1
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Priyanka K Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
2
|
Gu N, Shen Y, He Y, Li C, Xiong W, Hu Y, Qiu Z, Peng F, Han W, Li C, Long X, Zhao R, Zhao Y, Shi B. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay. J Mol Cell Cardiol 2024; 194:16-31. [PMID: 38821243 DOI: 10.1016/j.yjmcc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypoxia-induced pulmonary artery hypertension (HPH) is a complication of chronic hypoxic lung disease and the third most common type of pulmonary artery hypertension (PAH). Epigenetic mechanisms play essential roles in the pathogenesis of HPH. N6-methyladenosine (m6A) is an important modified RNA nucleotide involved in a variety of biological processes and an important regulator of epigenetic processes. To date, the precise role of m6A and regulatory molecules in HPH remains unclear. METHODS HPH model and pulmonary artery smooth muscle cells (PASMCs) were constructed from which m6A changes were observed and screened for AlkB homolog 5 (Alkbh5). Alkbh5 knock-in (KI) and knock-out (KO) mice were constructed to observe the effects on m6A and evaluate right ventricular systolic pressure (RVSP), left ventricular and septal weight [RV/(LV + S)], and pulmonary vascular remodeling in the context of HPH. Additionally, the effects of Alkbh5 knockdown using adenovirus were examined in vitro on m6A, specifically in PASMCs with regard to proliferation, migration and cytochrome P450 1A1 (Cyp1a1) mRNA stability. RESULTS In both HPH mice lung tissues and hypoxic PASMCs, a decrease in m6A was observed, accompanied by a significant up-regulation of Alkbh5 expression. Loss of Alkbh5 attenuated the proliferation and migration of hypoxic PASMCs in vitro, with an associated increase in m6A modification. Furthermore, Alkbh5 KO mice exhibited reduced RVSP, RV/(LV + S), and attenuated vascular remodeling in HPH mice. Mechanistically, loss of Alkbh5 inhibited Cyp1a1 mRNA decay and increased its expression through an m6A-dependent post-transcriptional mechanism, which hindered the proliferation and migration of hypoxic PASMCs. CONCLUSION The current study highlights the loss of Alkbh5 impedes the proliferation and migration of PASMCs by inhibiting post-transcriptional Cyp1a1 mRNA decay in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ning Gu
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuanjie He
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Weiyu Han
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Bei Shi
- College of Medicine, Soochow University, Suzhou, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers 2024; 10:1. [PMID: 38177157 DOI: 10.1038/s41572-023-00486-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Moçambique.
- Instituto Nacional de Saúde, EN 1, Marracuene, Moçambique.
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Université Paris-Saclay, INSERM UMR_S 999, Paris, France
- ERN-LUNG, Le Kremlin Bicêtre, Paris, France
| | - Anita Saxena
- Sharma University of Health Sciences, Haryana, New Delhi, India
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
4
|
Haynes ZA, Chandel A, King CS. Pulmonary Hypertension in Interstitial Lung Disease: Updates in Disease, Diagnosis, and Therapeutics. Cells 2023; 12:2394. [PMID: 37830608 PMCID: PMC10572438 DOI: 10.3390/cells12192394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Pulmonary hypertension is a debilitating condition that frequently develops in the setting of interstitial lung disease, likely related to chronic alveolar hypoxemia and pulmonary vascular remodeling. This disease process is likely to be identified more frequently by providers given recent advancements in definitions and diagnostic modalities, and provides practitioners with emerging opportunities to improve patient outcomes and quality of life. Despite years of data suggesting against the efficacy of pulmonary vasodilator therapy in patients with pulmonary hypertension due to interstitial lung disease, new data have emerged identifying promising advancements in therapeutics. The authors present to you a comprehensive review of pulmonary hypertension in interstitial lung disease, reviewing our current understanding of pathophysiology, updates in diagnostic approaches, and highlights of recent clinical trials which provide an effective approach for medical management.
Collapse
Affiliation(s)
- Zachary A. Haynes
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Abhimanyu Chandel
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher S. King
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, Fairfax, VA 22031, USA;
| |
Collapse
|
5
|
Fabyan KD, Chandel A, King CS. Pulmonary Hypertension in Interstitial Lung Disease: Management Options to Move Beyond Supportive Care. CURRENT PULMONOLOGY REPORTS 2023; 12:1-8. [PMID: 37362782 PMCID: PMC10200699 DOI: 10.1007/s13665-023-00311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review This review delineates current diagnostic and management strategies for pulmonary hypertension due to interstitial lung disease (PH-ILD). Recent Findings The INCREASE trial, a phase III multicenter, randomized, placebo-controlled trial demonstrated both improved 6-min walk distance and decreased disease progression with inhaled treprostinil. This pivotal trial led to inhaled treprostinil becoming the first FDA approved medication for treatment of PH-ILD. The availability of this treatment has generated subsequent recommendations for the screening for PH in patients with ILD. As a result, it is becoming increasingly important for clinicians to gain awareness and familiarity with the evolving management options for PH-ILD. Summary The management of PH-ILD has its roots in goal-directed treatment of the underlying lung disease. However, recent medication advances and ongoing clinical studies are opening opportunities for more disease-specific treatment.
Collapse
Affiliation(s)
- Kimberly D. Fabyan
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, 8901, Rockville Pike, Bethesda, MD 20889 USA
| | - Abhimanyu Chandel
- Department of Pulmonary and Critical Care, Walter Reed National Military Medical Center, 8901, Rockville Pike, Bethesda, MD 20889 USA
| | - Christopher S. King
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Inova Fairfax Hospital, 3330 Gallows Road, Falls Church, VA 22003 USA
| |
Collapse
|