1
|
Wrage M, Holland T, Nüse B, Kaltwasser J, Fröhlich J, Arnold H, Gießler C, Flamann C, Bruns H, Berges J, Daniel C, Hoffmann MH, Anish C, Seeberger PH, Bogdan C, Dettmer K, Rauh M, Mattner J. Cell type-specific modulation of metabolic, immune-regulatory, and anti-microbial pathways by CD101. Mucosal Immunol 2024; 17:892-910. [PMID: 38901763 DOI: 10.1016/j.mucimm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
T lymphocytes and myeloid cells express the immunoglobulin-like glycoprotein cluster of differentiation (CD)101, notably in the gut. Here, we investigated the cell-specific functions of CD101 during dextran sulfate sodium (DSS)-induced colitis and Salmonella enterica Typhimurium infection. Similar to conventional CD101-/- mice, animals with a regulatory T cell-specific Cd101 deletion developed more severe intestinal pathology than littermate controls in both models. While the accumulation of T helper 1 cytokines in a CD101-deficient environment entertained DSS-induced colitis, it impeded the replication of Salmonella as revealed by studying CD101-/- x interferon-g-/- mice. Moreover, CD101-expressing neutrophils were capable to restrain Salmonella infection in vitro and in vivo. Both cell-intrinsic and -extrinsic mechanisms of CD101 contributed to the control of bacterial growth and spreading. The CD101-dependent containment of Salmonella infection required the expression of Irg-1 and Nox2 and the production of itaconate and reactive oxygen species. The level of intestinal microbial antigens in the sera of inflammatory bowel disease patients correlated inversely with the expression of CD101 on myeloid cells, which is in line with the suppression of CD101 seen in mice following DSS application or Salmonella infection. Thus, depending on the experimental or clinical setting, CD101 helps to limit inflammatory insults or bacterial infections due to cell type-specific modulation of metabolic, immune-regulatory, and anti-microbial pathways.
Collapse
Affiliation(s)
- Marius Wrage
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Björn Nüse
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Johanna Kaltwasser
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jessica Fröhlich
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Harald Arnold
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Gießler
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Cindy Flamann
- Medizinische Klinik 5, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- Medizinische Klinik 5, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- Medizinische Klinik 5, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Nephropathologische Abteilung, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Markus H Hoffmann
- Medizinische Klinik 3, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany; Klinik für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Lübeck, Germany
| | - Chakkumkal Anish
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Bacterial Vaccines Discovery and Early Development, Janssen Pharmaceuticals (Johnson & Johnson), CK Leiden, The Netherlands
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Berlin, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profilzentrum Immunmedizin (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Manfred Rauh
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitäts-klinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; FAU Profilzentrum Immunmedizin (FAU I-MED), FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Massart A, Danger R, Olsen C, Emond MJ, Viklicky O, Jacquemin V, Soblet J, Duerinckx S, Croes D, Perazzolo C, Hruba P, Daneels D, Caljon B, Sever MS, Pascual J, Miglinas M, Pirson I, Ghisdal L, Smits G, Giral M, Abramowicz D, Abramowicz M, Brouard S. An exome-wide study of renal operational tolerance. Front Med (Lausanne) 2023; 9:976248. [PMID: 37265662 PMCID: PMC10230038 DOI: 10.3389/fmed.2022.976248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 06/03/2023] Open
Abstract
Background Renal operational tolerance is a rare and beneficial state of prolonged renal allograft function in the absence of immunosuppression. The underlying mechanisms are unknown. We hypothesized that tolerance might be driven by inherited protein coding genetic variants with large effect, at least in some patients. Methods We set up a European survey of over 218,000 renal transplant recipients and collected DNAs from 40 transplant recipients who maintained good allograft function without immunosuppression for at least 1 year. We performed an exome-wide association study comparing the distribution of moderate to high impact variants in 36 tolerant patients, selected for genetic homogeneity using principal component analysis, and 192 controls, using an optimal sequence-kernel association test adjusted for small samples. Results We identified rare variants of HOMER2 (3/36, FDR 0.0387), IQCH (5/36, FDR 0.0362), and LCN2 (3/36, FDR 0.102) in 10 tolerant patients vs. 0 controls. One patient carried a variant in both HOMER2 and LCN2. Furthermore, the three genes showed an identical variant in two patients each. The three genes are expressed at the primary cilium, a key structure in immune responses. Conclusion Rare protein coding variants are associated with operational tolerance in a sizable portion of patients. Our findings have important implications for a better understanding of immune tolerance in transplantation and other fields of medicine.ClinicalTrials.gov, identifier: NCT05124444.
Collapse
Affiliation(s)
- Annick Massart
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Valérie Jacquemin
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
| | - Didier Croes
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
- Center for Human Genetics, Clinique Universitaires Saint Luc, Brussels, Belgium
| | - Camille Perazzolo
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Dorien Daneels
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), VUB-ULB, Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Mehmet Sukru Sever
- Istanbul Tip Fakültesi, Istanbul School of Medicine, Internal Medicine, Nephrology, Istanbul, Türkiye
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Institute Mar for Medical Research, Barcelona, Spain
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | | | - Isabelle Pirson
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lidia Ghisdal
- Department of Nephrology, Hospital Centre EpiCURA, Baudour, Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| | - Daniel Abramowicz
- Department of Nephrology, Antwerp University Hospital and Laboratory of Experimental Medicine, University of Antwerp, Antwerp, Belgium
| | - Marc Abramowicz
- Human Genetics Unit, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Université Libre de Bruxelles - Vrije Universiteit Brussel (ULB-VUB), Brussels, Belgium
- Department of Genetic Medicine and Development, Faculty of Medicine, Université de Geneve, Geneva, Switzerland
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, CR2TI, UMR 1064, ITUN, Nantes, France
- CHU Nantes, Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Nantes, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Nantes, France
| |
Collapse
|
3
|
Li Y, Lefebvre F, Nakku-Joloba E, Ronald A, Gray G, de Bruyn G, Kiarie J, Celum C, Cameron MJ, Lingappa JR, Mackelprang RD. Upregulation of PTPRC and Interferon Response Pathways in HIV-1 Seroconverters Prior to Infection. J Infect Dis 2023; 227:714-719. [PMID: 36637125 PMCID: PMC9978315 DOI: 10.1093/infdis/jiac498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) exposed seronegative (HESN) individuals may have unique characteristics that alter susceptibility to HIV-1 infection. However, identifying truly exposed HESN is challenging. We utilized stored data and biospecimens from HIV-1 serodifferent couple cohorts, in which couples' HIV-1 exposures were quantified based on unprotected sex frequency and viral load of the partner with HIV-1. We compared peripheral blood gene expression between 15 HESN and 18 seroconverters prior to infection. We found PTPRC (encoding CD45 antigen) and interferon-response pathways had significantly higher expression among individuals who went on to become seropositive and thus may be a signature for increased acquisition risk.
Collapse
Affiliation(s)
- Yunqi Li
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, USA
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics-Montréal Node, Montreal, Quebec, Canada
| | | | - Allan Ronald
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Glenda Gray
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - James Kiarie
- Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Strongin Z, Hoang TN, Tharp GK, Rahmberg AR, Harper JL, Nguyen K, Franchitti L, Cervasi B, Lee M, Zhang Z, Boritz EA, Silvestri G, Marconi VC, Bosinger SE, Brenchley JM, Kulpa DA, Paiardini M. The role of CD101-expressing CD4 T cells in HIV/SIV pathogenesis and persistence. PLoS Pathog 2022; 18:e1010723. [PMID: 35867722 PMCID: PMC9348691 DOI: 10.1371/journal.ppat.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2022] [Revised: 08/03/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4β7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Timothy N. Hoang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Andrew R. Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Lavinia Franchitti
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University; Atlanta, Georgia, United States of America
| | - Max Lee
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Zhan Zhang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Eli A. Boritz
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases Research, Atlanta Veterans Affairs Medical Center; Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University; Atlanta, Georgia, United States of America
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liu Y, Yao R, Shi Y, Liu Y, Liu H, Liu J, Guan Y, Yao Y, Chen L. Identification of CD101 in Glioma: A Novel Prognostic Indicator Expressed on M2 Macrophages. Front Immunol 2022; 13:845223. [PMID: 35350788 PMCID: PMC8957828 DOI: 10.3389/fimmu.2022.845223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
Glioma represents the most common primary intracranial malignancy worldwide, with low overall survival rates and limited therapeutic options. The protein CD101, mainly expressed on several immune cells, has been demonstrated to exert potent effects on blunting T cell immune responses across infectious and autoimmunity diseases. Nevertheless, the prognostic value of CD101 expression and its role in the immune microenvironment of various malignancies currently remains elusive. Herein, by adopting bioinformatics methodology, we comprehensively illustrated the potential function and predictive value of CD101 in stratifying clinical prognosis among patients with glioma, for which a high CD101 level predicted an unfavorable clinical outcome in glioma patients. Results from enrichment analyses manifested that CD101 predominantly expressed on the tumor-associated macrophages and was significantly associated with the immune regulatory processes, as evidenced by its positive correlation with immune-related genes and the putative infiltration of immune cells. Evidence provided by in-situ multicolor immunofluorescence staining further validated our findings at the protein level. Taken together, CD101 may serve as a novel biomarker in predicting clinical prognosis and immune status for glioma patients.
Collapse
Affiliation(s)
- Yuyang Liu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Senior Department of Neurosurgery, the First Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Renqi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuxiao Liu
- Senior Department of Neurosurgery, the First Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hongyu Liu
- Senior Department of Neurosurgery, the First Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jialin Liu
- Senior Department of Neurosurgery, the First Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yunqian Guan
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ling Chen
- Senior Department of Neurosurgery, the First Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatment—The Need for Precision Medicine. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Viruses, and in particular, RNA viruses, dominate the WHO’s current list of ten global health threats. Of these, we review the widespread and most common HIV, influenza virus, and SARS-CoV-2 infections, as well as their possible prevention by vaccination and treatments by pharmacotherapeutic approaches. Beyond the vaccination, we discuss the virus-targeting and host-targeting drugs approved in the last five years, in the case of SARS-CoV-2 in the last one year, as well as new drug candidates and lead molecules that have been published in the same periods. We share our views on vaccination and pharmacotherapy, their mutually reinforcing strategic significance in combating pandemics, and the pros and cons of host and virus-targeted drug therapy. The COVID-19 pandemic has provided evidence of our limited armamentarium to fight emerging viral diseases. Novel broad-spectrum vaccines as well as drugs that could even be applied as prophylactic treatments or in early phases of the viremia, possibly through oral administration, are needed in all three areas. To meet these needs, the use of multi-data-based precision medicine in the practice and innovation of vaccination and drug therapy is inevitable.
Collapse
|
7
|
Richert-Spuhler LE, Mar CM, Shinde P, Wu F, Hong T, Greene E, Hou S, Thomas K, Gottardo R, Mugo N, de Bruyn G, Celum C, Baeten JM, Lingappa JR, Lund JM. CD101 genetic variants modify regulatory and conventional T cell phenotypes and functions. Cell Rep Med 2021; 2:100322. [PMID: 34195685 PMCID: PMC8233694 DOI: 10.1016/j.xcrm.2021.100322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
We recently reported that the risk of sexually acquired HIV-1 infection is increased significantly by variants in the gene encoding CD101, a protein thought to modify inflammatory responses. Using blood samples from individuals with and without these variants, we demonstrate that CD101 variants modify the prevalence of circulating inflammatory cell types and show that CD101 variants are associated with increased proinflammatory cytokine production by circulating T cells. One category of CD101 variants is associated with a reduced capacity of regulatory T cells to suppress T cell cytokine production, resulting in a reduction in the baseline level of immune quiescence. These data are supported by transcriptomics data revealing alterations in the intrinsic regulation of antiviral pathways and HIV resistance genes in individuals with CD101 variants. Our data support the hypothesis that CD101 contributes to homeostatic regulation of bystander inflammation, with CD101 variants altering heterosexual HIV-1 acquisition by facilitating increased prevalence and altered function of T cell subsets.
Collapse
Affiliation(s)
- Laura E. Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Corinne M. Mar
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Paurvi Shinde
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Feinan Wu
- Genomics & Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ting Hong
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Evan Greene
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sharon Hou
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Katherine Thomas
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nelly Mugo
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98104, USA
| | - Jairam R. Lingappa
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98104, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| |
Collapse
|
8
|
Brief Report: Bacterial Vaginosis and Risk of HIV Infection in the Context of CD101 Gene Variation. J Acquir Immune Defic Syndr 2021; 85:584-587. [PMID: 32976203 PMCID: PMC7654937 DOI: 10.1097/qai.0000000000002505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
Background: Whether bacterial vaginosis (BV) and CD101 immunoglobulin-like (Ig-like) variants independently increase HIV risk through mucosal inflammation is not well understood. We evaluated whether the impact of BV on HIV acquisition in women differs by the presence or absence of candidate CD101 Ig-like variants. Methods: We used data from 2 studies of HIV serodiscordant couples in east (Kenya, Tanzania, and Uganda) and southern (Botswana, South Africa, and Zambia) Africa, which longitudinally assessed HIV acquisition (by ELISA) and BV (by Nugent score ≥7). We used previously generated CD101 sequence data for each case and control participant to create a binary variable indicating the presence/absence of any of 5 CD101 Ig-like variants. Results: Confirming previously shown results in this cohort, Ig-like variants increased HIV-infection risk (adjusted hazard ratio [aHR], = 2.63; 95% confidence interval [CI], 1.41 to 4.89). BV was associated with 2.5-fold higher HIV-infection risk only in the absence of Ig-like variants (aHR = 2.47; 95% CI, 0.99 to 6.15; P = 0.052), whereas in the presence of Ig-like variants, BV was not associated with higher HIV-infection risk (aHR = 0.87; 95% CI, 0.35 to 2.15; P = 0.765); however, a test for interaction was nonsignificant (P = 0.116). Conclusions: We hypothesized that both BV and CD101 Ig-like variants facilitate HIV acquisition by augmenting similar genital inflammation pathways. Our findings indicate that inflammatory mucosal effects of Ig-like variants may influence the impact of BV on HIV risk. Host-defined inflammatory pathways may be useful targets for HIV prevention.
Collapse
|
9
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
10
|
Abstract
Over the past four decades, research on the natural history of HIV infection has described how HIV wreaks havoc on human immunity and causes AIDS. HIV host genomic research, which aims to understand how human genetic variation affects our response to HIV infection, has progressed from early candidate gene studies to recent multi-omic efforts, benefiting from spectacular advances in sequencing technology and data science. In addition to invading cells and co-opting the host machinery for replication, HIV also stably integrates into our own genome. The study of the complex interactions between the human and retroviral genomes has improved our understanding of pathogenic mechanisms and suggested novel preventive and therapeutic approaches against HIV infection.
Collapse
Affiliation(s)
- Paul J. McLaren
- grid.415368.d0000 0001 0805 4386National HIV and Retrovirology Laboratory at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB Canada ,grid.21613.370000 0004 1936 9609Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB Canada
| | - Jacques Fellay
- grid.5333.60000000121839049School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.419765.80000 0001 2223 3006Swiss Institute of Bioinformatics, Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Simons ND, Eick GN, Ruiz-Lopez MJ, Hyeroba D, Omeja PA, Weny G, Zheng H, Shankar A, Frost SDW, Jones JH, Chapman CA, Switzer WM, Goldberg TL, Sterner KN, Ting N. Genome-Wide Patterns of Gene Expression in a Wild Primate Indicate Species-Specific Mechanisms Associated with Tolerance to Natural Simian Immunodeficiency Virus Infection. Genome Biol Evol 2019; 11:1630-1643. [PMID: 31106820 PMCID: PMC6561381 DOI: 10.1093/gbe/evz099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Over 40 species of nonhuman primates host simian immunodeficiency viruses (SIVs). In natural hosts, infection is generally assumed to be nonpathogenic due to a long coevolutionary history between host and virus, although pathogenicity is difficult to study in wild nonhuman primates. We used whole-blood RNA-seq and SIV prevalence from 29 wild Ugandan red colobus (Piliocolobus tephrosceles) to assess the effects of SIV infection on host gene expression in wild, naturally SIV-infected primates. We found no evidence for chronic immune activation in infected individuals, suggesting that SIV is not immunocompromising in this species, in contrast to human immunodeficiency virus in humans. Notably, an immunosuppressive gene, CD101, was upregulated in infected individuals. This gene has not been previously described in the context of nonpathogenic SIV infection. This expands the known variation associated with SIV infection in natural hosts and may suggest a novel mechanism for tolerance of SIV infection in the Ugandan red colobus.
Collapse
Affiliation(s)
| | - Geeta N Eick
- Department of Anthropology, University of Oregon
| | | | - David Hyeroba
- College of Veterinary Medicine, Animal Resources, and Bio-Security, Makerere University, Kampala, Uganda
| | - Patrick A Omeja
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - Geoffrey Weny
- Makerere University Biological Field Station, Fort Portal, Uganda
| | - HaoQiang Zheng
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anupama Shankar
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | - James H Jones
- Department of Earth System Science, Woods Institute for the Environment, Stanford University
| | - Colin A Chapman
- Makerere University Biological Field Station, Fort Portal, Uganda
- Department of Anthropology, McGill School of Environment, McGill University, Montreal, Quebec, Canada
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison
- Global Health Institute, University of Wisconsin-Madison
| | | | - Nelson Ting
- Department of Anthropology, University of Oregon
- Institute of Ecology and Evolution, University of Oregon
| |
Collapse
|
12
|
Mackelprang RD, Bamshad MJ, Chong JX, Hou X, Buckingham KJ, Shively K, deBruyn G, Mugo NR, Mullins JI, McElrath MJ, Baeten JM, Celum C, Emond MJ, Lingappa JR. Correction: Whole genome sequencing of extreme phenotypes identifies variants in CD101 and UBE2V1 associated with increased risk of sexually acquired HIV-1. PLoS Pathog 2019; 15:e1007588. [PMID: 30742678 PMCID: PMC6370236 DOI: 10.1371/journal.ppat.1007588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
13
|
Wright SW, Emond MJ, Lovelace-Macon L, Ducken D, Kashima J, Hantrakun V, Chierakul W, Teparrukkul P, Chantratita N, Limmathurotsakul D, West TE. Exonic sequencing identifies TLR1 genetic variation associated with mortality in Thais with melioidosis. Emerg Microbes Infect 2019; 8:282-290. [PMID: 30866782 PMCID: PMC6455179 DOI: 10.1080/22221751.2019.1575172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2018] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 02/08/2023]
Abstract
Melioidosis, an infectious disease caused by the bacterium Burkholderia pseudomallei, is a common cause of sepsis in Southeast Asia. We investigated whether novel TLR1 coding variants are associated with outcome in Thai patients with melioidosis. We performed exonic sequencing on a discovery set of patients with extreme phenotypes (mild vs. severe) of bacteremic melioidosis. We analysed the association of missense variants in TLR1 with severe melioidosis in a by-gene analysis. We then genotyped key variants and tested the association with death in two additional sets of melioidosis patients. Using a by-gene analysis, TLR1 was associated with severe bacteremic melioidosis (P = 0.016). One of the eight TLR1 variants identified, rs76600635, a common variant in East Asians, was associated with in-hospital mortality in a replication set of melioidosis patients (adjusted odds ratio 1.71, 95% CI 1.01-2.88, P = 0.04.) In a validation set of patients, the point estimate of effect of the association of rs76600635 with 28-day mortality was similar but not statistically significant (adjusted odds ratio 1.81, 95% CI 0.96-3.44, P = 0.07). Restricting the validation set analysis to patients recruited in a comparable fashion to the discovery and replication sets, rs76600635 was significantly associated with 28-day mortality (adjusted odds ratio 3.88, 95% CI 1.43-10.56, P = 0.01). Exonic sequencing identifies TLR1 as a gene associated with a severe phenotype of bacteremic melioidosis. The TLR1 variant rs76600635, common in East Asian populations, may be associated with poor outcomes from melioidosis. This variant has not been previously associated with outcomes in sepsis and requires further study.
Collapse
Affiliation(s)
- Shelton W. Wright
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Lara Lovelace-Macon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Deirdre Ducken
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - James Kashima
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wirongrong Chierakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapit Teparrukkul
- Department of Internal Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- International Respiratory and Severe Illness Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Blumenthal MJ, Schutz C, Meintjes G, Mohamed Z, Mendelson M, Ambler JM, Whitby D, Mackelprang RD, Carse S, Katz AA, Schäfer G. EPHA2 sequence variants are associated with susceptibility to Kaposi's sarcoma-associated herpesvirus infection and Kaposi's sarcoma prevalence in HIV-infected patients. Cancer Epidemiol 2018; 56:133-139. [PMID: 30176543 PMCID: PMC6206435 DOI: 10.1016/j.canep.2018.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND To determine if variations exist in the KSHV host receptor EPHA2's coding region that affect KSHV infectivity and/or KS prevalence among South African HIV-infected patients. METHODS A retrospective candidate gene association study was performed on 150 patients which were randomly selected from a total of 756 HIV-infected patients and grouped according to their KS status and KSHV serodiagnosis; namely group 1: KS+/KSHV+; group 2: KS-/KSHV+; group 3: KS-/KSHV-. Peripheral blood DNA was used to extract DNA and PCR amplify and sequence the entire EPHA2 coding region, which was compared to the NCBI reference through multiple alignment. RESULTS 100% (95% CI 92.9-100%) of the KS positive patients, and 31.6% (95% CI 28.3-35.1%) of the KS negative patients were found to be KSHV seropositive. Aggregate variation across the entire EPHA2 coding region identified an association with KS (OR = 6.6 (95% CI 2.8, 15.9), p = 2.2 × 10-5). This was primarily driven by variation in the functionally important protein tyrosine kinase domain (Pkinase-Tyr; OR = 4.9 (95% CI 1.9, 12.4), p = 0.001) and the sterile-α-motif (SAM; OR = 13.8 (95% CI 1.7, 111.6), p = 0.014). Mutation analysis revealed two novel, non-synonymous heterozygous variants (c.2254 T > C: OR undefined, adj. p = 0.02; and c.2990 G > T: OR undefined, adj. p = 0.04) in Pkinase-Tyr and SAM, respectively, to be statistically associated with KS; and a novel heterozygous transition (c.2727C > T: OR = 6.4 (95% CI 1.4, 28.4), adj. p = 0.03) in Pkinase-Tyr to be statistically associated with KSHV. CONCLUSIONS Variations in the KSHV entry receptor gene EPHA2 affected susceptibility to KSHV infection and KS development in a South African HIV-infected patient cohort.
Collapse
Affiliation(s)
- Melissa J Blumenthal
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Charlotte Schutz
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, South Africa
| | - Graeme Meintjes
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, South Africa
| | - Zainab Mohamed
- Division of Radiation Oncology, Department of Radiation Medicine, University of Cape Town, South Africa
| | - Marc Mendelson
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, University of Cape Town, South Africa
| | - Jon M Ambler
- Computational Biology Group, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, NIH, USA
| | | | - Sinead Carse
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Arieh A Katz
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Georgia Schäfer
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|