1
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska V, Matowicka-Karna J, Maciejczyk M. Changes in chemokine and growth factor levels may be useful biomarkers for monitoring disease severity in COVID-19 patients; a pilot study. Front Immunol 2024; 14:1320362. [PMID: 38239363 PMCID: PMC10794366 DOI: 10.3389/fimmu.2023.1320362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Aim The aim of the present study was to assess differences in the serum levels of chemokines and growth factors (GFs) between COVID-19 patients and healthy controls. The diagnostic utility of the analyzed proteins for monitoring the severity of the SARS-CoV- 2 infection based on the patients' MEWS scores was also assessed. Materials and methods The serum levels of chemokines and growth factors were analyzed in hospitalized COVID-19 patients (50 women, 50 men) with the use of the Bio-Plex Pro™ Human Cytokine Screening Panel (Biorad) and the Bio-Plex Multiplex system. Results The study demonstrated that serum levels of MIP-1α, RANTES, Eotaxin, CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, SCF, MIF, LIF, and TRAIL were significant higher in COVID-19 patients than in the control group. The concentrations of CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, PDGF- BB, GM-CSF, SCF, LIF, and TRAIL were higher in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2). The receiver operating characteristic (ROC) analysis revealed that IP-10, MIF, MIG, and basic-FGF differentiated patients with COVID-19 from healthy controls with the highest sensitivity and specificity, whereas GM-CSF, basic-FGF, and MIG differentiated asymptomatic/mildly symptomatic COVID-19 patients (stage 1) from COVID-19 patients with pneumonia without respiratory failure (stage 2) with the highest sensitivity and specificity. Conclusions MIG, basic-FGF, and GM-CSF can be useful biomarkers for monitoring disease severity in patients with COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska VJ, Matowicka-Karna J, Maciejczyk M. Unveiling COVID-19 Secrets: Harnessing Cytokines as Powerful Biomarkers for Diagnosis and Predicting Severity. J Inflamm Res 2023; 16:6055-6070. [PMID: 38107380 PMCID: PMC10723593 DOI: 10.2147/jir.s439217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In coronavirus disease (COVID-19), inflammation takes center stage, with a cascade of cytokines released, contributing to both inflammation and lung damage. The objective of this study is to identify biomarkers for diagnosing and predicting the severity of COVID-19. Materials and Methods Cytokine levels were determined in the serum from venous blood samples collected from 100 patients with COVID-19 and 50 healthy controls. COVID-19 patients classified based on the Modified Early Warning (MEWS) score. Cytokine concentrations were determined with a multiplex ELISA kit (Bio-Plex Pro™ Human Cytokine Screening Panel). Results The concentrations of all analyzed cytokines were elevated in the serum of COVID-19 patients relative to the control group, but no significant differences were observed in interleukin-9 (IL-9) and IL-12 p70 levels. In addition, the concentrations of IL-1α, IL-1β, IL-1ra, IL-2Rα, IL-6, IL-12 p40, IL-18, and tumor necrosis factor alpha (TNFα) were significantly higher in symptomatic patients with accompanying pneumonia without respiratory failure (stage 2) than in asymptomatic/mildly symptomatic patients (stage 1). Conclusion The study revealed that IL-1ra, IL-2Rα, IL-6, IL-8, IL-12 p40, IL-16, and IL-18 levels serve as potential diagnostic biomarkers in COVID-19 patients. Furthermore, elevated IL-1α levels proved to be valuable in assessing the severity of COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, 10-900, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, 15-089, Poland
| |
Collapse
|
3
|
Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3251-3264. [PMID: 37055652 PMCID: PMC10101542 DOI: 10.1007/s10238-023-01038-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some human polymorphisms of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes may have an effect on the susceptibility to SARS-CoV-2 infection and increase the risk to develop severe COVID-19. We conducted a systematic review of current evidence to investigate the association of genetic variants of these genes with the susceptibility to virus infection and patient prognosis. METHODS We systematically searched Medline, Embase and The Cochrane Library for articles published until May 2022, and included observational studies covering genetic association of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes with COVID-19 susceptibility or prognosis. We evaluated the methodological quality of included studies, and pooled data as convenient in meta-analysis (MA). Odds ratio (OR) values and 95% confidence intervals were calculated. RESULTS We included 35 studies (20 on ACE, 5 each on IFITM3, TMPRSS2, TNFα), enrolling 21,452 participants, of them 9401 were COVID-19 confirmed cases. ACE1 rs4646994 and rs1799752, ACE2 rs2285666, TMPRSS2 rs12329760, IFITM3 rs12252 and TNFα rs1800629 were identifies as common polymorphisms. Our MA showed an association between genetic polymorphisms and susceptibility to SARS-CoV-2 infection for IFITM3 rs12252 CC (OR 5.67) and CT (OR 1.64) genotypes. Furthermore, MA uncovered that both ACE DD (OR 1.27) and IFITM3 CC (OR 2.26) genotypes carriers had a significantly increased risk of developing severe COVID-19. DISCUSSION These results provide a critical evaluation of genetic polymorphisms as predictors in SARS-CoV-2 infection. ACE1 DD and IFITM3 CC polymorphisms would lead to a genetic predisposition for severe lung injury in patients with COVID-19.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| |
Collapse
|
4
|
Fishchuk L, Rossokha Z, Pokhylko V, Cherniavska Y, Dubitska O, Vershyhora V, Tsvirenko S, Kovtun S, Gorovenko N. NOS3 (rs61722009) gene variants testing in prediction of COVID-19 pneumonia severity. Nitric Oxide 2023; 134-135:44-48. [PMID: 37037281 PMCID: PMC10082643 DOI: 10.1016/j.niox.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND There is a hypothesis that a sufficient level of endothelial nitric oxide synthase is important for reliable protection against COVID-19. Theoretical ideas about the NOS3 gene demonstrated that it can have an effect on links of the complications pathogenesis in COVID-associated pneumonia. We determined the goal - to investigate the association of the NOS3 gene variants with the occurrence of the disease and its clinical course in patients of the intensive care unit. METHODS The study group included 117 patients with a diagnosis of severe "viral COVID-19 pneumonia". Determination of NOS3 gene variants was performed using the PCR method. The probability of differences in the quantitative results were determined using ANOVA or Kruskal-Wallis test (depend of normality of studied parameters). RESULTS Our results indicate that the presence of the NOS3 gene 4a allele increase the risk of complicated COVID-19-associated pneumonia (χ2 = 18.84, p = 0.00001, OR = 3.53 (1.95-6.39)). It was showed, that carriers of the 4aa genotype had a significantly higher ratio of SpO2/FiO2 on the first and second days after hospitalization (p = 0.017 and p = 0.03, respectively). Patients with the 4aa genotype also had the acid-base imbalances, as showed by indicators of base deficiency and standard bicarbonate, which were beyond the reference values. Potassium and sodium concentrations on the first and second day after hospitalization were also significantly lower in patients with 4aa genotype (p = 0.009 and p = 0.048, respectively), for whom, in the same time, the concentrations of C-reactive protein and total bilirubin were significantly higher (p = 0.002 and p = 0.033, respectively). CONCLUSIONS Our results confirmed that the rs61722009 variant of the NOS3 gene is associated with an increased risk of severe СOVID-19-associated pneumonia and its adverse clinical course with potential progression of kidney and liver damage, and occurrence risk of systemic inflammatory response syndrome. These results require further research for the new metabolic strategy formation, in order to prevent the severe COVID-19 associated pneumonia and its complications.
Collapse
Affiliation(s)
- Liliia Fishchuk
- Department of Genetic Diagnostics, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine.
| | - Zoia Rossokha
- State Institution «Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine», Kyiv, Ukraine
| | - Valeriy Pokhylko
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Poltava State Medical University, Poltava, Ukraine
| | - Yuliia Cherniavska
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Poltava State Medical University, Poltava, Ukraine
| | - Olha Dubitska
- State Institution «Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine», Kyiv, Ukraine
| | - Viktoriia Vershyhora
- State Institution «Reference-centre for Molecular Diagnostic of Public Health Ministry of Ukraine», Kyiv, Ukraine
| | - Svitlana Tsvirenko
- Department of Pediatrics № 1 with Propedeutics and Neonatology, Poltava State Medical University, Poltava, Ukraine
| | - Serhii Kovtun
- Poltava Regional Clinical Infectious Diseases Hospital of Poltava Regional Council, Poltava, Ukraine
| | - Nataliia Gorovenko
- Department of Genetic Diagnostics, State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Sarría-Santamera A, Mukhtarova K, Baizhaxynova A, Kanatova K, Zhumambayeva S, Akilzhanova A, Azizan A. Association of CYP24A1 Gene rs6127099 (A > T) Polymorphism with Lower Risk to COVID-19 Infection in Kazakhstan. Genes (Basel) 2023; 14:307. [PMID: 36833234 PMCID: PMC9957291 DOI: 10.3390/genes14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
In December 2019, SARS-CoV-2 was identified in Wuhan, China. Infection by SARS-CoV-2 causes coronavirus disease 2019 (COVID-19), which is characterized by fever, cough, dyspnea, anosmia, and myalgia in many cases. There are discussions about the association of vitamin D levels with COVID-19 severity. However, views are conflicting. The aim of the study was to examine associations of vitamin D metabolism pathway gene polymorphisms with symptomless COVID-19 susceptibility in Kazakhstan. The case-control study examined the association between asymptomatic COVID-19 and vitamin D metabolism pathway gene polymorphisms in 185 participants, who previously reported not having COVID-19, were PCR negative at the moment of data collection, and were not vaccinated. A dominant mutation in rs6127099 (CYP24A1) was found to be protective of asymptomatic COVID-19. Additionally, the G allele of rs731236 TaqI (VDR), dominant mutation in rs10877012 (CYP27B1), recessive rs1544410 BsmI (VDR), and rs7041 (GC) are worth consideration since they were statistically significant in bivariate analysis, although their independent effect was not found in the adjusted multivariate logistic regression model.
Collapse
Affiliation(s)
| | - Kymbat Mukhtarova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Kaznagul Kanatova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Saule Zhumambayeva
- Department of Propedeutics of Children Disease, Astana Medical University, Astana 010000, Kazakhstan
| | - Ainur Akilzhanova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Azliyati Azizan
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| |
Collapse
|
6
|
Khalaf QA, Rasool KH, Naji EN. Evaluation of IL-6 and IL-17A gene polymorphisms in Iraqi patients infected with COVID-19 and type 2 diabetes mellitus. Hum Antibodies 2023; 31:35-44. [PMID: 37458031 DOI: 10.3233/hab-230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND In patients with COVID-19, diabetes mellitus type 2 (T2DM) increases the risk of hospitalization and death. Patients who have IL-6 and IL-17A single nucleotide polymorphisms (SNPs) are more likely to have severe COVID-19. This study aims to determine whether SNPs of the IL-6 gene at rs1800795 (G > C) and the IL-17A gene at rs2275913 (G > A) are associated with COVID-19 and T2DM in the Iraqi population. PATIENTS AND METHODS Twenty-four people were divided into 4 groups as follows: six patients with severe COVID-19 and T2DM were placed in Group 1 as "G1", six patients with COVID-19 but no T2DM were placed in Group 2 as "G2", and six patients with T2DM were placed in Group 3 as "G3". There were also six healthy controls included in each group. Polymerase chain reaction (PCR) was used to amplify the target genes after genomic DNA from the blood samples was extracted. Sanger sequencing was used to find the SNPs in both the forward and reverse directions for each sample. RESULTS In the case of IL-6 SNP at rs1800795, the GG genotype was more common in "G3", the CC genotype was less common in all patient groups than in controls, and the GC allele was more common in "G2" than in the control group. In comparison to the controls, the three patient groups showed lower frequencies of the C allele and higher frequencies of the G allele. Regarding IL-17A gene polymorphism, the AA and GA genotypes were more prevalent in "G2" and "G3", respectively. The GG genotype and G allele frequency dropped in all patient groups compared to the control group, whereas the A allele frequency increased in all patient groups. CONCLUSIONS The IL-6 gene at rs1800795 (G/C) and the IL-17A gene at rs2275913 (G/A) loci were associated with COVID-19 and T2DM in Iraqi population.
Collapse
|
7
|
Hu YJ, Song CS, Jiang N. Single nucleotide variations in the development of diabetic foot ulcer: A narrative review. World J Diabetes 2022; 13:1140-1153. [PMID: 36578869 PMCID: PMC9791576 DOI: 10.4239/wjd.v13.i12.1140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus has become a global health problem, and the number of patients with diabetic foot ulcers (DFU) is rapidly increasing. Currently, DFU still poses great challenges to physicians, as the treatment is complex, with high risks of infection, recurrence, limb amputation, and even death. Therefore, a comprehensive understanding of DFU pathogenesis is of great importance. In this review, we summarized recent findings regarding the DFU development from the perspective of single-nucleotide variations (SNVs). Studies have shown that SNVs located in the genes encoding C-reactive protein, interleukin-6, tumor necrosis factor-alpha, stromal cell-derived factor-1, vascular endothelial growth factor, nuclear factor erythroid-2-related factor 2, sirtuin 1, intercellular adhesion molecule 1, monocyte chemoattractant protein-1, endothelial nitric oxide synthase, heat shock protein 70, hypoxia inducible factor 1 alpha, lysyl oxidase, intelectin 1, mitogen-activated protein kinase 14, toll-like receptors, osteoprotegerin, vitamin D receptor, and fibrinogen may be associated with the development of DFU. However, considering the limitations of the present investigations, future multi-center studies with larger sample sizes, as well as in-depth mechanistic research are warranted.
Collapse
Affiliation(s)
- Yan-Jun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| | - Chen-Sheng Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
8
|
Traspov AA, Minashkin MM, Poyarkov SV, Komarov AG, Shtinova IA, Speshilov GI, Karbyshev IA, Pozdniakova NV, Godkov MA. The rs17713054 and rs1800629 polymorphisms of genes LZTFL1 and TNF are associated with COVID-19 severity. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Both genetic and non-genetic factors are responsible for high interindividual variability in response to SARS-CoV-2. Despite the fact that multiple genetic polymorphisms have been identified as risk factors of severe COVID-19, such polymorphisms are still insufficiently studied in the Russian population. The study was aimed to identify genetic determinants associated with severe COVID-19 in the sample of patients from the Russian Federation. The correlation of the rs17713054 polymorphism in gene LZTFL1 and rs1800629 polymorphism in gene TNF (tumor necrosis factor) with the COVID-19 severity was assessed. DNA samples obtained from 713 patients (324 males and 389 females) aged 18‒95 with COVID-19 of varying severity were analyzed. The rs1800629 polymorphism of gene TNF (OR = 1.5; p = 0.02) and rs17713054 polymorphism of gene LZTFL1 (OR = 1.60; p = 0.0043) were identified as risk factors of severe disease. The TNF polymorphism rs1800629 and LZTFL1 polymorphism rs17713054 could be considered as potential predictive biomarkers. The rs17713054 G > A polymorphism was strongly associated with severe disease. In the future the findings may provide the basis for the development of test-systems for prediction of the risk of severe viral respiratory diseases.
Collapse
Affiliation(s)
| | | | | | - AG Komarov
- State Budget Institution Of Health Of The City Of Moscow "Diagnostic Center (Center For Laboratory Research) Of The Department Of Health Of The City Of Moscow" Russian Federation, , Moscow
| | - IA Shtinova
- State Budget Institution Of Health Of The City Of Moscow "Diagnostic Center (Center For Laboratory Research) Of The Department Of Health Of The City Of Moscow" Russian Federation, , Moscow
| | - GI Speshilov
- State Budget Institution Of Health Of The City Of Moscow "Diagnostic Center (Center For Laboratory Research) Of The Department Of Health Of The City Of Moscow" Russian Federation, , Moscow
| | - IA Karbyshev
- State Budget Institution Of Health Of The City Of Moscow "Diagnostic Center (Center For Laboratory Research) Of The Department Of Health Of The City Of Moscow" Russian Federation, , Moscow
| | | | - MA Godkov
- Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia
| |
Collapse
|
9
|
Falahi S, Zamanian MH, Feizollahi P, Rezaiemanesh A, Salari F, Mahmoudi Z, Gorgin Karaji A. Evaluation of the relationship between IL-6 gene single nucleotide polymorphisms and the severity of COVID-19 in an Iranian population. Cytokine 2022; 154:155889. [PMID: 35461173 PMCID: PMC9015956 DOI: 10.1016/j.cyto.2022.155889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023]
Abstract
Background Emerged coronavirus disease 2019 (COVID-19) is a pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Disease severity is associated with elevated levels of proinflammatory cytokines, such as interleukin-6 (IL-6). Genetic polymorphisms in the regulatory regions of cytokine genes may be associated with differential cytokine production in COVID-19 patients. This study aimed to investigate the association between three potentially functional single-nucleotide polymorphisms (SNPs) in the promoter region of IL-6 and the severity of susceptibility to COVID-19 in an Iranian population. Methods In total, 346 individuals (175 patients with severe COVID-19 and 171 patients with mild COVID-19) were recruited for this cohort study. Genomic DNA was extracted from peripheral blood leukocytes of patients to determine the genotypes of three selected SNPs (rs1800795 (−174 G > C), rs1800796 (−572 G > C), and rs1800797 (−597 G > A)) in the promoter region of the IL-6 gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results There were no significant differences in the genotype or allele distribution of selected SNPs (rs1800795 (−174 G > C), rs1800796 (−572 G > C), and rs1800797 (−597 G > A)) in the promoter region of the IL-6 gene in patients with severe COVID-19 and patients with mild COVID-19. Discussion Our study indicated that these SNPs are not associated with COVID-19 severity in the Kurdish population from Kermanshah, Iran.
Collapse
Affiliation(s)
- Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mohammad Hossein Zamanian
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Zahra Mahmoudi
- Student Research Committee, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical, Sciences, Kermanshah, Iran.
| |
Collapse
|
10
|
de Araújo JLF, Menezes D, de Aguiar RS, de Souza RP. IFITM3, FURIN, ACE1, and TNF-α Genetic Association With COVID-19 Outcomes: Systematic Review and Meta-Analysis. Front Genet 2022; 13:775246. [PMID: 35432458 PMCID: PMC9010674 DOI: 10.3389/fgene.2022.775246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Human polymorphisms may contribute to SARS-CoV-2 infection susceptibility and COVID-19 outcomes (asymptomatic presentation, severe COVID-19, death). We aimed to evaluate the association of IFITM3, FURIN, ACE1, and TNF-α genetic variants with both phenotypes using meta-analysis. The bibliographic search was conducted on the PubMed and Scielo databases covering reports published until February 8, 2022. Two independent researchers examined the study quality using the Q-Genie tool. Using the Mantel–Haenszel weighted means method, odds ratios were combined under both fixed- and random-effect models. Twenty-seven studies were included in the systematic review (five with IFITM3, two with Furin, three with TNF-α, and 17 with ACE1) and 22 in the meta-analysis (IFITM3 n = 3, TNF-α, and ACE1 n = 16). Meta-analysis indicated no association of 1) ACE1 rs4646994 and susceptibility, 2) ACE1 rs4646994 and asymptomatic COVID-19, 3) IFITM3 rs12252 and ICU hospitalization, and 4) TNF-α rs1800629 and death. On the other hand, significant results were found for ACE1 rs4646994 association with COVID-19 severity (11 studies, 692 severe cases, and 1,433 nonsevere controls). The ACE1 rs4646994 deletion allele showed increased odds for severe manifestation (OR: 1.45; 95% CI: 1.26–1.66). The homozygous deletion was a risk factor (OR: 1.49, 95% CI: 1.22–1.83), while homozygous insertion presented a protective effect (OR: 0.57, 95% CI: 0.45–0.74). Further reports are needed to verify this effect on populations with different ethnic backgrounds.Systematic Review Registration: https://www.crd.york.ac.uk/prosperodisplay_record.php?ID=CRD42021268578, identifier CRD42021268578
Collapse
|
11
|
Rabiu Abubakar A, Ahmad R, Rowaiye AB, Rahman S, Iskandar K, Dutta S, Oli AN, Dhingra S, Tor MA, Etando A, Kumar S, Irfan M, Gowere M, Chowdhury K, Akter F, Jahan D, Schellack N, Haque M. Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life (Basel) 2022; 12:life12040478. [PMID: 35454970 PMCID: PMC9031737 DOI: 10.3390/life12040478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, PMB 3452, Kano 700233, Nigeria;
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | | | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown BB11114, Barbados;
| | - Katia Iskandar
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot 360001, Gujrat, India;
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, PMB 5025, Awka 420110, Nigeria;
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, Bihar, India;
| | - Maryam Abba Tor
- Department of Health and Biosciences, University of East London, University Way, London E16 2RD, UK;
| | - Ayukafangha Etando
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Eswatini Medical Christian University, P.O. Box A624 Swazi Plaza Mbabane, Mbabane H101, Hhohho, Eswatini;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Adalaj Uvarsad Road, Gandhinagar 382422, Gujarat, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, R. Gomes Carneiro, 1-Centro, Pelotas 96010-610, RS, Brazil;
| | - Marshall Gowere
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Kona Chowdhury
- Department of Paediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Natalie Schellack
- Department of Pharmacology, Faculty of Health Sciences, Basic Medical Sciences Building, Prinshof Campus, University of Pretoria, Arcadia 0083, South Africa; (M.G.); (N.S.)
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defense Health, Universiti Pertahanan Nasional Malaysia (National Defense University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|