1
|
Khan MR, Khan MS, Manoharan R, Karthikeyan S, Alhosaini K, Odeibat HAM, Ahmad MDI, Al-Okail M, Al-Twaijry N. Inhibitory Potential of Carnosine and Aminoguanidine Towards Glycation and Fibrillation of Albumin: In-vitro and Simulation Studies. J Fluoresc 2025; 35:29-42. [PMID: 37971607 DOI: 10.1007/s10895-023-03485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Carnosine is beta-alanyl histidine, a dipeptide, endogenously produced in our body by the carnosine synthase enzyme. It is an antioxidant, thus protecting from the deleterious effect of advanced glycation end products (AGEs). Similarly, aminoguanidine (AG) also prevents AGEs formation by scavenging free radicals such as reactive oxygen species (ROS)/reactive carbonyl species (RCS). This study used experimental and computational techniques to perform a comparative analysis of carnosine and AG and their inhibiting properties against glycated human serum albumin (HSA). Fructose-mediated glycation of albumin produced fluorescent structures, such as pentosidine and malondialdehyde. These AGEs were significantly reduced by carnosine and AG. At 20 mM, carnosine and AG quenches pentosidine fluorescence by 66% and 83%, respectively. A similar inhibitory effect was observed for malondialdehyde. Protein hydrophobicity and tryptophan fluorescence were restored in the presence of carnosine and AG. Aminoguanidine decreased fibrillation in HSA, while carnosine did not significantly affect aggregation/fibrillation. In addition, molecular docking study observed binding scores of -5.90 kcal/mol and -2.59 kcal/mol by HSA-aminoguanidine and HSA-carnosine complex, respectively. Aminoguanidine forms one conventional hydrogen bond with ARG A:10 and a salt bridge with ASP A:13, ASP A:259, ASP A:255, and ASP A:256 from the amine group. Similarly, carnosine forms only hydrogen bonds with GLU A:501 and GLN A:508 from the amine and hydroxy group. The root mean square deviation (RMSD) calculated from simulation studies was 1 nm upto 70 ns for the HSA-aminoguanidine complex and the spectrum of HSA-carnosine was significantly deviated and not stabilized. The superior inhibitory activity of aminoguanidine could be due to additional salt bridge bonding with albumin. Conclusively, aminoguanidine can be the better treatment choice for diabetes-associated neurological diseases.
Collapse
Affiliation(s)
- Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rupavarshini Manoharan
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology University, Chennai Campus, Chennai, 600127, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai, 600127, India
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - M D Irshad Ahmad
- Department of Structural Biology, School of Medicine, UTHEALTH Science Centre, San Antonio, TX, 78229, USA
| | - Majed Al-Okail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ozaki M, Nakade T, Sekiguchi M, Shimotsuma M, Hirose T, Kawase T, Tsuji A, Kuranaga T, Kakeya H, Tomonaga S. Simultaneous Analysis of Imidazole Dipeptides, Constituent Amino Acids, and Taurine in Meats Using the Highly Sensitive Labeling Reagent l-FDVDA and PBr Column. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27538-27548. [PMID: 39588613 DOI: 10.1021/acs.jafc.4c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Imidazole dipeptides (IDPs) are found in the skeletal muscles and brains of various animals, and they exhibit unique functions like antioxidant and antiaging properties. Despite their importance, the metabolic mechanisms and physiological roles of IDPs remain unclear. Herein, we propose a method for the simultaneous analysis of IDPs, their constituent amino acids, and taurine, which are difficult to separate using conventional labeling reagents or columns, using liquid chromatography-single quadrupole mass spectrometry with PBr column and our highly sensitive labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-l-valine-N,N-dimethylethylenediamineamide (l-FDVDA). This method successfully separated histidine and carnosine enantiomers as well as l-2-oxocarnosine with high antioxidant activity under the same conditions. Our labeling reagent was more stable than the other reagents and did not degrade and desorb from the analytes for at least 1 week at 4 °C. Furthermore, our method allows for the accurate analysis of IDPs, amino acids, and taurine in meats from various animal species, tissues, and breeds.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tomomi Nakade
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Mayu Sekiguchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Takahiro Kawase
- Kyoto Institute of Nutrition and Pathology, Inc., Madani, Tachikawa,Ujidawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Ai Tsuji
- Development of Health and Nutrition, Faculty of Health and Sciences, Nagoya Women's University, Nagoya 467-8610, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Hsieh LC, Le TK, Hu FC, Chen YT, Hsieh S, Wu CC, Hsieh SL. Targeted colorectal cancer treatment: In vitro anti-cancer effects of carnosine nanoparticles supported by agar and magnetic iron oxide. Eur J Pharm Biopharm 2024; 203:114477. [PMID: 39209128 DOI: 10.1016/j.ejpb.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The usage of peptides in the colorectal cancer (CRC) treatment promises to be a new anti-cancer therapy with improved treatment efficacy. Carnosine, a natural dipeptide molecule, has been demonstrated to be a potential anti-cancer drug. Nonetheless, it shows an exhibition of high-water solubility and is quickly degraded by carnosinase. Meanwhile, agar and magnetic iron oxide are the most used materials for drug delivery due to some of their advantages such as the low cost and the larger biocompatibility feature. The purpose of this study was to investigate the anti-cancer ability of agar-encapsulated carnosine nanoparticles (AgCa-NPs) and agar-encapsulated carnosine nanoparticles-coated magnetic iron oxide nanoparticles (AgCaN-MNPs) in human CRC cells, HCT-116. We evaluated the effects of AgCa-NPs and AgCaN-MNPs with a variety of concentrations (0, 5, 10, 15, 30, 40, or 50 mM) on HCT-116 cells after 72 h and 96 h by using MTT assay and observation cell morphology. We then analyzed the cell cycle progression and assessed the expression changes of genes related to apoptosis, autophagy, necroptosis, and angiogenesis after treatment for 96 h. The results showed that AgCa-NPs and AgCaN-MNPs in vitro study decreased HCT-116 cells viability. This effect was attributed to arrest of cell cycle, induction of programmed cell death, and suppression of angiogenesis by AgCa-NPs and AgCaN-MNPs. These findings revealed the antitumor efficacy of AgCa-NPs or AgCaN-MNPs for CRC treatment.
Collapse
Affiliation(s)
- Lan-Chi Hsieh
- Department of Dietetics, Kaohsiung Municipal United Hospital, Kaohsiung 80457, Taiwan
| | - Thai-Khuong Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Fang-Ci Hu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
4
|
Ahmed TA, Ahmed SM, Elkhenany H, El-Desouky MA, Magdeldin S, Osama A, Anwar AM, Mohamed IK, Abdelgawad ME, Hanna DH, El-Badri N. The cross talk between type II diabetic microenvironment and the regenerative capacities of human adipose tissue-derived pericytes: a promising cell therapy. Stem Cell Res Ther 2024; 15:36. [PMID: 38331889 PMCID: PMC10854071 DOI: 10.1186/s13287-024-03643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Pericytes (PCs) are multipotent contractile cells that wrap around the endothelial cells (ECs) to maintain the blood vessel's functionality and integrity. The hyperglycemia associated with Type 2 diabetes mellitus (T2DM) was shown to impair the function of PCs and increase the risk of diabetes complications. In this study, we aimed to investigate the deleterious effect of the diabetic microenvironment on the regenerative capacities of human PCs. METHODS PCs isolated from human adipose tissue were cultured in the presence or absence of serum collected from diabetic patients. The functionality of PCs was analyzed after 6, 14, and 30 days. RESULTS Microscopic examination of PCs cultured in DS (DS-PCs) showed increased aggregate formation and altered surface topography with hyperbolic invaginations. Compared to PCs cultured in normal serum (NS-PCs), DS-PCs showed more fragmented mitochondria and thicker nuclear membrane. DS caused impaired angiogenic differentiation of PCs as confirmed by tube formation, decreased VEGF-A and IGF-1 gene expression, upregulated TSP1, PF4, actin-related protein 2/3 complex, and downregulated COL21A1 protein expression. These cells suffered more pronounced apoptosis and showed higher expression of Clic4, apoptosis facilitator BCl-2-like protein, serine/threonine protein phosphatase, and caspase-7 proteins. DS-PCs showed dysregulated DNA repair genes CDKN1A, SIRT1, XRCC5 TERF2, and upregulation of the pro-inflammatory genes ICAM1, IL-6, and TNF-α. Further, DS-treated cells also showed disruption in the expression of the focal adhesion and binding proteins TSP1, TGF-β, fibronectin, and PCDH7. Interestingly, DS-PCs showed resistance mechanisms upon exposure to diabetic microenvironment by maintaining the intracellular reactive oxygen species (ROS) level and upregulation of extracellular matrix (ECM) organizing proteins as vinculin, IQGAP1, and tubulin beta chain. CONCLUSION These data showed that the diabetic microenvironment exert a deleterious effect on the regenerative capacities of human adipose tissue-derived PCs, and may thus have possible implications on the vascular complications of T2DM. Nevertheless, PCs have shown remarkable protective mechanisms when initially exposed to DS and thus they could provide a promising cellular therapy for T2DM.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Mohamed A El-Desouky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, 57357, Egypt
| | - Ihab K Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Essameldin Abdelgawad
- Biochemistry and Molecular Biotechnology Division, Chemistry Department, Faculty of Science, Innovative Cellular Microenvironment Optimization Platform (ICMOP), Precision Therapy Unit, Helwan University, Cairo, Egypt
- The Egyptian Network of Bioinformatics "BioNetMasr", Cairo, Egypt
| | - Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
5
|
Lin NJ, Wu H, Peng J, Yang SH, Tan R, Peng Y, Wang YW. A ratiometric fluorescent probe for fast detection and bioimaging of formaldehyde. Org Biomol Chem 2023; 21:2167-2171. [PMID: 36799709 DOI: 10.1039/d2ob02314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A novel ratiometric probe (SWJT-10) based on isophorone derivatives has been designed and synthesized for the detection of formaldehyde (FA). This probe displayed an obvious ratiometric fluorescence response to FA with a blue shift from the NIR (680 nm) to the yellow light region (600 nm) in aqueous solution. And it showed good selectivity, high sensitivity and a fast response to FA (less than 5 s) due to a new recognition mechanism. Moreover, SWJT-10 has been applied to monitor FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Nai-Jie Lin
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Huan Wu
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Jing Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Shu-Han Yang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Rui Tan
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Yu Peng
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| | - Ya-Wen Wang
- School of Life Science and Engineering, School of Chemistry, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
6
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
7
|
Diniz FC, Hipkiss AR, Ferreira GC. The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. Front Neurosci 2022; 16:898735. [PMID: 35812220 PMCID: PMC9257001 DOI: 10.3389/fnins.2022.898735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Carnosine is a dipeptide expressed in both the central nervous system and periphery. Several biological functions have been attributed to carnosine, including as an anti-inflammatory and antioxidant agent, and as a modulator of mitochondrial metabolism. Some of these mechanisms have been implicated in the pathophysiology of coronavirus disease-2019 (COVID-19). COVID-19 is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The clinical manifestation and recovery time for COVID-19 are variable. Some patients are severely affected by SARS-CoV-2 infection and may experience respiratory failure, thromboembolic disease, neurological symptoms, kidney damage, acute pancreatitis, and even death. COVID-19 patients with comorbidities, including diabetes, are at higher risk of death. Mechanisms underlying the dysfunction of the afflicted organs in COVID-19 patients have been discussed, the most common being the so-called cytokine storm. Given the biological effects attributed to carnosine, adjuvant therapy with this dipeptide could be considered as supportive treatment in patients with either COVID-19 or long COVID.
Collapse
Affiliation(s)
- Fabiola Cardoso Diniz
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, United States
| | - Alan Roger Hipkiss
- Aston Research Centre for Healthy Ageing, Aston University, Birmingham, United Kingdom
| | - Gustavo Costa Ferreira
- Laboratório de Erros Inatos do Metabolismo, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Química Biológica, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
9
|
Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, Wu YS, Guad RM, Udupa K, Fuloria NK. A Comprehensive Review on Source, Types, Effects, Nanotechnology, Detection, and Therapeutic Management of Reactive Carbonyl Species Associated with Various Chronic Diseases. Antioxidants (Basel) 2020; 9:E1075. [PMID: 33147856 PMCID: PMC7692604 DOI: 10.3390/antiox9111075] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
Collapse
Affiliation(s)
- Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Vetriselvan Subramaniyan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Sundram Karupiah
- Faculty of Pharmacy, AIMST University, Kedah, Bedong 08100, Malaysia;
| | - Usha Kumari
- Faculty of Medicine, AIMST University, Kedah, Bedong 08100, Malaysia;
| | | | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur 42610, Malaysia; (V.S.); (Y.S.W.)
| | - Rhanye Mac Guad
- Faculty of Medicine and Health Science, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Kaviraja Udupa
- Department of Neurophysiology, NIMHANS, Bangalore 560029, India;
| | | |
Collapse
|
10
|
Paul M, Sohag MSU, Khan A, Barman RK, Wahed MII, Khan MRI. Pumpkin ( Cucurbita maxima) seeds protect against formaldehyde-induced major organ damages. Heliyon 2020; 6:e04587. [PMID: 32904241 PMCID: PMC7452453 DOI: 10.1016/j.heliyon.2020.e04587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 11/30/2022] Open
Abstract
Exposures to hazardous chemicals including formaldehyde are harmful to human health. In this study, the authors investigate the protective effects of pumpkin seed oil (PSO) extract against formaldehyde-induced major organ damages in mice. Administration of formaldehyde (FA) caused significant elevation of serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), serum creatinine, etc. Histopathological examinations of liver, kidney, and brain tissues showed the degenerations of those organs. Mice pretreated with PSO extract significantly attenuated the FA-induced elevation of SGOT (39.0 ± 1.30 vs 20.5 ± 0.65 IU/L; FA-group vs PSO treatment group), SGPT (91.8 ± 1.65 vs 51.0 ± 1.29 IU/L), serum creatinine (1.05 ± 0.07 vs 0.65 ± 0.07 IU/L), and preserved the normal histology of organ tissues. The FA-induced elevation of malondialdehyde (MDA) in the brain, liver, and kidneys was suppressed by pretreatment with PSO extract. The extract also attenuated the FA-induced reduction of endogenous antioxidant pools. In vitro phytochemical analyses showed that PSO extract possesses free radical scavenging and total antioxidant activities due to the presence of phenolic and flavonoid compounds. Thus, PSO extract has significant protective effects against FA-induced organ toxicities by scavenging oxidative stress and inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Mollika Paul
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | | | - Alam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ranjan Kumar Barman
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mir Imam Ibne Wahed
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Rafiqul Islam Khan
- Laboratory of Pharmacology, Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
11
|
Caruso G, Fresta CG, Grasso M, Santangelo R, Lazzarino G, Lunte SM, Caraci F. Inflammation as the Common Biological Link Between Depression and Cardiovascular Diseases: Can Carnosine Exert a Protective Role? Curr Med Chem 2020; 27:1782-1800. [PMID: 31296155 DOI: 10.2174/0929867326666190712091515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
Abstract
Several epidemiological studies have clearly shown the high co-morbidity between depression and Cardiovascular Diseases (CVD). Different studies have been conducted to identify the common pathophysiological events of these diseases such as the overactivation of the hypothalamic- pituitary-adrenal axis and, most importantly, the dysregulation of immune system which causes a chronic pro-inflammatory status. The biological link between depression, inflammation, and CVD can be related to high levels of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, released by macrophages which play a central role in the pathophysiology of both depression and CVD. Pro-inflammatory cytokines interfere with many of the pathophysiological mechanisms relevant to depression by upregulating the rate-limiting enzymes in the metabolic pathway of tryptophan and altering serotonin metabolism. These cytokines also increase the risk to develop CVD, because activation of macrophages under this pro-inflammatory status is closely associated with endothelial dysfunction and oxidative stress, a preamble to atherosclerosis and atherothrombosis. Carnosine (β-alanyl-L-histidine) is an endogenous dipeptide which exerts a strong antiinflammatory activity on macrophages by suppressing reactive species and pro-inflammatory cytokines production and altering pro-inflammatory/anti-inflammatory macrophage polarization. This dipeptide exhibits antioxidant properties scavenging reactive species and preventing oxidative stress-induced pathologies such as CVD. In the present review we will discuss the role of oxidative stress and chronic inflammation as common pathophysiological events both in depression and CVD and the preclinical and clinical evidence on the protective effect of carnosine in both diseases as well as the therapeutic potential of this dipeptide in depressed patients with a high co-morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy
| | - Claudia G Fresta
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95125, Italy
| | - Margherita Grasso
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Rosa Santangelo
- Department of Drug Sciences, University of Catania, Catania 95125, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania 95125, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66045, Kansas, United States.,Department of Chemistry, University of Kansas, Lawrence 66045, Kansas, United States
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, Via Conte Ruggero, 73, Troina 94018, Italy.,Department of Drug Sciences, University of Catania, Catania 95125, Italy
| |
Collapse
|
12
|
Mohiuddin AK. TRACK Implementation: a Bangladesh Scenario. Cent Asian J Glob Health 2020; 9:e416. [PMID: 33062402 PMCID: PMC7538904 DOI: 10.5195/cajgh.2020.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the increasing burden of non-communicable diseases in low-income and middle-income countries (LMICs), biological risk factors, such as hyperglycemia, are a major public health concern in Bangladesh. Optimization of diabetes management by positive lifestyle changes is urgently required for prevention of comorbidities and complications, which in turn will reduce the cost. Diabetes had 2 times more days of inpatient treatment, 1.3 times more outpatient visits, and nearly 10 times more medications than non-diabetes patients, as reported by British Medical Journal. And surprisingly, 80% of people with this so called "Rich Man's Disease" live in low- and middle-income countries. According to a recent study of American Medical Association, China and India collectively are home of nearly 110 million diabetic patients. The prevalence of diabetes in this region is projected to increase by 71% by 2035. Bangladesh was ranked as the 8th highest diabetic populous country in the time period of 2010-2011. In Bangladesh, the estimated prevalence of diabetes among adults was 9.7% in 2011 and the number is projected to be 13.7 million by 2045. The cost of diabetes care is considerably high in Bangladesh, and it is primarily driven by the medicine and hospitalization costs. According to Bangladesh Bureau of Statistics, in 2017 the annual average cost per T2DM was $864.7, which is 52% of per capita GDP of Bangladesh and 9.8 times higher than the general health care cost. Medicine is the highest source of direct cost (around 85%) for patients without hospitalization. The private and public financing of diabetes treatment will be severely constrained in near future, representing a health threat for the Bangladeshi population.
Collapse
|
13
|
Liang XG, Cheng J, Qin S, Shao LX, Huang MZ, Wang G, Han Y, Han F, Li X. Conformational restraint as a strategy for navigating towards lysosomes. Chem Commun (Camb) 2018; 54:12010-12013. [PMID: 30204171 DOI: 10.1039/c8cc06155f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using the conformational restraint strategy, we developed a hydrazonate-derived coumarin into a lysosome targeting probe for imaging native formaldehyde at the subcellular level.
Collapse
Affiliation(s)
- Xing-Guang Liang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province
- First Affiliated Hospital, School of Medicine
- Zhejiang University
- Hangzhou 310003
- China
| | - Juan Cheng
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| | - Siyao Qin
- Department of Chemistry, Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ling-Xiao Shao
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| | - Ming-Zhu Huang
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province
- First Affiliated Hospital, School of Medicine
- Zhejiang University
- Hangzhou 310003
- China
| | - Gang Wang
- Department of Clinical Pharmacy, Hangzhou First People's Hospital
- Hangzhou 310006
- China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Feng Han
- College of Pharmaceutical Sciences
- Zhejiang University
- China
- School of Pharmacy, Nanjing Medical University
- Nanjing 211166
| | - Xin Li
- College of Pharmaceutical Sciences
- Zhejiang University
- China
| |
Collapse
|
14
|
Zinc-L-Carnosine Complex (Polaprezinc) for the Treatment of Binge Eating: Three Case Reports. J Clin Psychopharmacol 2017; 37:734-736. [PMID: 28926352 DOI: 10.1097/jcp.0000000000000784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|