1
|
Krueger RR, Chen AYS, Zhou JS, Liu S, Xu HK, Ng JCK. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties. PHYTOPATHOLOGY 2024; 114:2453-2462. [PMID: 39115802 DOI: 10.1094/phyto-05-24-0167-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A protein-expressing citrus tristeza virus-based vector construct, pT36CA-V1.3, obtained from a California isolate of the T36 strain (T36CA), was retooled into a virus-induced gene silencing system intended for use with studies of California citrus. Virus-induced gene silencing constructs engineered with a truncated Citrus macrophylla PHYTOENE DESATURASE (CmPDS) gene sequence in the sense or antisense orientation worked equally well to silence the endogenous CmPDS gene. In a parallel effort to optimize vector performance, two nonsynonymous nucleotides in open reading frame 1a of pT36CA-V1.3 were replaced with those conserved in the reference sequences from the T36CA cDNA library. The resulting viruses, T36CA-V1.4 (with one amino acid modification: D760N) and T36CA-V1.5 (with two amino acid modifications: D760N and P1174L), along with T36CA-V1.3, were individually propagated in Nicotiana benthamiana and C. macrophylla plants. Enzyme-linked immunosorbent assay (ELISA) measurements of extracts of the newly emerged leaves suggested that all three viruses accumulated to similar levels in N. benthamiana plants at 5 weeks postinoculation. ELISA values of T36CA-V1.4- and -V1.5-infected C. macrophylla samples were significantly higher than that of T36CA-V1.3-infected samples within an 8- to 12-month postinoculation window, suggesting a higher accumulation of T36CA-V1.4 and -V1.5 than T36CA-V1.3. However, at 36 months postinoculation, the ELISA values suggested that all three viruses accumulated to similar levels. When C. macrophylla plants infected with each of the three viruses were grafted to commercial citrus varieties, a limited number of receptor plants became infected, demonstrating a weak but nonetheless (the first) successful delivery of T36CA to California-grown commercial citrus.
Collapse
Affiliation(s)
- Robert R Krueger
- National Clonal Germplasm Repository for Citrus and Dates, U.S. Department of Agriculture-Agricultural Research Service, Riverside, CA 92507-5437, U.S.A
| | - Angel Y S Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Jaclyn S Zhou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Si Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Huaying Karen Xu
- Department of Statistics, University of California, Riverside, CA 92521, U.S.A
| | - James C K Ng
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
2
|
Ferreira Sa Antunes T, Huguet-Tapia JC, Elena SF, Folimonova SY. Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana. Viruses 2024; 16:1385. [PMID: 39339861 PMCID: PMC11437405 DOI: 10.3390/v16091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.
Collapse
Affiliation(s)
| | - José C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Valencia, Spain;
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| |
Collapse
|
3
|
Shang P, Xu L, Cheng T. Serological and Molecular Detection of Citrus Tristeza Virus: A Review. Microorganisms 2024; 12:1539. [PMID: 39203383 PMCID: PMC11356770 DOI: 10.3390/microorganisms12081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Citrus tristeza virus (CTV) is a globally pervasive and economically significant virus that negatively impacts citrus trees, leading to substantial reductions in fruit yield. CTV occurs within the phloem of infected plants, causing a range of disease phenotypes, such as stem pitting (SP), quick decline (QD), and other detrimental diseases. Research on CTV is challenging due to the large size of its RNA genome and the diversity of CTV populations. Comparative genomic analyses have uncovered genetic diversity in multiple regions of CTV isolates' genomes, facilitating the classification of the virus into distinct genotypes. Despite these challenges, notable advancements have been made in identifying and controlling CTV strains through serological and molecular methods. The following review concentrates on the techniques of nucleic acid identification and serological analysis for various CTV isolates, assisting in the comparison and evaluation of various detection methods, which are crucial for the effective management of CTV diseases, and so contributes to the innovation and development of CTV detection methods.
Collapse
Affiliation(s)
- Pengxiang Shang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Dandlen SA, Da Silva JP, Miguel MG, Duarte A, Power DM, Marques NT. Quick Decline and Stem Pitting Citrus tristeza virus Isolates Induce a Distinct Metabolomic Profile and Antioxidant Enzyme Activity in the Phloem Sap of Two Citrus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1394. [PMID: 36987082 PMCID: PMC10051153 DOI: 10.3390/plants12061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Susana A. Dandlen
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M. Power
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Natália Tomás Marques
- CEOT—Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
7
|
Folimonova SY, Sun YD. Citrus Tristeza Virus: From Pathogen to Panacea. Annu Rev Virol 2022; 9:417-435. [DOI: 10.1146/annurev-virology-100520-114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries. Research on CTV is accompanied by distinctive challenges stemming from the large size of its RNA genome, the narrow host range limited to slow-growing Citrus species and relatives, and the complexity of CTV populations. Despite these hurdles, remarkable progress has been made in understanding the CTV-host interactions and in converting the virus into a tool for crop protection and improvement. This review focuses on recent advances that have shed light on the mechanisms underlying CTV infection. Understanding these mechanisms is pivotal for the development of means to control CTV diseases and, ultimately, turn this virus into an ally. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, USA
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Sun YD, Folimonova SY. Location matters: from changing a presumption about the Citrus tristeza virus tissue tropism to understanding the stem pitting disease. THE NEW PHYTOLOGIST 2022; 233:631-638. [PMID: 34614233 DOI: 10.1111/nph.17777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Stem pitting is a common virus-induced disease phenotype that tremendously impacts growth of perennial woody plants. How stem pitting develops in the infected trees remains unclear. Here, we assessed the development of stem pits upon infection of citrus by Citrus tristeza virus (CTV), which has been regarded as 'phloem-limited'. By taking advantage of a highly susceptible virus host - Citrus macrophylla - and a CTV isolate lacking a viral effector - the p33 protein, the development pattern of stem pitting was revealed via time-course observations and histological analyses. The stem pits result from the virus-colonized nonlignified 'gumming' malformations which are initiated by virus invasion into multiple spatially separated tissue layers - protophloem, metaphloem, and, unexpectedly, metaxylem. Notably, invasion of CTV into the unspecialized metaxylem cells interrupted the differentiation of the xylem tracheary elements. With the radial spread of CTV into the adjacent cells towards the stem periphery, the clusters of virus-colonized immature metaxylem cells extended in size, merging, at a certain stage, with virus-bearing cells in the protophloem and metaphloem layers. Collectively, our data provide a new insight into the process of the stem pitting development and the role of the xylem tissue in the virus pathogenicity.
Collapse
Affiliation(s)
- Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Svetlana Y Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
9
|
Patturaj M, Munusamy A, Kannan N, Ramasamy Y. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees. Biol Futur 2021; 73:43-53. [PMID: 34843103 DOI: 10.1007/s42977-021-00108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Forest trees are affected by climate change, anthropogenic pressure, as well as abiotic and biotic stresses. Conventional tree breeding has so far been limited to enhance overall productivity, and our understanding of the genetic basis of quantitative traits is still inadequate. Quantum leaps in next-generation sequencing technologies and bioinformatics have permitted the exploration and identification of various non-coding regions of the genome other than protein coding genes. These genomic regions produce various types of non-coding RNAs and regulate myriads of biological functions at epigenetic, transcriptional and translational levels. Recently, long non-coding RNAs (lncRNAs) which act as molecular switch have been identified to be pivotal molecules in forest trees. This review focuses on progress made in regulatory mechanisms in various developmental phases like wood formation, adventitious rooting and flowering and stress responses. It was predicted that complex regulatory interactions among lncRNA, miRNA and gene exist. LncRNAs can function as a sponge for miRNAs, reducing the suppressive effect of miRNAs on target mRNAs and perhaps adding a new layer of regulatory interactions among non-coding RNA classes in trees. Furthermore, network analysis revealed the interactions of lncRNA and genes during the expression of several important genes. The insights generated about lncRNAs in forest trees would enable improvement of economically important traits including the devastating abiotic and biotic stresses. In addition, solid understanding on the wide range of regulatory functions of lncRNAs on traits influencing biomass productivity and adaptation would aid the applications of biotechnology in genetic improvement of forest trees.
Collapse
Affiliation(s)
- Maheswari Patturaj
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Aiswarya Munusamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Nithishkumar Kannan
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India
| | - Yasodha Ramasamy
- Division of Plant Biotechnology and Cytogenetics, Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore, 641002, India.
| |
Collapse
|
10
|
Kang SH, Aknadibossian V, Kharel L, Mudiyanselage SDD, Wang Y, Folimonova SY. The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus Tristeza Virus That Interacts with a Viral Long Non-Coding RNA. Viruses 2021; 13:2129. [PMID: 34834936 PMCID: PMC8625556 DOI: 10.3390/v13112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5'-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that performs multiple functions in the virus infection cycle, specifically binds LMT1, both in vivo and in vitro. These results were obtained through the expression of p33 under the context of the wild type virus infection or along with a mutant CTV variant that does not produce LMT1 as well as via ectopic co-expression of p33 with LMT1 in Nicotiana benthamiana leaves followed by RNA immunoprecipitation and rapid amplification of cDNA ends assays. Further experiments in which a recombinant p33 protein and an in vitro transcribed full-length LMT1 RNA or its truncated fragments were subjected to an electrophoretic mobility shift assay demonstrated that p33 binds to at least two distinct regions within LMT1. To the best of our knowledge, this is the first report of a plant virus protein binding to a lncRNA produced by the same virus. The biological significance of the interaction between these two viral factors is discussed.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Vicken Aknadibossian
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Laxmi Kharel
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| |
Collapse
|
11
|
Liu Q, Zhang S, Mei S, Zhou Y, Wang J, Han GZ, Chen L, Zhou C, Cao M. Viromics unveils extraordinary genetic diversity of the family Closteroviridae in wild citrus. PLoS Pathog 2021; 17:e1009751. [PMID: 34252150 PMCID: PMC8297929 DOI: 10.1371/journal.ppat.1009751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Our knowledge of citrus viruses is largely skewed toward virus pathology in cultivated orchards. Little is known about the virus diversity in wild citrus species. Here, we used a metatranscriptomics approach to characterize the virus diversity in a wild citrus habitat within the proposed center of the origin of citrus plants. We discovered a total of 44 virus isolates that could be classified into species Citrus tristeza virus and putative species citrus associated ampelovirus 1, citrus associated ampelovirus 2, and citrus virus B within the family Closteroviridae, providing important information to explore the factors facilitating outbreaks of citrus viruses and the evolutionary history of the family Closteroviridae. We found that frequent horizontal gene transfer, gene duplication, and alteration of expression strategy have shaped the genome complexity and diversification of the family Closteroviridae. Recombination frequently occurred among distinct Closteroviridae members, thereby facilitating the evolution of Closteroviridae. Given the potential emergence of similar wild-citrus-originated novel viruses as pathogens, the need for surveillance of their pathogenic and epidemiological characteristics is of utmost priority for global citrus production. Closterovirids are principal plant pathogens for citrus trees and other plants, as they sometimes cause new or re-emerging diseases. However, the closterovirid diversity in natural plant hosts, especially citrus plants, is unclear. Here, we describe three novel species and Citrus tristeza virus within the family Closteroviridae that were sampled from wild citrus trees growing in their natural habitat in southwestern China. The presence of three different taxon classes of the family Closteroviridae indicates the geographical uniqueness of the sampling region for citrus closterovirid evolution. Our analysis shows that frequent horizontal gene transfer, gene duplication, alteration of expression strategy, and recombination have been important evolutionary processes in the diversification of the family Closteroviridae. Our study also shows the significance of natural reserves as potential sources of disease agents endangering cultivated crop plants.
Collapse
Affiliation(s)
- Qiyan Liu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Shiqiang Mei
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Yan Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lei Chen
- Industrial Crop Workstation of Xinping County, Yuxi, Yunnan, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
- * E-mail: (CZ); (MC)
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
- * E-mail: (CZ); (MC)
| |
Collapse
|
12
|
Sun Y, Zhang L, Folimonova SY. Citrus miraculin-like protein hijacks a viral movement-related p33 protein and induces cellular oxidative stress in defence against Citrus tristeza virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:977-991. [PMID: 33283396 PMCID: PMC8131049 DOI: 10.1111/pbi.13523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 05/16/2023]
Abstract
To defend against pathogens, plants have developed a complex immune system, which recognizes the pathogen effectors and mounts defence responses. In this study, the p33 protein of Citrus tristeza virus (CTV), a viral membrane-associated effector, was used as a molecular bait to explore virus interactions with host immunity. We discovered that Citrus macrophylla miraculin-like protein 2 (CmMLP2), a member of the soybean Kunitz-type trypsin inhibitor family, targets the viral p33 protein. The expression of CmMLP2 was up-regulated by p33 in the citrus phloem-associated cells. Knock-down of the MLP2 expression in citrus plants resulted in a higher virus accumulation, while the overexpression of CmMLP2 reduced the infectivity of CTV in the plant hosts. Further investigation revealed that, on the one hand, binding of CmMLP2 interrupts the cellular distribution of p33 whose proper function is necessary for the effective virus movement throughout the host. On the other hand, the ability of CmMLP2 to reorganize the endomembrane system, amalgamating the endoplasmic reticulum and the Golgi apparatus, induces cellular stress and accumulation of the reactive oxygen species, which inhibits the replication of CTV. Altogether, our data suggest that CmMLP2 employs a two-way strategy in defence against CTV infection.
Collapse
Affiliation(s)
- Yong‐Duo Sun
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Lei Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Present address:
College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhot010018China
| | - Svetlana Y. Folimonova
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
13
|
Wen S, Wang G, Yang Z, Wang Y, Rao M, Lu Q, Hong N. Next-Generation Sequencing Combined With Conventional Sanger Sequencing Reveals High Molecular Diversity in Actinidia Virus 1 Populations From Kiwifruit Grown in China. Front Microbiol 2020; 11:602039. [PMID: 33391218 PMCID: PMC7774462 DOI: 10.3389/fmicb.2020.602039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/04/2023] Open
Abstract
Kiwifruit (Actinidia spp.) is native to China. Viral disease–like symptoms are common on kiwifruit plants. In this study, six libraries prepared from total RNA of leaf samples from 69 kiwifruit plants were subjected to next-generation sequencing (NGS). Actinidia virus 1 (AcV-1), a tentative species in the family Closteroviridae, was discovered in the six libraries. Two full-length and two near-full genome sequences of AcV-1 variants were determined by Sanger sequencing. The genome structure of these Chinese AcV-1 variants was identical to that of isolate K75 and consisted of 12 open reading frames (ORFs). Analyses of these sequences together with the NGS-derived contig sequences revealed high molecular diversity in AcV-1 populations, with the highest sequence variation occurring at ORF1a, ORF2, and ORF3, and the available variants clustered into three phylogenetic clades. For the first time, our study revealed different domain compositions in the viral ORF1a and molecular recombination events among AcV-1 variants. Specific reverse transcriptase–polymerase chain reaction assays disclosed the presence of AcV-1 in plants of four kiwifruit species and unknown Actinidia spp. in seven provinces and one city.
Collapse
Affiliation(s)
- Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Rao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Lu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, China
| |
Collapse
|
14
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
15
|
Walking Together: Cross-Protection, Genome Conservation, and the Replication Machinery of Citrus tristeza virus. Viruses 2020; 12:v12121353. [PMID: 33256049 PMCID: PMC7760907 DOI: 10.3390/v12121353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
"Cross-protection", a nearly 100 years-old virological term, is suggested to be changed to "close protection". Evidence for the need of such change has accumulated over the past six decades from the laboratory experiments and field tests conducted by plant pathologists and plant virologists working with different plant viruses, and, in particular, from research on Citrus tristeza virus (CTV). A direct confirmation of such close protection came with the finding that "pre-immunization" of citrus plants with the variants of the T36 strain of CTV but not with variants of other virus strains was providing protection against a fluorescent protein-tagged T36-based recombinant virus variant. Under natural conditions close protection is functional and is closely associated both with the conservation of the CTV genome sequence and prevention of superinfection by closely similar isolates. It is suggested that the mechanism is primarily directed to prevent the danger of virus population collapse that could be expected to result through quasispecies divergence of large RNA genomes of the CTV variants continuously replicating within long-living and highly voluminous fruit trees. This review article provides an overview of the CTV cross-protection research, along with a discussion of the phenomenon in the context of the CTV biology and genetics.
Collapse
|
16
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|