1
|
West TR, Mazurek MH, Perez NA, Razak SS, Gal ZT, McHugh JM, Choi BD, Nahed BV. Navigated Intraoperative Ultrasound Offers Effective and Efficient Real-Time Analysis of Intracranial Tumor Resection and Brain Shift. Oper Neurosurg (Hagerstown) 2025; 28:148-158. [PMID: 38995025 DOI: 10.1227/ons.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neuronavigation is a fundamental tool in the resection of intracranial tumors. However, it is limited by its calibration to preoperative neuroimaging, which loses accuracy intraoperatively after brain shift. Therefore, surgeons rely on anatomic landmarks or tools like intraoperative MRI to assess the extent of tumor resection (EOR) and update neuronavigation. Recent studies demonstrate that intraoperative ultrasound (iUS) provides point-of-care imaging without the cost or resource utilization of an intraoperative MRI, and advances in neuronavigation-guided iUS provide an opportunity for real-time imaging overlaid with neuronavigation to account for brain shift. We assessed the feasibility, efficacy, and benefits of navigated iUS to assess the EOR and restore stereotactic accuracy in neuronavigation after brain shift. METHODS This prospective single-center study included patients presenting with intracranial tumors (gliomas, metastasis) to an academic medical center. Navigated iUS images were acquired preresection, midresection, and postresection. The EOR was determined by the surgeon intraoperatively and compared with the postoperative MRI report by an independent neuroradiologist. Outcome measures included time to perform the iUS sweep, time to process ultrasound images, and EOR predicted by the surgeon intraoperatively compared with the postoperative MRI. RESULTS This study included 40 patients consisting of gliomas (n = 18 high-grade gliomas, n = 4 low-grade gliomas, n = 4 recurrent) and metastasis (n = 18). Navigated ultrasound sweeps were performed in all patients (n = 83) with a median time to perform of 5.5 seconds and a median image processing time of 29.9 seconds. There was 95% concordance between the surgeon's and neuroradiologist's determination of EOR using navigated iUS and postoperative MRI, respectively. The sensitivity was 100%, and the specificity was 94%. CONCLUSION Navigated iUS was successfully used for EOR determination in glioma and metastasis resection. Incorporating navigated iUS into the surgical workflow is safe and efficient and provides a real-time assessment of EOR while accounting for brain shift in intracranial tumor surgeries.
Collapse
Affiliation(s)
- Timothy R West
- Department of Neurosurgery, Massachusetts General Hospital, Boston , Massachusetts , USA
| | | | | | | | - Zsombor T Gal
- Harvard Medical School, Boston , Massachusetts , USA
| | - Jeffrey M McHugh
- Department of Neurosurgery, Massachusetts General Hospital, Boston , Massachusetts , USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School, Boston , Massachusetts , USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston , Massachusetts , USA
- Harvard Medical School, Boston , Massachusetts , USA
| |
Collapse
|
2
|
Yeole U, Shetty P, Singh V, Moiyadi A. Pattern of use of intraoperative ultrasound in surgery for brain tumors influences outcomes in glial tumors. Br J Neurosurg 2024; 38:1052-1061. [PMID: 34927516 DOI: 10.1080/02688697.2021.2016619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/29/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Intraoperative ultrasound (iUS) imaging has emerged as a promising adjunct in glioma surgery with both, 2-dimensional (2D) as well as navigated 3-dimensional (n3D), modes increasingly being used. METHODS We analyzed our decade-long experience of 1075 brain tumor (807, 75% gliomas) cases operated using iUS. A retrospective chart and electronic records review was performed. The primary aim was to understand the patterns of use of iUS mode and its purpose of application (as a localizing tool or as a resection control modality) as well as to evaluate its impact on the extent of resection. RESULTS The use of iUS increased over time, especially with the introduction of n3DUS though 2DUS remained the more commonly used mode (63%) overall during this period. For biopsies (156 cases), both 2D, as well as n3D iUS, were used as a localizing tool only. Lesion localization was the major purpose for use of iUS even for tumor resections (61%). Resection control was performed more often for gliomas (46.5% compared to 16.5% in non-glial tumors). n3DUS was the preferred modality as a resection control tool irrespective of histological class. GTR (gross total resection) was achieved in 53.1% cases overall, while in glial and non-glial tumors it was 44.7% and 80.7%, respectively. GTR was higher when iUS was used as a resection control modality. The US and MR defined EOR (extent of resection) showed substantial agreement (κ = 0.678) with high diagnostic accuracy of 84% for glial tumors. In glial tumors, iUS was used more often in eloquent tumors and GTR rates were slightly higher than when iUS was not used. CONCLUSION iUS is a versatile tool and is a useful surgical adjunct for glioma surgeons. Besides its proven benefit as a localizing tool, when used as a tool for resection control it improves the resection rates. n3DUS may offer benefits over 2DUS as a resection control modality, though the evidence is still evolving.
Collapse
Affiliation(s)
- Ujwal Yeole
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vikas Singh
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Neurosurgical Services, Department of Surgical Oncology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Klein Gunnewiek K, van Baarsen KM, Graus EHM, Brink WM, Lequin MH, Hoving EW. Navigated intraoperative ultrasound in pediatric brain tumors. Childs Nerv Syst 2024; 40:2697-2705. [PMID: 38862795 PMCID: PMC11322494 DOI: 10.1007/s00381-024-06492-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE The aim of this study was to evaluate the diagnostic value and accuracy of navigated intraoperative ultrasound (iUS) in pediatric oncological neurosurgery as compared to intraoperative magnetic resonance imaging (iMRI). METHODS A total of 24 pediatric patients undergoing tumor debulking surgery with iUS, iMRI, and neuronavigation were included in this study. Prospective acquisition of iUS images was done at two time points during the surgical procedure: (1) before resection for tumor visualization and (2) after resection for residual tumor assessment. Dice similarity coefficients (DSC), Hausdorff distances 95th percentiles (HD95) and volume differences, sensitivity, and specificity were calculated for iUS segmentations as compared to iMRI. RESULTS A high correlation (R = 0.99) was found for volume estimation as measured on iUS and iMRI before resection. A good spatial accuracy was demonstrated with a median DSC of 0.72 (IQR 0.14) and a median HD95 percentile of 4.98 mm (IQR 2.22 mm). The assessment after resection demonstrated a sensitivity of 100% and a specificity of 84.6% for residual tumor detection with navigated iUS. A moderate accuracy was observed with a median DSC of 0.58 (IQR 0.27) and a median HD95 of 5.84 mm (IQR 4.04 mm) for residual tumor volumes. CONCLUSION We found that iUS measurements of tumor volume before resection correlate well with those obtained from preoperative MRI. The accuracy of residual tumor detection was reliable as compared to iMRI, indicating the suitability of iUS for directing the surgeon's attention to areas suspect for residual tumor. Therefore, iUS is considered as a valuable addition to the neurosurgical armamentarium. TRIAL REGISTRATION NUMBER AND DATE PMCLAB2023.476, February 12th 2024.
Collapse
Affiliation(s)
- Kevin Klein Gunnewiek
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Magnetic Detection and Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Kirsten M van Baarsen
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Evie H M Graus
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Wyger M Brink
- Magnetic Detection and Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Maarten H Lequin
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eelco W Hoving
- Department of Neuro-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
4
|
Behboodi B, Carton FX, Chabanas M, de Ribaupierre S, Solheim O, Munkvold BKR, Rivaz H, Xiao Y, Reinertsen I. Open access segmentations of intraoperative brain tumor ultrasound images. Med Phys 2024; 51:6525-6532. [PMID: 39047165 DOI: 10.1002/mp.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Registration and segmentation of magnetic resonance (MR) and ultrasound (US) images could play an essential role in surgical planning and resectioning brain tumors. However, validating these techniques is challenging due to the scarcity of publicly accessible sources with high-quality ground truth information. To this end, we propose a unique set of segmentations (RESECT-SEG) of cerebral structures from the previously published RESECT dataset to encourage a more rigorous development and assessment of image-processing techniques for neurosurgery. ACQUISITION AND VALIDATION METHODS The RESECT database consists of MR and intraoperative US (iUS) images of 23 patients who underwent brain tumor resection surgeries. The proposed RESECT-SEG dataset contains segmentations of tumor tissues, sulci, falx cerebri, and resection cavity of the RESECT iUS images. Two highly experienced neurosurgeons validated the quality of the segmentations. DATA FORMAT AND USAGE NOTES Segmentations are provided in 3D NIFTI format in the OSF open-science platform: https://osf.io/jv8bk. POTENTIAL APPLICATIONS The proposed RESECT-SEG dataset includes segmentations of real-world clinical US brain images that could be used to develop and evaluate segmentation and registration methods. Eventually, this dataset could further improve the quality of image guidance in neurosurgery.
Collapse
Affiliation(s)
- Bahareh Behboodi
- Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
- School of Health, Concordia University, Montreal, Canada
| | | | - Matthieu Chabanas
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC, Grenoble, France
| | - Sandrine de Ribaupierre
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bodil K R Munkvold
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
- School of Health, Concordia University, Montreal, Canada
| | - Yiming Xiao
- School of Health, Concordia University, Montreal, Canada
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Ingerid Reinertsen
- Department of Health Research, SINTEF Digital, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
5
|
Brugada-Bellsolà F, Rodríguez PT, González-Crespo A, Menéndez-Girón S, Panisello CH, Garcia-Armengol R, Alonso CJD. Intraoperative ultrasound and magnetic resonance comparative analysis in brain tumor surgery: a valuable tool to flatten ultrasound's learning curve. Acta Neurochir (Wien) 2024; 166:337. [PMID: 39138764 DOI: 10.1007/s00701-024-06228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is a profitable tool for neurosurgical procedures' assistance, especially in neuro-oncology. It is a rapid, ergonomic and reproducible technique. However, its known handicap is a steep learning curve for neurosurgeons. Here, we describe an interesting postoperative analysis that provides extra feedback after surgery, accelerating the learning process. METHOD We conducted a descriptive retrospective unicenter study including patients operated from intra-axial brain tumors using neuronavigation (Curve, Brainlab) and IOUS (BK-5000, BK medical) guidance. All patients had preoperative Magnetic Resonance Imaging (MRI) prior to tumor resection. During surgery, 3D neuronavigated IOUS studies (n3DUS) were obtained through craniotomy N13C5 transducer's integration to the neuronavigation system. At least two n3DUS studies were obtained: prior to tumor resection and at the resection conclusion. A postoperative MRI was performed within 48 h. MRI and n3DUS studies were posteriorly fused and analyzed with Elements (Brainlab) planning software, permitting two comparative analyses: preoperative MRI compared to pre-resection n3DUS and postoperative MRI to post-resection n3DUS. Cases with incomplete MRI or n3DUS studies were withdrawn from the study. RESULTS From April 2022 to March 2024, 73 patients were operated assisted by IOUS. From them, 39 were included in the study. Analyses comparing preoperative MRI and pre-resection n3DUS showed great concordance of tumor volume (p < 0,001) between both modalities. Analysis comparing postoperative MRI and post-resection n3DUS also showed good concordance in residual tumor volume (RTV) in cases where gross total resection (GTR) was not achieved (p < 0,001). In two cases, RTV detected on MRI that was not detected intra-operatively with IOUS could be reviewed in detail to recheck its appearance. CONCLUSIONS Post-operative comparative analyses between IOUS and MRI is a valuable tool for novel ultrasound users, as it enhances the amount of feedback provided by cases and could accelerate the learning process, flattening this technique's learning curve.
Collapse
Affiliation(s)
- Ferran Brugada-Bellsolà
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain.
| | - Pilar Teixidor Rodríguez
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Antonio González-Crespo
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Sebastián Menéndez-Girón
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Cristina Hostalot Panisello
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Roser Garcia-Armengol
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| | - Carlos J Domínguez Alonso
- Department of Neurological Surgery, Germans Trias I Pujol University Hospital, Ctra del Canyet Sn, 08916, Barcelona, CP, Spain
| |
Collapse
|
6
|
Bopp MHA, Grote A, Gjorgjevski M, Pojskic M, Saß B, Nimsky C. Enabling Navigation and Augmented Reality in the Sitting Position in Posterior Fossa Surgery Using Intraoperative Ultrasound. Cancers (Basel) 2024; 16:1985. [PMID: 38893106 PMCID: PMC11171013 DOI: 10.3390/cancers16111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Despite its broad use in cranial and spinal surgery, navigation support and microscope-based augmented reality (AR) have not yet found their way into posterior fossa surgery in the sitting position. While this position offers surgical benefits, navigation accuracy and thereof the use of navigation itself seems limited. Intraoperative ultrasound (iUS) can be applied at any time during surgery, delivering real-time images that can be used for accuracy verification and navigation updates. Within this study, its applicability in the sitting position was assessed. Data from 15 patients with lesions within the posterior fossa who underwent magnetic resonance imaging (MRI)-based navigation-supported surgery in the sitting position were retrospectively analyzed using the standard reference array and new rigid image-based MRI-iUS co-registration. The navigation accuracy was evaluated based on the spatial overlap of the outlined lesions and the distance between the corresponding landmarks in both data sets, respectively. Image-based co-registration significantly improved (p < 0.001) the spatial overlap of the outlined lesion (0.42 ± 0.30 vs. 0.65 ± 0.23) and significantly reduced (p < 0.001) the distance between the corresponding landmarks (8.69 ± 6.23 mm vs. 3.19 ± 2.73 mm), allowing for the sufficient use of navigation and AR support. Navigated iUS can therefore serve as an easy-to-use tool to enable navigation support for posterior fossa surgery in the sitting position.
Collapse
Affiliation(s)
- Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Alexander Grote
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Marko Gjorgjevski
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Mirza Pojskic
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (A.G.); (M.G.); (M.P.); (B.S.); (C.N.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
7
|
Sabeghi P, Zarand P, Zargham S, Golestany B, Shariat A, Chang M, Yang E, Rajagopalan P, Phung DC, Gholamrezanezhad A. Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors. Cancers (Basel) 2024; 16:576. [PMID: 38339327 PMCID: PMC10854543 DOI: 10.3390/cancers16030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
This study delineates the pivotal role of imaging within the field of neurology, emphasizing its significance in the diagnosis, prognostication, and evaluation of treatment responses for central nervous system (CNS) tumors. A comprehensive understanding of both the capabilities and limitations inherent in emerging imaging technologies is imperative for delivering a heightened level of personalized care to individuals with neuro-oncological conditions. Ongoing research in neuro-oncological imaging endeavors to rectify some limitations of radiological modalities, aiming to augment accuracy and efficacy in the management of brain tumors. This review is dedicated to the comparison and critical examination of the latest advancements in diverse imaging modalities employed in neuro-oncology. The objective is to investigate their respective impacts on diagnosis, cancer staging, prognosis, and post-treatment monitoring. By providing a comprehensive analysis of these modalities, this review aims to contribute to the collective knowledge in the field, fostering an informed approach to neuro-oncological care. In conclusion, the outlook for neuro-oncological imaging appears promising, and sustained exploration in this domain is anticipated to yield further breakthroughs, ultimately enhancing outcomes for individuals grappling with CNS tumors.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Paniz Zarand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Sina Zargham
- Department of Basic Science, California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Batis Golestany
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, 900 University Ave., Riverside, CA 92521, USA;
| | - Arya Shariat
- Kaiser Permanente Los Angeles Medical Center, 4867 W Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Myles Chang
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Evan Yang
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Priya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Daniel Chang Phung
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| |
Collapse
|
8
|
El Beltagy MA, Elbaroody M. The Value of Intraoperative Ultrasound in Brain Surgery. Adv Tech Stand Neurosurg 2024; 50:185-199. [PMID: 38592531 DOI: 10.1007/978-3-031-53578-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Favorable clinical outcomes in adult and pediatric neurosurgical oncology generally depend on the extent of tumor resection (EOR). Maximum safe resection remains the main aim of surgery in most intracranial tumors. Despite the accuracy of intraoperative magnetic resonance imaging (iMRI) in the detection of residual intraoperatively, it is not widely implemented worldwide owing to enormous cost and technical difficulties. Over the past years, intraoperative ultrasound (IOUS) has imposed itself as a valuable and reliable intraoperative tool guiding neurosurgeons to achieve gross total resection (GTR) of intracranial tumors.Being less expensive, feasible, doesn't need a high level of training, doesn't need a special workspace, and being real time with outstanding temporal and spatial resolution; all the aforementioned advantages give a superiority for IOUS in comparison to iMRI during resection of brain tumors.In this chapter, we spot the light on the technical nuances, advanced techniques, outcomes of resection, pearls, and pitfalls of the use of IOUS during the resection of brain tumors.
Collapse
Affiliation(s)
- Mohamed A El Beltagy
- Neurosurgery Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
- Neurosurgery Department, Children's Cancer Hospital Egypt (CCHE, 57357), Cairo, Egypt
| | - Mohammad Elbaroody
- Neurosurgery Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Padayachy L, Prada F. Multimodality Structural and Functional Monitoring in Brain Tumor Surgery: The Role of IONM and IOUS. Adv Tech Stand Neurosurg 2024; 53:1-12. [PMID: 39287799 DOI: 10.1007/978-3-031-67077-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Brain tumor surgery represents the pinnacle of technical and technological advances in the neurosurgery. The goal remains optimized extent of resection with preservation of neurological function. The benefit of a multimodal structural and functional intra-operative monitoring approach is to improve the ability of the surgeon to achieve the goal of optimized surgical resection. Despite significant technological advances, challenges in defining tumor and functional neural tissue interface remain a significant barrier. The opportunity to address this challenge, however, presents us with an exciting path ahead.
Collapse
Affiliation(s)
- Llewellyn Padayachy
- Brain Tumor and Translational Neuroscience Centre, Department of Neurosurgery, University of Pretoria, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Francesco Prada
- Acoustic Neuro-Imaging and Therapy Lab (ANTY-Lab), Department of Neurosurgery, Fondazione IRCCS Istituto C. Besta, Milan, Italy.
| |
Collapse
|
10
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
11
|
Moiyadi A, Shetty P, Singh VK, Yeole U. Intraoperative Navigated Three-Dimensional Ultrasound Guidance Improves Resection in Gliomas Compared with Standard Two-Dimensional Ultrasound-Results from a Comparative Cohort Study. World Neurosurg 2023; 180:e233-e242. [PMID: 37739176 DOI: 10.1016/j.wneu.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Intraoperative ultrasound is a promising tool for intraoperative tumor resection control. Navigated three-dimensional US (n3DUS) has many benefits over standard two-dimensional US (2DUS). METHODS Two cohorts (2DUS and n3DUS) of patients with histologically confirmed adult diffuse gliomas undergoing US-guided resection control were compared. The primary outcomes assessed were extent of resection and morbidity. Multivariate analysis was performed to account for tumor characteristics (delineation and eloquence) and surgeon experience, which could confound the results. RESULTS n3DUS was used more often (n = 252) than 2DUS (n = 86). Tumor delineation was similar in 2DUS and n3DUS cohorts, although the n3DUS cohort included more nonenhancing, histologically lower grade (2-3) gliomas and had more gliomas located in eloquent regions; also, n3DUS was more often used by senior surgeons. Gross total resection (GTR) rates were 47%, and major morbidity was 9.5%. On multivariate analysis, after controlling for all other variables between the 2 groups, patients with well-delineated tumors, patients with prior treatment, and patients who underwent n3DUS were more likely to have GTR (adjusted odds ratios 3.0, 1.8, and 2.2, respectively), whereas patients with tumors in eloquent locations were half as likely (adjusted odds ratio 0.5) to have GTR. Eloquent located tumors were likely to be associated with higher neurological morbidity, although major morbidity was not significantly different. CONCLUSIONS Good delineation, noneloquent location, and use of n3DUS was associated with a higher probability of GTR in glioma surgery. Surgeons' experience did not influence the extent of resection. Morbidity was predominantly associated with eloquent location, independent of all other factors.
Collapse
Affiliation(s)
- Aliasgar Moiyadi
- Department of Surgical Oncology, Neurosurgical Services, Tata Memorial Centre, Mumbai, India; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, India.
| | - Prakash Shetty
- Department of Surgical Oncology, Neurosurgical Services, Tata Memorial Centre, Mumbai, India; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Vikas Kumar Singh
- Department of Surgical Oncology, Neurosurgical Services, Tata Memorial Centre, Mumbai, India; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Ujwal Yeole
- Department of Surgical Oncology, Neurosurgical Services, Tata Memorial Centre, Mumbai, India; Department of Health Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Habib A, Jovanovich N, Hoppe M, Hameed NF, Edwards L, Zinn P. Navigated 3D ultrasound-guided resection of high-grade gliomas: A case series and review. Surg Neurol Int 2022; 13:356. [PMID: 36128115 PMCID: PMC9479605 DOI: 10.25259/sni_469_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background: The crux in high-grade glioma surgery remains maximizing resection without affecting eloquent brain areas. Toward this, a myriad of adjunct tools and techniques has been employed to enhance surgical safety and efficacy. Despite intraoperative MRI and advanced neuronavigational techniques, as well as augmented reality, to date, the only true real-time visualization tool remains the ultrasound (US). Neuroultrasonography is a cost-efficient imaging modality that offers instant, real-time information about the changing anatomical landscape intraoperatively. Recent advances in technology now allow for the integration of intraoperative US with neuronavigation. Case Description: In this report, we present the resection technique for three cases of high-grade gliomas (two glioblastomas and one anaplastic astrocytoma). The patient presented with a variable clinical spectrum. All three cases have been performed using the Brainlab® neuronavigation system (BrainLAB, Munich, Germany) and the bk5000 US Machine® (BK Medical, Analogic Corporation, Peabody, Massachusetts, USA). Conclusion: Gross total resection was achieved in all three cases. The use of 3D navigated US was a reliable adjunct surgical tool in achieving favorable resection outcomes in these patients.
Collapse
|
13
|
Mazzucchi E, La Rocca G, Hiepe P, Pignotti F, Galieri G, Policicchio D, Boccaletti R, Rinaldi P, Gaudino S, Ius T, Sabatino G. Intraoperative integration of multimodal imaging to improve neuronavigation: a technical note. World Neurosurg 2022; 164:330-340. [PMID: 35667553 DOI: 10.1016/j.wneu.2022.05.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain shift may cause significant error in neuronavigation leading the surgeon to possible mistakes. Intraoperative MRI is the most reliable technique in brain tumor surgery. Unfortunately, it is highly expensive and time consuming and, at the moment, it is available only in few neurosurgical centers. METHODS In this case series the surgical workflow for brain tumor surgery is described where neuronavigation of pre-operative MRI, intraoperative CT scan and US as well as rigid and elastic image fusion between preoperative MRI and intraoperative US and CT, respectively, was applied to four brain tumor patients in order to compensate for surgical induced brain shift by using a commercially available software (Elements Image Fusion 4.0 with Virtual iMRI Cranial; Brainlab AG). RESULTS Three exemplificative cases demonstrated successful integration of different components of the described intraoperative surgical workflow. The data indicates that intraoperative navigation update is feasible by applying intraoperative 3D US and CT scanning as well as rigid and elastic image fusion applied depending on the degree of observed brain shift. CONCLUSIONS Integration of multiple intraoperative imaging techniques combined with rigid and elastic image fusion of preoperative MRI may reduce the risk of incorrect neuronavigation during brain tumor resection. Further studies are needed to confirm the present findings in a larger population.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | - Fabrizio Pignotti
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Gianluca Galieri
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | | | | | - Simona Gaudino
- Institute of Radiology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
14
|
Dixon L, Lim A, Grech-Sollars M, Nandi D, Camp S. Intraoperative ultrasound in brain tumor surgery: A review and implementation guide. Neurosurg Rev 2022; 45:2503-2515. [PMID: 35353266 PMCID: PMC9349149 DOI: 10.1007/s10143-022-01778-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
Accurate and reliable intraoperative neuronavigation is crucial for achieving maximal safe resection of brain tumors. Intraoperative MRI (iMRI) has received significant attention as the next step in improving navigation. However, the immense cost and logistical challenge of iMRI precludes implementation in most centers worldwide. In comparison, intraoperative ultrasound (ioUS) is an affordable tool, easily incorporated into existing theatre infrastructure, and operative workflow. Historically, ultrasound has been perceived as difficult to learn and standardize, with poor, artifact-prone image quality. However, ioUS has dramatically evolved over the last decade, with vast improvements in image quality and well-integrated navigation tools. Advanced techniques, such as contrast-enhanced ultrasound (CEUS), have also matured and moved from the research field into actual clinical use. In this review, we provide a comprehensive and pragmatic guide to ioUS. A suggested protocol to facilitate learning ioUS and improve standardization is provided, and an outline of common artifacts and methods to minimize them given. The review also includes an update of advanced techniques and how they can be incorporated into clinical practice.
Collapse
|
15
|
Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Nahed BV, Berger MS, Vincent AJPE. Safe Surgery for Glioblastoma: Recent Advances and Modern Challenges. Neurooncol Pract 2022; 9:364-379. [PMID: 36127890 PMCID: PMC9476986 DOI: 10.1093/nop/npac019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the major challenges during glioblastoma surgery is balancing between maximizing extent of resection and preventing neurological deficits. Several surgical techniques and adjuncts have been developed to help identify eloquent areas both preoperatively (fMRI, nTMS, MEG, DTI) and intraoperatively (imaging (ultrasound, iMRI), electrostimulation (mapping), cerebral perfusion measurements (fUS)), and visualization (5-ALA, fluoresceine)). In this review, we give an update of the state-of-the-art management of both primary and recurrent glioblastomas. We will review the latest surgical advances, challenges, and approaches that define the onco-neurosurgical practice in a contemporary setting and give an overview of the current prospective scientific efforts.
Collapse
Affiliation(s)
| | | | | | - Philippe Schucht
- Department of Neurosurgery, University Hospital Bern, Switzerland
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston MA, USA
| | | | | |
Collapse
|
16
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
17
|
Yang JYM, Yeh CH, Poupon C, Calamante F. Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges. Phys Med Biol 2021; 66. [PMID: 34157706 DOI: 10.1088/1361-6560/ac0d90] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is currently the only imaging technique that allows for non-invasive delineation and visualisation of white matter (WM) tractsin vivo,prompting rapid advances in related fields of brain MRI research in recent years. One of its major clinical applications is for pre-surgical planning and intraoperative image guidance in neurosurgery, where knowledge about the location of WM tracts nearby the surgical target can be helpful to guide surgical resection and optimise post-surgical outcomes. Surgical injuries to these WM tracts can lead to permanent neurological and functional deficits, making the accuracy of tractography reconstructions paramount. The quality of dMRI tractography is influenced by many modifiable factors, ranging from MRI data acquisition through to the post-processing of tractography output, with the potential of error propagation based on decisions made at each and subsequent processing steps. Research over the last 25 years has significantly improved the anatomical accuracy of tractography. An updated review about tractography methodology in the context of neurosurgery is now timely given the thriving research activities in dMRI, to ensure more appropriate applications in the clinical neurosurgical realm. This article aims to review the dMRI physics, and tractography methodologies, highlighting recent advances to provide the key concepts of tractography-informed neurosurgery, with a focus on the general considerations, the current state of practice, technical challenges, potential advances, and future demands to this field.
Collapse
Affiliation(s)
- Joseph Yuan-Mou Yang
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Cyril Poupon
- NeuroSpin, Frédéric Joliot Life Sciences Institute, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Fernando Calamante
- The University of Sydney, Sydney Imaging, Sydney, Australia.,The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| |
Collapse
|
18
|
Mahmoud AT, Enayet A, Alselisly AMA. Surgical considerations for maximal safe resection of exophytic brainstem glioma in the pediatric age group. Surg Neurol Int 2021; 12:310. [PMID: 34345451 PMCID: PMC8326137 DOI: 10.25259/sni_318_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/28/2021] [Indexed: 11/07/2022] Open
Abstract
Background: Brainstem glioma is the leading cause of morbidity and mortality among all central nervous system tumors, especially in childhood as it represents about 20% of all pediatric brain tumors. Therefore, this study aimed to present our experience in a tertiary center in a developing country with limited resources for the surgical management of exophytic brainstem gliomas. Methods: This retrospective study included pediatric patients with brainstem (midbrain, pontine, or medullary) focal or diffuse gliomas whether low or high grade that had dorsal, ventral, or lateral exophytic component who were presented to our hospitals from January 2019 to January 2021. The patients’ data were collected, such as age, sex, preoperative and postoperative clinical condition, radiological data, surgical approach, extent of tumor removal, histopathology, follow-up period, and adjuvant therapy. Results: A total of 23 patients were included in this study. The telovelar approach was used in 17 patients, the supracerebellar infratentorial approach in three patients, and the retrosigmoid, transcerebellar, and occipital transtentorial approach once for each patient. Twenty patients underwent near-total excision, and three underwent subtotal excision. Two-thirds of our cases (17 patients) were low-grade gliomas, with the remaining one-third comprising entirely of either anaplastic astrocytoma (five patients) or glioblastoma multiforme (one patient). The follow-up period of the patients extended from 3 months to 24 months. Conclusion: Exophytic brainstem glioma surgery can result in good outcomes with minimal complications when near-total excision is attempted through a properly chosen approach and adherence to some surgical techniques and considerations.
Collapse
Affiliation(s)
- Ayman Tarek Mahmoud
- Department of Neurosurgery, Kasr Alainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abdelrhman Enayet
- Department of Neurosurgery, Cairo University Kasr Alainy Faculty of Medicine, Children Cancer Hospital, Cairo, Egypt
| | | |
Collapse
|
19
|
Bastos DCDA, Juvekar P, Tie Y, Jowkar N, Pieper S, Wells WM, Bi WL, Golby A, Frisken S, Kapur T. Challenges and Opportunities of Intraoperative 3D Ultrasound With Neuronavigation in Relation to Intraoperative MRI. Front Oncol 2021; 11:656519. [PMID: 34026631 PMCID: PMC8139191 DOI: 10.3389/fonc.2021.656519] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Neuronavigation greatly improves the surgeons ability to approach, assess and operate on brain tumors, but tends to lose its accuracy as the surgery progresses and substantial brain shift and deformation occurs. Intraoperative MRI (iMRI) can partially address this problem but is resource intensive and workflow disruptive. Intraoperative ultrasound (iUS) provides real-time information that can be used to update neuronavigation and provide real-time information regarding the resection progress. We describe the intraoperative use of 3D iUS in relation to iMRI, and discuss the challenges and opportunities in its use in neurosurgical practice. Methods We performed a retrospective evaluation of patients who underwent image-guided brain tumor resection in which both 3D iUS and iMRI were used. The study was conducted between June 2020 and December 2020 when an extension of a commercially available navigation software was introduced in our practice enabling 3D iUS volumes to be reconstructed from tracked 2D iUS images. For each patient, three or more 3D iUS images were acquired during the procedure, and one iMRI was acquired towards the end. The iUS images included an extradural ultrasound sweep acquired before dural incision (iUS-1), a post-dural opening iUS (iUS-2), and a third iUS acquired immediately before the iMRI acquisition (iUS-3). iUS-1 and preoperative MRI were compared to evaluate the ability of iUS to visualize tumor boundaries and critical anatomic landmarks; iUS-3 and iMRI were compared to evaluate the ability of iUS for predicting residual tumor. Results Twenty-three patients were included in this study. Fifteen patients had tumors located in eloquent or near eloquent brain regions, the majority of patients had low grade gliomas (11), gross total resection was achieved in 12 patients, postoperative temporary deficits were observed in five patients. In twenty-two iUS was able to define tumor location, tumor margins, and was able to indicate relevant landmarks for orientation and guidance. In sixteen cases, white matter fiber tracts computed from preoperative dMRI were overlaid on the iUS images. In nineteen patients, the EOR (GTR or STR) was predicted by iUS and confirmed by iMRI. The remaining four patients where iUS was not able to evaluate the presence or absence of residual tumor were recurrent cases with a previous surgical cavity that hindered good contact between the US probe and the brainsurface. Conclusion This recent experience at our institution illustrates the practical benefits, challenges, and opportunities of 3D iUS in relation to iMRI.
Collapse
Affiliation(s)
| | - Parikshit Juvekar
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanmei Tie
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Nick Jowkar
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Steve Pieper
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Willam M Wells
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Frisken
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| | - Tina Kapur
- Department of Neurosurgery, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|