials. PET imaging for microglial activation, astrocyte reactivity and synaptic degeneration are still new techniques only used in the research field, and more studies are needed to validate their use in the clinical diagnosis of AD. Finally, artificial intelligence has opened new prospective in the early detection of AD using MRI modalities. SUMMARY Brain imaging techniques using PET improve our understanding of the different AD-related pathologies and their relationship with each other along the course of disease. With more robust validation, machine learning and deep learning algorithms could be integrated with neuroimaging modalities to serve as valuable tools for clinicians to make early diagnosis and prognosis of AD.
Collapse
|
6
|
Mirkin S, Albensi BC. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023; 15:1094233. [PMID: 37187577 PMCID: PMC10177660 DOI: 10.3389/fnagi.2023.1094233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that affects memory, thinking, behavior, and other cognitive functions. Although there is no cure, detecting AD early is important for the development of a therapeutic plan and a care plan that may preserve cognitive function and prevent irreversible damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), has served as a critical tool in establishing diagnostic indicators of AD during the preclinical stage. However, as neuroimaging technology quickly advances, there is a challenge in analyzing and interpreting vast amounts of brain imaging data. Given these limitations, there is great interest in using artificial Intelligence (AI) to assist in this process. AI introduces limitless possibilities in the future diagnosis of AD, yet there is still resistance from the healthcare community to incorporate AI in the clinical setting. The goal of this review is to answer the question of whether AI should be used in conjunction with neuroimaging in the diagnosis of AD. To answer the question, the possible benefits and disadvantages of AI are discussed. The main advantages of AI are its potential to improve diagnostic accuracy, improve the efficiency in analyzing radiographic data, reduce physician burnout, and advance precision medicine. The disadvantages include generalization and data shortage, lack of in vivo gold standard, skepticism in the medical community, potential for physician bias, and concerns over patient information, privacy, and safety. Although the challenges present fundamental concerns and must be addressed when the time comes, it would be unethical not to use AI if it can improve patient health and outcome.
Collapse
Affiliation(s)
- Sophia Mirkin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|