1
|
Uehara S, Higuchi Y, Yoneda N, Ito R, Takahashi T, Murayama N, Yamazaki H, Murai K, Hikita H, Takehara T, Suemizu H. HepaSH cells: Experimental human hepatocytes with lesser inter-individual variation and more sustainable availability than primary human hepatocytes. Biochem Biophys Res Commun 2023; 663:132-141. [PMID: 37121123 DOI: 10.1016/j.bbrc.2023.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Primary human hepatocytes (PHHs) have been commonly used as the gold standard in many drug metabolism studies, regardless of having large inter-individual variation. These inter-individual variations in PHHs arise primarily from genetic polymorphisms, as well as from donor health conditions and storage conditions prior to cell processing. To equalize the effects of the latter two factors, PHHs were transplanted to quality-controlled mice providing human hepatocyte proliferation niches, and engrafted livers were generated. Cells that were harvested from engrafted livers, call this as experimental human hepatocytes (EHH; termed HepaSH cells), were stably and reproducibly produced from 1014 chimeric mice produced by using 17 different PHHs. Expression levels of acute phase reactant (APR) genes as indicators of a systemic reaction to the environmental/inflammatory insults of liver donors varied widely among PHHs. In contrast to PHHs, the expression of APR genes in HepaSH cells was found to converge within a narrower range than in donor PHHs. Further, large individual differences in the expression levels of drug metabolism-related genes (28 genes) observed in PHHs were greatly reduced among HepaSH cells produced in a unified in vivo environment, and none deviated from the range of gene expression levels in the PHHs. The HepaSH cells displayed a similar level of drug-metabolizing enzyme activity and gene expression as the average PHHs but retained their characteristics for drug-metabolizing enzyme gene polymorphisms. Furthermore, long-term 2D culture was possible and HBV infection was confirmed. These results suggest that the stably and reproducibly providable HepaSH cells with lesser inter-individual differences in drug-metabolizing properties, may have a potential to substitution for PHH as practical standardized human hepatocytes in drug discovery research.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Takeshi Takahashi
- Immunology Laboratory, Department of Basic Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, 194-8543, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan.
| |
Collapse
|
2
|
Yang Z, Xie Y, Zhang D, Zou Y, Li X, Chen R, Zhang X, Chen S, Bai F. CYP2C19 gene polymorphism in Ningxia. Pharmacol Rep 2023; 75:705-714. [PMID: 36913175 DOI: 10.1007/s43440-023-00473-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Poor metabolizer (PM) status of CYP2C19 can be a predisposing factor for developing gastric cancer in H. pylori-infected patients. It is unclear whether PM status of CYP2C19 can also be a potential factor for H.pylori infection in healthy people. METHODS We used high-throughput sequencing to detect single nucleotide polymorphisms (SNPs) at just three loci, rs4244285 (CYP2C19*2), rs4986893 (CYP2C19*3) and rs12248560 (CYP2C19*17), to identify the exact CYP2C19 alleles corresponding to the mutated sites. We determined CYP2C19 genotypes of 1050 subjects from 5 cities of Ningxia from September 2019 to September 2020 and evaluated the potential correlation between H.pylori and CYP2C19 gene polymorphisms. Clinical data were analyzed using χ2 tests. RESULTS The frequency of CYP2C19*17 in Hui (3.7%) was higher as compared to Han (1.4%) in Ningxia (p = 0.001). The frequency of CYP2C19*1/*17 of Hui (4.7%) was higher as compared to Han (1.6%) in Ningxia (p = 0.004). The frequency of CYP2C19*3/*17 of Hui (1%) was higher as compared to Han (0%) in Ningxia (p = 0.023). The frequencies of alleles (p = 0.142) and genotypes (p = 0.928) were not found to be significantly different among the different BMI groups. The frequencies of four alleles between H. pylori positive and negative groups were not found to be statistically different (p = 0.794). The frequencies of the different genotypes between H. pylori positive and negative groups were not statistically different (p = 0.974), and no statistical difference was observed between the different metabolic phenotypes (p = 0.494). CONCLUSION There were regional differences observed in CYP2C19*17 distribution in Ningxia. The frequency of CYP2C19*17 in Hui was higher than in Han of Ningxia. No significant relationship was found between CYP2C19 gene polymorphism and susceptibility to H. pylori infection.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Infectious Disease, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yunqian Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Hai Nan Medical University, Yuhai Avenue, #368, Longhua District, Haikou, Hainan Province, China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China
| | - Daya Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Yan Zou
- The Third School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ximei Li
- The Third School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Runxiang Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Xiaodong Zhang
- Graduate School, Hainan Medical University, Haikou, China
| | - Shiju Chen
- Graduate School, Hainan Medical University, Haikou, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hai Nan Medical University, Yuhai Avenue, #368, Longhua District, Haikou, Hainan Province, China.
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, China.
| |
Collapse
|
3
|
Elfaki I, Mir R, J Tayeb F, Barnawi J, Alalawy AI, Mirghani H, Alshammari SE, Dabla PK. Pharmacogenetics of CYP2C19*17: Functional and Clinical Implications of CYP2C19*17 - rs12248560 (c.-806C>T) in the Development of Type 2 Diabetes. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:1897-1904. [DOI: 10.13005/bpj/2528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide including Saudi Arabia. DM increases mortality rate, morbidity and vascular complications, accompanied by poor general health status and low quality of life. CYP2C19*17 polymorphism in CYP2C19 gene is associated with the clinical outcome of drugs that are substrates of CYP2C19. CYP2C19*17 confers reduced susceptibility to certain illnesses. This research was conducted to develop a robust method to genotype the rs12248560 single nucleotide variation (SNV). We enrolled 206 subjects: 100 subjects were clinically confirmed cases of type 2 diabetes (T2D), and 106 subjects were healthy controls in this study. Samples from all subjects were screened for the CYP2C19 rs12248560 (c.-806C>T) by the amplification-refractory mutation system PCR (ARMS-PCR). The frequencies of CYP2C19*17 TT, CT, CC genotypes in T2D cases were 12%, 21%, and 67%, respectively whereas those in healthy controls were 70.75%, 26.41%, and 2.83%, respectively. The difference was significant (p < 0.035). T allele (fT) prevalence was found to be substantially greater in T2D cases compared to healthy controls (0.22 vs. 0.16). Results indicated that the CYP2C19*17 - TT genotype is associated with increased susceptibility to T2D with OR = 4.47, RR = 2.64, (p < 0.024). Moreover, the ARMS-based assay proved to be an easy method for the determination of CYP2C19*17 genotypes with reduced cost and good accuracy. In addition, this result helps in the detection and stratification of the individuals who are at risk for the development of T2D. Nevertheless, this finding needs to be validated in molecular genetic studies with increased specimen size and in different ethnicities.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- 1Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rashid Mir
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Faris J Tayeb
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Jameel Barnawi
- 2Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Adel Ibrahim Alalawy
- 1Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Hyder Mirghani
- 3Internal Medicine and Endocrine, Medical Department, Faculty of Medicine, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Sanad E Alshammari
- 4Department of Pharmacology and Toxicology, College of Pharmacy, Hail University, Hail, Saudi Arabia
| | - Pradeep Kumar Dabla
- 5 Department of Biochemistry, G.B.Pant Institute of Postgraduate Medical Education & Research (GIPMER),Associated Maulana Azad Medical College, Delhi, India
| |
Collapse
|
4
|
Kee PS, Maggo SDS, Kennedy MA, Barclay ML, Miller AL, Lehnert K, Curtis MA, Faull RLM, Parker R, Chin PKL. Omeprazole Treatment Failure in Gastroesophageal Reflux Disease and Genetic Variation at the CYP2C Locus. Front Genet 2022; 13:869160. [PMID: 35664313 PMCID: PMC9160307 DOI: 10.3389/fgene.2022.869160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Omeprazole is extensively used to manage gastroesophageal reflux disease (GERD). It is primarily metabolized by CYP2C19. The CYP2C19*17 (rs12248560) allele and the recently described CYP2C:TG haplotype (rs11188059 and rs2860840) are associated with increased enzymatic activity, and may reduce omeprazole exposure. This observational study aimed to investigate the association between these genetic variants and omeprazole treatment failure in GERD. We recruited predominantly New Zealand European GERD patients who either did not respond to omeprazole or experienced breakthrough heartburn symptoms despite at least 8 weeks of omeprazole (≥40 mg/day). The GerdQ score was used to gauge symptomatic severity. A total of 55 cases were recruited with a median age (range) of 56 years (19–82) and GerdQ score of 11 (5–17). Of these, 19 (34.5%) were CYP2C19*17 heterozygotes and two (3.6%) were CYP2C19*17 homozygotes. A total of 30 (27.3%) CYP2C:TG haplotypes was identified in our cohort, with seven (12.7%) CYP2C:TG homozygotes, and 16 (29%) CYP2C:TG heterozygotes. No significant differences were observed for overall CYP2C19*17 alleles, CYP2C19*17/*17, overall CYP2C:TG haplotypes, and CYP2C:TG heterozygotes (p > 0.05 for all comparisons). Gastroscopy and 24-h esophageal pH/impedance tests demonstrated objective evidence of GERD in a subgroup of 39 (71%) cases, in which the CYP2C:TG/TG was significantly enriched (p = 0.03) when compared with the haplotype frequencies in a predominantly (91%) New Zealand European reference population, but not the CYP2C19*17/*17 (p > 0.99), when compared with the allele frequencies for the non-Finnish European subset of gnomAD. We conclude that omeprazole treatment failure in GERD is associated with CYP2C:TG/TG, but not CYP2C19*17.
Collapse
Affiliation(s)
- Ping Siu Kee
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martin A. Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Murray L. Barclay
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
| | - Allison L. Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Klaus Lehnert
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Maurice A. Curtis
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Remai Parker
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Paul K. L. Chin
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Department of Clinical Pharmacology, Christchurch Hospital, Christchurch, New Zealand
- *Correspondence: Paul K. L. Chin,
| |
Collapse
|
5
|
Jafrin S, Naznin NE, Reza MS, Aziz MA, Islam MS. Risk of stroke in CYP2C19 LoF polymorphism carrier coronary artery disease patients undergoing clopidogrel therapy: An ethnicity-based updated meta-analysis. Eur J Intern Med 2021; 90:49-65. [PMID: 34092486 DOI: 10.1016/j.ejim.2021.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 05/16/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Antiplatelet agent clopidogrel has been widely used for stroke management for many years, although resistance to clopidogrel may increase the chance of stroke recurrence. CYP2C19 loss-of-function (LoF) polymorphism is assumed to be responsible for the poor metabolism of clopidogrel that ultimately turns to resistance. Previous publications could not provide firm evidence due to highly conflicting and heterogeneous outcomes. AIM To get clear evidence from an updated meta-analysis on CYP2C19 LoF polymorphism association with stroke risk in clopidogrel treated patients, this study has been performed. METHODS We conducted a meta-analysis with 72 selected studies from authentic databases, including 40,035 coronary artery disease patients treated with clopidogrel. RESULTS This analysis showed that the worldwide carrier of one or more CYP2C19 LoF alleles had a significantly higher risk of stroke and composite events than the non-LoF carriers (RR=1.78, 95% CI=1.52-2.07, p<0.00001 and RR=1.39, 95% CI=1.26-1.54, p<0.00001, respectively). Besides, subgroup analysis showed that Asian CYP2C19 LoF carriers had a significantly increased risk of stroke (RR=1.91, 95% CI=1.60-2.28, p<0.00001) while the risk of composite events was significantly higher in all ethnic populations (Asian: RR=1.58, 95% CI=1.32-1.89, p<0.00001; Caucasian: RR=1.27, 95% CI=1.08-1.50, p=0.003; Hispanic and others: RR=1.21, 95% CI=1.09-1.34, p=0.0003). CONCLUSION Our meta-analysis confirmed that the presence of CYP2C19 LoF alleles increases the risk of stroke and composite events recurrence in the worldwide population, especially in Asians undergoing clopidogrel treatment. Alternative antiplatelet therapy should be investigated thoroughly for the intermediate and poor metabolizers.
Collapse
Affiliation(s)
- Sarah Jafrin
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh
| | - Nura Ershad Naznin
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh
| | - Md Sharif Reza
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of Science, Noakhali Science and Technology University, Sonapur 3814, Noakhali, Bangladesh.
| |
Collapse
|
6
|
Naushad SM, Vattam KK, Devi YKD, Hussain T, Alrokayan S, Kutala VK. Mechanistic insights into the CYP2C19 genetic variants prevalent in the Indian population. Gene 2021; 784:145592. [PMID: 33766706 DOI: 10.1016/j.gene.2021.145592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE CYP2C19 metabolizes the antiplatelet and antiepileptic drugs. Any alteration in CYP2C19 activity might influence the therapeutic efficacy. The objective of this study was to identify CYP2C19 variants prevalent in Indians and perform their in silico characterization. METHODS Infinium global screening array (GSA) was used for CYP2C19 genotyping in 2000 healthy Indians. In addition, we performed in silico characterization of the identified variants. RESULTS Out of the 11 variants covered (*2, *3, *4,*5,*6, *7,*8, *9,*10,*11, and *17), five were identified in Indians (*2, *3, *6,*8 and *17). The *2 and *17 were the most prevalent alleles (minor allele frequencies, MAF: 32.0% and 13.95%). The *3, *6 and *8 were rare (MAFs: 0.425%, 0.025% and 0.05%). The *2 variant is shown to affect the splicing at the fifth exon-intron boundary. The *3 variant is a non-sense variant that is predicted to be deleterious. On the otherhand, the *17 variant showed more binding affinity for GATA binding protein 1 (GATA1), myocyte enhancer factor 2 (MEF2) and ectotropic viral integration site 1 (EVI1). The *6 and *8 variants predicted to be deleterious. The *2, *3 and *7 variants showed lesser probability of exon skipping, while *17 showed more probability. The genotype distribution of Indian subjects is comparable with that of South Asians (SAS) (1000 genome project, phase 3). CONCLUSION The *2, *3 and *17 variants are the key pharmacogenetic determinants in Indians. The *2 and *3 are loss-of-function variants. The *17 is a gain-of-function variant with increased binding of transcriptional factors.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India.
| | - Kiran Kumar Vattam
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India
| | - Yadamreddy Kanaka Durga Devi
- Department of Pharmacogenomics, Sandor Speciality Diagnostics Pvt Ltd, Banjara Hills, Road No 3, Hyderabad, India
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman Alrokayan
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India.
| |
Collapse
|
7
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Rossow KM, Aka IT, Maxwell-Horn AC, Roden DM, Van Driest SL. Pharmacogenetics to Predict Adverse Events Associated With Antidepressants. Pediatrics 2020; 146:peds.2020-0957. [PMID: 33234666 PMCID: PMC7786826 DOI: 10.1542/peds.2020-0957] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To determine the association between cytochrome P450 2C19 (CYP2C19) metabolizer status and risk for escitalopram and citalopram, collectively termed (es)citalopram, and sertraline adverse events (AEs) in children. METHODS In this retrospective cohort study, we used deidentified electronic health records linked to DNA. The cohort included children ≤18 years with ≥2 days of (es)citalopram or ≥7 days of sertraline exposure. The primary outcome was AEs assessed by manual chart review. CYP2C19 was genotyped for functional variants (*2, *3, *4, *6, *8, and *17), and individuals were assigned metabolizer status. Association between AEs and metabolizer status was determined by using Cox regression adjusting for age, race, ethnicity, dose, and concomitant CYP2C19-inhibiting medications. RESULTS The cohort included 249 sertraline-exposed and 458 (es)citalopram-exposed children, with a median age of 14.2 years (interquartile range 11.2-16.2) and 13.4 years (interquartile range 10.1-15.9), respectively. Sertraline AEs were more common in normal metabolizers (NMs) compared to poor metabolizers (PMs) or intermediate metabolizers (IMs) (hazard ratio [HR] 1.8; 95% confidence interval [CI] 1.01-3.2; P = .047) in unadjusted analysis and after adjustment (HR 1.9; CI 1.04-3.4; P = .04). For (es)citalopram, more AEs were observed in NMs than PMs and IMs without statistically significant differences (unadjusted HR 1.6; CI 0.95-2.6; P = .08; adjusted HR 1.6; CI 0.95-2.6; P = .08). CONCLUSIONS In contrast to adults, in our pediatric cohort, CYP2C19 NMs experienced increased sertraline AEs than PMs and IMs. (Es)citalopram AEs were not associated with CYP2C19 status in the primary analysis. The mechanism underlying this pediatric-specific finding is unknown but may be related to physiologic differences of adolescence. Further research is required to inform genotype-guided prescribing for these drugs in children.
Collapse
Affiliation(s)
| | - Ida T. Aka
- Departments of Pediatrics,,Contributed equally as co-first authors
| | | | - Dan M. Roden
- Medicine,,Pharmacology, and,Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
9
|
Levings D, Shaw KE, Lacher SE. Genomic resources for dissecting the role of non-protein coding variation in gene-environment interactions. Toxicology 2020; 441:152505. [PMID: 32450112 DOI: 10.1016/j.tox.2020.152505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
The majority of single nucleotide variants (SNVs) identified in Genome Wide Association Studies (GWAS) fall within non-protein coding DNA and have the potential to alter gene expression. Non-protein coding DNA can control gene expression by acting as transcription factor (TF) binding sites or by regulating the organization of DNA into chromatin. SNVs in non-coding DNA sequences can disrupt TF binding and chromatin structure and this can result in pathology. Further, environmental health studies have shown that exposure to xenobiotics can disrupt the ability of TFs to regulate entire gene networks and result in pathology. However, there is a large amount of interindividual variability in exposure-linked health outcomes. One explanation for this heterogeneity is that genetic variation and exposure combine to disrupt gene regulation, and this eventually manifests in disease. Many resources exist that annotate common variants from GWAS and combine them with conservation, functional genomics, and TF binding data. These annotation tools provide clues regarding the biological implications of an SNV, as well as lead to the generation of hypotheses regarding potentially disrupted target genes, epigenetic markers, pathways, and cell types. Collectively this information can be used to predict how SNVs can alter an individual's response to exposure and disease risk. A basic understanding of the regulatory information contained within non-protein coding DNA is needed to predict the biological consequences of SNVs, and to determine how these SNVs impact exposure-related disease. We hope that this review will aid in the characterization of disease-associated genetic variation in the non-protein coding genome.
Collapse
Affiliation(s)
- Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Kirsten E Shaw
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
10
|
Murray JL, Mercer SL, Jackson KD. Impact of cytochrome P450 variation on meperidine N-demethylation to the neurotoxic metabolite normeperidine. Xenobiotica 2020; 50:209-222. [PMID: 30902024 PMCID: PMC7755165 DOI: 10.1080/00498254.2019.1599465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
1. Meperidine is an opioid analgesic that undergoes N-demethylation to form the neurotoxic metabolite normeperidine. Previous studies indicate that meperidine N-demethylation is catalyzed by cytochrome P450 2B6 (CYP2B6), CYP3A4, and CYP2C19.2. The purpose of this study was to examine the relative P450 contributions to meperidine N-demethylation and to evaluate the effect of CYP2C19 polymorphism on normeperidine generation. Experiments were performed using recombinant P450 enzymes, selective chemical inhibitors, enzyme kinetic assays, and correlation analysis with individual CYP2C19-genotyped human liver microsomes.3. The catalytic efficiency (kcat/Km) for meperidine N-demethylation was similar between recombinant CYP2B6 and CYP2C19, but markedly lower by CYP3A4.4. In CYP2C19-genotyped human liver microsomes, normeperidine formation was significantly correlated with CYP2C19 activity (S-mephenytoin 4´-hydroxylation).5. CYP2C19 inhibitor (+)-N-3-benzylnirvanol and CYP3A inhibitor ketoconazole significantly reduced microsomal normeperidine generation by an individual donor with high CYP2C19 activity, whereas donors with lower CYP2C19 activity were sensitive to inhibition by ketoconazole but not benzylnirvanol.6. These findings demonstrate that the relative CYP3A4, CYP2B6, and CYP2C19 involvement in meperidine N-demethylation depends on the enzyme activities in individual human liver microsomal samples. CYP2C19 is likely an important contributor to normeperidine generation in individuals with high CYP2C19 activity, but additional factors influence inter-individual metabolite accumulation.
Collapse
Affiliation(s)
- Jessica L Murray
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
| | - Susan L Mercer
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
11
|
Jin C, Li Z, Zheng X, Shen K, Chao J, Dong Y, Huang Q, Yin Q, Deng Y, Zhu W. Development and validation of T-ARMS-PCR to detect CYP2C19*17 allele. J Clin Lab Anal 2019; 34:e23005. [PMID: 31441095 PMCID: PMC6977150 DOI: 10.1002/jcla.23005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background CYP2C19*17 (rs12248560) is a functional single nucleotide polymorphism (SNP) in the CYP2C19 gene. It has been shown that CYP2C19*17 is associated with the clinical outcome of some drugs metabolized by CYP2C19 and a decreased risk of some diseases. The aim of this study was to develop a reliable and simple method to detect this polymorphism. Methods Tetra‐primer amplification refractory mutation system‐polymerase chain reaction (T‐ARMS‐PCR) was used to detect the CYP2C19*17 polymorphism. A total of 93 samples were screened by this method, and the results of T‐ARMS‐PCR were validated by DNA sequencing. Results There were 91 samples with the CC genotype (97.8%) and two samples with the CT genotype (2.2%). The frequency of the C allele was 98.9%, and the frequency of the T allele was 1.1%. The DNA sequencing results were completely concordant with the T‐ARMS‐PCR results. Conclusion T‐ARMS‐PCR can detect the CYP2C19*17 polymorphism with high accuracy, low costs, and a simple process.
Collapse
Affiliation(s)
- Chenxi Jin
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhikun Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Xiaodi Zheng
- Queen Mary School, Nanchang University, Nanchang, China
| | - Kailin Shen
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jiashuo Chao
- The First Clinic Medical College, Nanchang University, Nanchang, China
| | - Yifei Dong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Huang
- The Second Department of Cardiology, People's Hospital of Jiangxi Province, Nanchang, China
| | - Qiulin Yin
- The Second Department of Cardiology, People's Hospital of Jiangxi Province, Nanchang, China
| | - Yan Deng
- Department of Ophthalmology of Children, The Second Affiliated Hospital Nanchang University, Nanchang, China
| | - Weifeng Zhu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Iantorno M, Weintraub WS, Garcia-Garcia HM, Attaran S, Gajanana D, Buchanan KD, Rogers T, Torguson R, Waksman R. Genetic and Nongenetic Implications of Racial Variation in Response to Antiplatelet Therapy. Am J Cardiol 2019; 123:1878-1883. [PMID: 30967284 DOI: 10.1016/j.amjcard.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
Race has been identified as an independent risk factor for poor prognosis and an independent predictor of survival in coronary artery disease. Race-related dissimilarities have been identified in cardiovascular patients in terms of age of presentation, co-morbidities, socioeconomic status, and treatment approach as well as genetically driven race-related disparities in responsiveness to medications. Antiplatelet therapy represents a fundamental component of therapy in cardiovascular patients, especially in patients presenting with acute coronary syndromes. It has been argued that the different level of platelet reactivity and varying response to antiplatelet therapy among races may account in part for worse outcomes in certain populations. The purpose of this review is to describe genotypic and phenotypic race-related differences in platelet reactivity and responsiveness to cardiovascular treatment, focusing on antiplatelet therapy to highlight the need establish a more effective and targeted antithrombotic strategy.
Collapse
Affiliation(s)
- Micaela Iantorno
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - William S Weintraub
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Saina Attaran
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Deepakraj Gajanana
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Kyle D Buchanan
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Toby Rogers
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia; Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Torguson
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia.
| |
Collapse
|
13
|
Aldrich SL, Poweleit EA, Prows CA, Martin LJ, Strawn JR, Ramsey LB. Influence of CYP2C19 Metabolizer Status on Escitalopram/Citalopram Tolerability and Response in Youth With Anxiety and Depressive Disorders. Front Pharmacol 2019; 10:99. [PMID: 30837874 PMCID: PMC6389830 DOI: 10.3389/fphar.2019.00099] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
In pediatric patients, the selective serotonin reuptake inhibitors (SSRIs) escitalopram and citalopram (es/citalopram) are commonly prescribed for anxiety and depressive disorders. However, pharmacogenetic studies examining CYP2C19 metabolizer status and es/citalopram treatment outcomes have largely focused on adults. We report a retrospective study of electronic medical record data from 263 youth < 19 years of age with anxiety and/or depressive disorders prescribed escitalopram or citalopram who underwent routine clinical CYP2C19 genotyping. Slower CYP2C19 metabolizers experienced more untoward effects than faster metabolizers (p = 0.015), including activation symptoms (p = 0.029) and had more rapid weight gain (p = 0.018). A larger proportion of slower metabolizers discontinued treatment with es/citalopram than normal metabolizers (p = 0.007). Meanwhile, faster metabolizers responded more quickly to es/citalopram (p = 0.005) and trended toward less time spent in subsequent hospitalizations (p = 0.06). These results highlight a disparity in treatment outcomes with es/citalopram treatment in youth with anxiety and/or depressive disorders when standardized dosing strategies were used without consideration of CYP2C19 metabolizer status. Larger, prospective trials are warranted to assess whether tailored dosing of es/citalopram based on CYP2C19 metabolizer status improves treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Stacey L. Aldrich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ethan A. Poweleit
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Cynthia A. Prows
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa J. Martin
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jeffrey R. Strawn
- Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Laura B. Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
14
|
Kirbs C, Kluwe F, Drescher F, Lackner E, Matzneller P, Weiss J, Zeitlinger M, Kloft C. High voriconazole target-site exposure after approved sequence dosing due to nonlinear pharmacokinetics assessed by long-term microdialysis. Eur J Pharm Sci 2019; 131:218-229. [PMID: 30731238 DOI: 10.1016/j.ejps.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/20/2018] [Accepted: 02/03/2019] [Indexed: 01/18/2023]
Abstract
Voriconazole, a broad-spectrum antifungal drug used to prevent and treat invasive fungal infections, shows complex pharmacokinetics and is primarily metabolised by various CYP enzymes. An adequate unbound antibiotic concentration-time profile at the target-site of an infection is crucial for effective prophylaxis or therapy success. Therefore, the aim was to evaluate the pharmacokinetics of voriconazole after the approved sequence dosing in healthy volunteers in interstitial space fluid, assessed by microdialysis, and in plasma. Moreover, potential pharmacogenetic influences of CYP2C19 polymorphisms on pharmacokinetics were investigated. The prospective, open-labelled, uncontrolled long-term microdialysis study included 9 healthy male individuals receiving the approved sequence dosing regimen for voriconazole. Unbound voriconazole concentrations were sampled over 84 h in interstitial space fluid of subcutaneous adipose tissue and in plasma and subsequently quantified via high-performance liquid chromatography. For pharmacokinetic data analysis, non-compartmental analysis was used. High interindividual variability in voriconazole concentration-time profiles was detected although dosing was adapted to body weight for the first intravenous administrations. Due to nonlinear pharmacokinetics, target-site exposure of voriconazole in healthy volunteers was found to be highly comparable to plasma exposure, particularly after multiple dosing. Regarding the CYP2C19 genotype-predicted phenotype, the individuals revealed a broad spectrum, ranging from poor to rapid metaboliser status. A strong relation between CYP2C19 genotype-predicted phenotype and voriconazole clearance was identified.
Collapse
Affiliation(s)
- Claudia Kirbs
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany.
| | - Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Graduate Research Training Program PharMetrX, Germany.
| | - Franziska Drescher
- Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Edith Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
15
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
16
|
Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med 2018; 8:jpm8010008. [PMID: 29385765 PMCID: PMC5872082 DOI: 10.3390/jpm8010008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Variability in response to antiplatelet therapy can be explained in part by pharmacogenomics, particularly of the CYP450 enzyme encoded by CYP2C19. Loss-of-function and gain-of-function variants help explain these interindividual differences. Individuals may carry multiple variants, with linkage disequilibrium noted among some alleles. In the current pharmacogenomics era, genomic variation in CYP2C19 has led to the definition of pharmacokinetic phenotypes for response to antiplatelet therapy, in particular, clopidogrel. Individuals may be classified as poor, intermediate, extensive, or ultrarapid metabolizers, based on whether they carry wild type or polymorphic CYP2C19 alleles. Variant alleles differentially impact platelet reactivity, concentration of plasma clopidogrel metabolites, and clinical outcomes. Interestingly, response to clopidogrel appears to be modulated by additional factors, such as sociodemographic characteristics, risk factors for ischemic heart disease, and drug-drug interactions. Furthermore, systems medicine studies suggest that a broader approach may be required to adequately assess, predict, preempt, and manage variation in antiplatelet response. Transcriptomics, epigenomics, exposomics, miRNAomics, proteomics, metabolomics, microbiomics, and mathematical, computational, and molecular modeling should be integrated with pharmacogenomics for enhanced prediction and individualized care. In this review of pharmacogenomic variation of CYP450, a systems medicine approach is described for tailoring antiplatelet therapy in clinical practice of precision cardiovascular medicine.
Collapse
|
17
|
Kiss ÁF, Vaskó D, Déri MT, Tóth K, Monostory K. Combination of CYP2C19 genotype with non-genetic factors evoking phenoconversion improves phenotype prediction. Pharmacol Rep 2017; 70:525-532. [PMID: 29665549 DOI: 10.1016/j.pharep.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND CYP2C19 is an important drug-metabolizing enzyme, responsible for metabolism of approximately 10% of the drugs on the market. Large inter-individual differences exist in metabolic activities, which are primarily attributed to genetic polymorphism of CYP2C19 gene. Conflicting results have been published about the role of CYP2C19 polymorphisms in metabolism of CYP2C19 substrates and clinical outcomes; thus, we aimed to investigate CYP2C19 genotype-phenotype associations, and we sought to elicit potential causes of discrepancies in the genotype-based prediction by incorporating the liver donors' demographic data, drug administration events and pathological conditions. METHODS (S)-Mephenytoin was used to assess CYP2C19 activities in human liver microsomes derived from 114 Hungarian organ donors. CYP2C19 genotype was determined by SNP genotyping for CYP2C19*2, CYP2C19*3, CYP2C19*4 and CYP2C19*17 variants, and CYP2C19 mRNA levels were measured by qPCR method. Clinical data of the donors were considered in the genotype-based phenotype prediction. RESULTS CYP2C19 phenotype of 40% of the donors was well-predicted from the genotype data, whereas the phenotype of 13% was underestimated displaying higher activity, and of 47% was overestimated displaying lower activity than predicted from CYP2C19 genotype. Among the donors with overestimated phenotype, one was treated with CYP2C19 substrate/inhibitor, 9 were on amoxicillin-clavulanic acid therapy, 7 were chronic alcohol consumers and 9 had disease with inflammatory processes. CONCLUSIONS CYP2C19 genotype only partially determines the CYP2C19 phenotypic appearance; co-medication, diseases with inflammatory processes and aspecific factors, such as chronic alcohol consumption and amoxicillin-clavulanic acid therapy (or any drug therapy resulting in liver injury) seem to be potential phenotype-modifying factors.
Collapse
Affiliation(s)
- Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dorottya Vaskó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Máté Tamás Déri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
18
|
Burns KE, Shepherd P, Finlay G, Tingle MD, Helsby NA. Indirect regulation of CYP2C19 gene expression via DNA methylation. Xenobiotica 2017; 48:781-792. [DOI: 10.1080/00498254.2017.1372648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kathryn Elisa Burns
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Phillip Shepherd
- School of Medical Sciences, University of Auckland, Auckland, New Zealand, and
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| | - Malcolm Drummond Tingle
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nuala Ann Helsby
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
19
|
Burns KE, Lo WY, Findlay MP, Sharples K, Laking G, Helsby NA. High CYP2C19 phenotypic variability in gastrointestinal cancer patients. Cancer Chemother Pharmacol 2015; 77:195-204. [PMID: 26614509 DOI: 10.1007/s00280-015-2923-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/14/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE CYP2C19 contributes to the metabolism of several chemotherapeutic agents. The CYP2C19 homozygous null function genotype strongly predicts activity phenotype in healthy populations. An additional acquired loss of function has been reported in up to one-third of cancer patients. It is not known whether this phenomenon also occurs in patients with earlier stage or in resected disease. METHODS This study investigated whether acquired loss of CYP2C19 function was detectable in patients with stage III-IV or resected gastrointestinal cancer. CYP2C19 genotype was determined in 49 patients, and subjects were probed for CYP2C19 activity on three test occasions. RESULTS An acquired loss of CYP2C19 activity was observed in 20% of stage III-IV and 17% of resected patients at the first test. Significant (p < 0.01) genotype-phenotype discordance was observed in both groups. There were no direct associations between this discordance and inflammatory markers, tumour burden or chemotherapeutic history. Notably, hepatic CYP2C19 function was not stable over time and phenotype conversion occurred in 23 patients over the period of testing. CONCLUSION Reliance on germ-line genotype to infer a poor metaboliser status could substantially underestimate the number of patients with deficient CYP2C19 function. This could compromise the interpretation of genotype-based clinical association studies.
Collapse
Affiliation(s)
- K E Burns
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - W-Y Lo
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - M P Findlay
- Discipline of Oncology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Cancer Trials New Zealand, University of Auckland, Auckland, New Zealand
| | - K Sharples
- Cancer Trials New Zealand, University of Auckland, Auckland, New Zealand.,Department of Preventive and Social Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - G Laking
- Auckland City Hospital, Private Bag 92024, Auckland, 1142, New Zealand
| | - N A Helsby
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
20
|
Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content. THE PHARMACOGENOMICS JOURNAL 2015; 16:375-87. [PMID: 26323597 PMCID: PMC4775436 DOI: 10.1038/tpj.2015.58] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 02/01/2023]
Abstract
Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.
Collapse
|
21
|
CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. THE PHARMACOGENOMICS JOURNAL 2015; 16:286-92. [DOI: 10.1038/tpj.2015.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 01/11/2023]
|
22
|
Ozkaynakci A, Gulcebi MI, Ergeç D, Ulucan K, Uzan M, Ozkara C, Guney I, Onat FY. The effect of polymorphic metabolism enzymes on serum phenytoin level. Neurol Sci 2014; 36:397-401. [PMID: 25311916 DOI: 10.1007/s10072-014-1961-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Phenytoin has a widespread use in epilepsy treatment and is mainly metabolized by hepatic cytochrome P450 enzymes (CYP). We have investigated CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3 allelic variants in a Turkish population of patients on phenytoin therapy. Patients on phenytoin therapy (n = 102) for the prevention of epileptic seizures were included. Polymorphic alleles were analyzed by restriction fragment length polymorphism method. Serum concentrations of phenytoin were measured by fluorescence polarization immune assay method. The most frequent genotype was detected for CYP2C9 wild-type alleles (78.43 %), whereas CYP2C19*2/*2 (5.88 %) was the least frequent genotype group. According to the classification made with both enzyme polymorphisms, CYP2C9*1/*1-CYP2C19*1/*1 (G1: 41.17 %) genotype group was the most frequent whereas CYP2C9*1/*2-CYP2C19*1/*3 (G7: 0.98 %) was the least frequent one. The highest mean phenytoin level (27.95 ± 1.85 µg/ml) was detected in the G8 genotype group (CYP2C9*1/*3-CYP2C19*2/*3) and the G1 genotype group showed the lowest mean phenytoin level (7.43 ± 0.73 µg/ml). The mean serum concentration of phenytoin of the polymorphic patients with epilepsy was higher than that for the wild-type alleles both in the monotherapy and polytherapy patients. These results show the importance of the genetic polymorphism analysis of the main metabolizing enzyme groups of phenytoin for the dose adjustment.
Collapse
Affiliation(s)
- Aydan Ozkaynakci
- Department of Pharmacology, School of Medicine, University of Marmara, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Genome-wide discovery of drug-dependent human liver regulatory elements. PLoS Genet 2014; 10:e1004648. [PMID: 25275310 PMCID: PMC4183418 DOI: 10.1371/journal.pgen.1004648] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022] Open
Abstract
Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR) and three active regulatory marks (p300, H3K4me1, H3K27ac) on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4%) that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements. Drug response varies between individuals and can be caused by genetic factors. Nucleotide variation in gene regulatory elements can have a significant effect on drug response, but due to the difficulty in identifying these elements, they remain understudied. Here, we used various genomic assays to analyze human liver cells treated with or without the antibiotic rifampin and identified drug-induced regulatory elements genome-wide. The testing of numerous active promoters in human liver cells showed only a few to be induced by rifampin treatment. A similar analysis of enhancers found several of them to be induced by the drug. Nucleotide variants in one of these enhancers were found to alter its activity. Combined, this work identifies numerous novel gene regulatory elements that can be activated due to drug response and thus provides candidate sequences in the human genome where nucleotide variation can lead to differences in drug response. It also provides a universally applicable method to detect these elements for other drugs.
Collapse
|
24
|
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in other individuals. A major source of this variability in drug response is drug metabolism, where differences in pre-systemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, C max, and/or C min) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is well recognized that both intrinsic (such as genetics, age, sex, and disease states) and extrinsic (such as diet, chemical exposures from the environment, and even sunlight) factors play a significant role. For the family of cytochrome P450 enzymes, the most critical of the drug metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, up- and down-regulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less reliably predictable and time-dependent manner. Understanding the mechanistic basis for drug disposition and response variability is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that brings with it true improvements in health outcomes in the therapeutic treatment of disease.
Collapse
Affiliation(s)
- Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|