1
|
Veinot J, Cane D, Hashmi JA. Low working memory underpins the association between aberrant functional properties of pain modulation circuitry and chronic back pain severity. THE JOURNAL OF PAIN 2025; 28:104795. [PMID: 39892486 DOI: 10.1016/j.jpain.2025.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/21/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Working memory impairments are common in chronic low back pain and are linked to increased pain severity. Reduced working memory may contribute to chronic pain by disrupting the ability to contextualize threat and modulate pain. These processes involve the dorsolateral prefrontal cortex and its interaction with the periaqueductal gray. However, it is unclear how working memory variability impacts activation and connectivity in this pathway and influences chronic pain. Here, we investigated how working memory variability affected activations in the dorsolateral prefrontal cortex - periaqueductal gray pathway during a pain modulation task (schema task) in individuals with chronic low back pain. This task measures how perceived threat of a strong noxious stimulus biases pain perception, referred to as threat bias. Individuals with worse threat bias experienced more widespread pain and less relief. Lower working memory accuracy was associated with abnormally increased activations in the dorsolateral prefrontal cortex and periaqueductal gray during low-threat conditions. In high-threat conditions, low activation in these regions correlated with greater chronic pain and impaired working memory. Baseline functional connectivity between the dorsolateral prefrontal cortex and periaqueductal gray also predicted working memory variability and pain severity. These findings suggest that working memory and pain modulation converge within the dorsolateral prefrontal cortex-periaqueductal gray pathway, where abnormalities contribute to chronic pain. This highlights cognitive-pain interactions and the potential of targeting working memory and this pathway for therapy. Perspective This article presents evidence that low working memory is associated with abnormalities in activations and connectivity in the pain modulation pathways in people with chronic low back pain. These changes predict chronic pain severity indicating a potential association between working memory, pain modulation pathways and chronic pain severity.
Collapse
Affiliation(s)
- Jennika Veinot
- Department of Anesthesia, Pain Management & Perioperative Medicine, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douglas Cane
- Department of Anesthesia, Pain Management & Perioperative Medicine, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Javeria Ali Hashmi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Pavy F, Zaman J, Van den Noortgate W, Scarpa A, von Leupoldt A, Torta DM. The effect of unpredictability on the perception of pain: a systematic review and meta-analysis. Pain 2024; 165:1702-1718. [PMID: 38422488 DOI: 10.1097/j.pain.0000000000003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Despite being widely assumed, the worsening impact of unpredictability on pain perception remains unclear because of conflicting empirical evidence, and a lack of systematic integration of past research findings. To fill this gap, we conducted a systematic review and meta-analysis focusing on the effect of unpredictability on pain perception. We also conducted meta-regression analyses to examine the moderating effect of several moderators associated with pain and unpredictability: stimulus duration, calibrated stimulus pain intensity, pain intensity expectation, controllability, anticipation delay, state and trait negative affectivity, sex/gender and age of the participants, type of unpredictability (intensity, onset, duration, location), and method of pain induction (thermal, electrical, mechanical pressure, mechanical distention). We included 73 experimental studies with adult volunteers manipulating the (un)predictability of painful stimuli and measuring perceived pain intensity and pain unpleasantness in predictable and unpredictable contexts. Because there are insufficient studies with patients, we focused on healthy volunteers. Our results did not reveal any effect of unpredictability on pain perception. However, several significant moderators were found, ie, targeted stimulus pain intensity, expected pain intensity, and state negative affectivity. Trait negative affectivity and uncontrollability showed no significant effect, presumably because of the low number of included studies. Thus, further investigation is necessary to clearly determine their role in unpredictable pain perception.
Collapse
Affiliation(s)
- Fabien Pavy
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
- School of Social Sciences, Hasselt University, Hasselt, Belgium
| | - Wim Van den Noortgate
- Methodology of Educational Sciences, Faculty of Psychology and Educational Sciences, & Itec, an Imec Research Group, KU Leuven, Belgium
| | - Aurelia Scarpa
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Andreas von Leupoldt
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| | - Diana M Torta
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium
| |
Collapse
|
3
|
Strigo IA, Kadlec M, Mitchell JM, Simmons AN. Identification of group differences in predictive anticipatory biasing of pain during uncertainty: preparing for the worst but hoping for the best. Pain 2024; 165:1735-1747. [PMID: 38501988 PMCID: PMC11247452 DOI: 10.1097/j.pain.0000000000003207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 03/20/2024]
Abstract
ABSTRACT Pain anticipation during conditions of uncertainty can unveil intrinsic biases, and understanding these biases can guide pain treatment interventions. This study used machine learning and functional magnetic resonance imaging to predict anticipatory responses in a pain anticipation experiment. One hundred forty-seven participants that included healthy controls (n = 57) and individuals with current and/or past mental health diagnosis (n = 90) received cues indicating upcoming pain stimuli: 2 cues predicted high and low temperatures, while a third cue introduced uncertainty. Accurate differentiation of neural patterns associated with specific anticipatory conditions was observed, involving activation in the anterior short gyrus of the insula and the nucleus accumbens. Three distinct response profiles emerged: subjects with a negative bias towards high pain anticipation, those with a positive bias towards low pain anticipation, and individuals whose predictions during uncertainty were unbiased. These profiles remained stable over one year, were consistent across diagnosed psychopathologies, and correlated with cognitive coping styles and underlying insula anatomy. The findings suggest that individualized and stable pain anticipation occurs in uncertain conditions.
Collapse
Affiliation(s)
- Irina A. Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
| | - Molly Kadlec
- Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
| | - Jennifer M. Mitchell
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alan N. Simmons
- San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Lim M, Kim DJ, Nascimento TD, DaSilva AF. High-definition tDCS over primary motor cortex modulates brain signal variability and functional connectivity in episodic migraine. Clin Neurophysiol 2024; 161:101-111. [PMID: 38460220 PMCID: PMC11610772 DOI: 10.1016/j.clinph.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE This study investigated how high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) affects brain signal variability and functional connectivity in the trigeminal pain pathway, and their association with changes in migraine attacks. METHODS Twenty-five episodic migraine patients were randomized for ten daily sessions of active or sham M1 HD-tDCS. Resting-state blood-oxygenation-level-dependent (BOLD) signal variability and seed-based functional connectivity were assessed pre- and post-treatment. A mediation analysis was performed to test whether BOLD signal variability mediates the relationship between treatment group and moderate-to-severe headache days. RESULTS The active M1 HD-tDCS group showed reduced BOLD variability in the spinal trigeminal nucleus (SpV) and thalamus, but increased variability in the rostral anterior cingulate cortex (rACC) compared to the sham group. Connectivity decreased between medial pulvinar-temporal pole, medial dorsal-precuneus, and the ventral posterior medial nucleus-SpV, but increased between the rACC-amygdala, and the periaqueductal gray-parahippocampal gyrus. Changes in medial pulvinar variability mediated the reduction in moderate-to-severe headache days at one-month post-treatment. CONCLUSIONS M1 HD-tDCS alters BOLD signal variability and connectivity in the trigeminal somatosensory and modulatory pain system, potentially alleviating migraine headache attacks. SIGNIFICANCE M1 HD-tDCS realigns brain signal variability and connectivity in migraineurs closer to healthy control levels.
Collapse
Affiliation(s)
- Manyoel Lim
- Food Processing Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Dajung J Kim
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Thiago D Nascimento
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Alexandre F DaSilva
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Tsai HY, Lapanan K, Lin YH, Huang CW, Lin WW, Lin MM, Lu ZL, Lin FS, Tseng MT. Integration of Prior Expectations and Suppression of Prediction Errors During Expectancy-Induced Pain Modulation: The Influence of Anxiety and Pleasantness. J Neurosci 2024; 44:e1627232024. [PMID: 38453467 PMCID: PMC11044194 DOI: 10.1523/jneurosci.1627-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
Pain perception arises from the integration of prior expectations with sensory information. Although recent work has demonstrated that treatment expectancy effects (e.g., placebo hypoalgesia) can be explained by a Bayesian integration framework incorporating the precision level of expectations and sensory inputs, the key factor modulating this integration in stimulus expectancy-induced pain modulation remains unclear. In a stimulus expectancy paradigm combining emotion regulation in healthy male and female adults, we found that participants' voluntary reduction in anticipatory anxiety and pleasantness monotonically reduced the magnitude of pain modulation by negative and positive expectations, respectively, indicating a role of emotion. For both types of expectations, Bayesian model comparisons confirmed that an integration model using the respective emotion of expectations and sensory inputs explained stimulus expectancy effects on pain better than using their respective precision. For negative expectations, the role of anxiety is further supported by our fMRI findings that (1) functional coupling within anxiety-processing brain regions (amygdala and anterior cingulate) reflected the integration of expectations with sensory inputs and (2) anxiety appeared to impair the updating of expectations via suppressed prediction error signals in the anterior cingulate, thus perpetuating negative expectancy effects. Regarding positive expectations, their integration with sensory inputs relied on the functional coupling within brain structures processing positive emotion and inhibiting threat responding (medial orbitofrontal cortex and hippocampus). In summary, different from treatment expectancy, pain modulation by stimulus expectancy emanates from emotion-modulated integration of beliefs with sensory evidence and inadequate belief updating.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Kulvara Lapanan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Yi-Hsuan Lin
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11574, Taiwan
| | - Cheng-Wei Huang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10048, Taiwan
| | - Wen-Wei Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Min-Min Lin
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Zheng-Liang Lu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Sheng Lin
- Department of Anesthesiology, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Ming-Tsung Tseng
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| |
Collapse
|
6
|
Delgado-Sanchez A, Charalambous C, Trujillo-Barreto NJ, Safi H, Jones A, Sivan M, Talmi D, Brown C. Test-retest reliability of Bayesian estimations of the effects of stimulation, prior information and individual traits on pain perception. Eur J Pain 2024; 28:434-453. [PMID: 37947114 DOI: 10.1002/ejp.2193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND There is inter-individual variability in the influence of different components (e.g. nociception and expectations) on pain perception. Identifying the individual effect of these components could serve for patient stratification, but only if these influences are stable in time. METHODS In this study, 30 healthy participants underwent a cognitive pain paradigm in which they rated pain after viewing a probabilistic cue informing of forthcoming pain intensity and then receiving electrical stimulation. The trial information was then used in a Bayesian probability model to compute the relative weight each participant put on stimulation, cue, cue uncertainty and trait-like bias. The same procedure was repeated 2 weeks later. Relative and absolute test-retest reliability of all measures was assessed. RESULTS Intraclass correlation results showed good reliability for the effect of the stimulation (0.83), the effect of the cue (0.75) and the trait-like bias (0.75 and 0.75), and a moderate reliability for the effect of the cue uncertainty (0.55). Absolute reliability measures also supported the temporal stability of the results and indicated that a change in parameters corresponding to a difference in pain ratings ranging between 0.47 and 1.45 (depending on the parameters) would be needed to consider differences in outcomes significant. The comparison of these measures with the closest clinical data we possess supports the reliability of our results. CONCLUSIONS These findings support the hypothesis that inter-individual differences in the weight placed on different pain factors are stable in time and could therefore be a possible target for patient stratification. SIGNIFICANCE Our results demonstrate the temporal stability of the weight healthy individuals place on the different factors leading to the pain response. These findings give validity to the idea of using Bayesian estimations of the influence of different factors on pain as a way to stratify patients for treatment personalization.
Collapse
Affiliation(s)
| | | | | | - Hannah Safi
- Department of Medical Physics, Salford Royal Foundation Trust, Northern Care Alliance, Salford, UK
- Department of Electrical and Electronic Engineering, School of Engineering, University of Manchester, Manchester, UK
| | - Anthony Jones
- School of Health Sciences, University of Manchester, Manchester, UK
| | - Manoj Sivan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Deborah Talmi
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Christopher Brown
- Institute of Population Health, University of Liverpool and Human Pain Research Group, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Pak V, Hashmi JA. Top-down threat bias in pain perception is predicted by higher segregation between resting-state networks. Netw Neurosci 2023; 7:1248-1265. [PMID: 38144683 PMCID: PMC10631789 DOI: 10.1162/netn_a_00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 12/26/2023] Open
Abstract
Top-down processes such as expectations have a strong influence on pain perception. Predicted threat of impending pain can affect perceived pain even more than the actual intensity of a noxious event. This type of threat bias in pain perception is associated with fear of pain and low pain tolerance, and hence the extent of bias varies between individuals. Large-scale patterns of functional brain connectivity are important for integrating expectations with sensory data. Greater integration is necessary for sensory integration; therefore, here we investigate the association between system segregation and top-down threat bias in healthy individuals. We show that top-down threat bias is predicted by less functional connectivity between resting-state networks. This effect was significant at a wide range of network thresholds and specifically in predefined parcellations of resting-state networks. Greater system segregation in brain networks also predicted higher anxiety and pain catastrophizing. These findings highlight the role of integration in brain networks in mediating threat bias in pain perception.
Collapse
Affiliation(s)
- Veronika Pak
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Javeria Ali Hashmi
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
- Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Valdes-Hernandez PA, Laffitte Nodarse C, Cole JH, Cruz-Almeida Y. Feasibility of brain age predictions from clinical T1-weighted MRIs. Brain Res Bull 2023; 205:110811. [PMID: 37952679 DOI: 10.1016/j.brainresbull.2023.110811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed.
Collapse
Affiliation(s)
- Pedro A Valdes-Hernandez
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - Chavier Laffitte Nodarse
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK; Dementia Research Centre, Queen Square Institute of Neurology, University College London, UK
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA; Department of Neuroscience, College of Medicine, University of Florida, USA.
| |
Collapse
|
9
|
Lim M, Kim DJ, Nascimento TD, Ichesco E, Kaplan C, Harris RE, DaSilva AF. Functional Magnetic Resonance Imaging Signal Variability Is Associated With Neuromodulation in Fibromyalgia. Neuromodulation 2023; 26:999-1008. [PMID: 34309138 PMCID: PMC8789944 DOI: 10.1111/ner.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Although primary motor cortex (M1) transcranial direct current stimulation (tDCS) has an analgesic effect in fibromyalgia (FM), its neural mechanism remains elusive. We investigated whether M1-tDCS modulates a regional temporal variability of blood-oxygenation-level-dependent (BOLD) signals, an indicator of the brain's flexibility and efficiency and if this change is associated with pain improvement. MATERIALS AND METHODS In a within-subjects cross-over design, 12 female FM patients underwent sham and active tDCS on five consecutive days, respectively. Each session was performed with an anode placed on the left M1 and a cathode on the contralateral supraorbital region. The subjects also participated in resting-state functional magnetic resonance imaging (fMRI) at baseline and after sham and active tDCS. We compared the BOLD signal variability (SDBOLD), defined as the standard deviation of the BOLD time-series, between the tDCS conditions. Baseline SDBOLD was compared to 15 healthy female controls. RESULTS At baseline, FM patients showed reduced SDBOLD in the ventromedial prefrontal cortex (vmPFC), lateral PFC, and anterior insula and increased SDBOLD in the posterior insula compared to healthy controls. After active tDCS, compared to sham, we found an increased SDBOLD in the left rostral anterior cingulate cortex (rACC), lateral PFC, and thalamus. After sham tDCS, compared to baseline, we found a decreased SDBOLD in the dorsomedial PFC and posterior cingulate cortex/precuneus. Interestingly, after active tDCS compared to sham, pain reduction was correlated with an increased SDBOLD in the rACC/vmPFC but with a decreased SDBOLD in the posterior insula. CONCLUSION Our findings suggest that M1-tDCS might revert temporal variability of fMRI signals in the rACC/vmPFC and posterior insula linked to FM pain. Changes in neural variability would be part of the mechanisms underlying repetitive M1-tDCS analgesia in FM.
Collapse
Affiliation(s)
- Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Eric Ichesco
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Chelsea Kaplan
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard E Harris
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Robertson JW, Aristi G, Hashmi JA. White matter microstructure predicts measures of clinical symptoms in chronic back pain patients. Neuroimage Clin 2023; 37:103309. [PMID: 36621020 PMCID: PMC9850203 DOI: 10.1016/j.nicl.2022.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Chronic back pain (CBP) has extensive clinical and social implications for its sufferers and is a major source of disability. Chronic pain has previously been shown to have central neural factors underpinning it, including the loss of white matter (WM), however traditional methods of analyzing WM microstructure have produced mixed and unclear results. To better understand these factors, we assessed the WM microstructure of 50 patients and 40 healthy controls (HC) using diffusion-weighted imaging. The data were analyzed using fixel-based analysis (FBA), a higher-order diffusion modelling technique applied to CBP for the first time here. Subjects also answered questionnaires relating to pain, disability, catastrophizing, and mood disorders, to establish the relationship between fixelwise metrics and clinical symptoms. FBA determined that, compared to HC, CBP patients had: 1) lower fibre density (FD) in several tracts, specifically the right anterior and bilateral superior thalamic radiations, right spinothalamic tract, right middle cerebellar peduncle, and the body and splenium of corpus callosum; 2) higher FD in the genu of corpus callosum; and 3) lower FDC - a combined fibre density and cross-section measure - in the bilateral spinothalamic tracts and right anterior thalamic radiation. Exploratory correlations showed strong negative relationships between fixelwise metrics and clinical questionnaire scores, especially pain catastrophizing. These results have important implications for the intake and processing of sensory data in CBP that warrant further investigation.
Collapse
Affiliation(s)
- Jason W Robertson
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| | - Guillermo Aristi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Javeria A Hashmi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Nova Scotia Health Authority, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada.
| |
Collapse
|
11
|
Out of the mouth of babes: a lot about pain has nothing to do with pain. Pain 2022; 163:S117-S125. [DOI: 10.1097/j.pain.0000000000002761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
|
12
|
Cuenca-Martínez F, Bocos-Corredor E, Espinosa-Giménez Á, Barrero-Santiago L, Nefa-Díaz N, Canchal-Crespo D, Varangot-Reille C, Herranz-Gómez A, Suso-Martí L, Sempere-Rubio N, La Touche R. Effects of Self-Efficacy and Outcome Expectations on Motor Imagery-Induced Thermal and Mechanical Hypoalgesia: A Single-Blind Randomised Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11878. [PMID: 36231179 PMCID: PMC9565608 DOI: 10.3390/ijerph191911878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The main aim of this study was to assess whether self-efficacy (SE) and outcome expectations (OEs) modulate the hypoalgesic effect induced by motor imagery (MI). A total of 75 asymptomatic participants were randomly assigned to the positive (SE+, OE+), negative (SE-, OE-) or non-expectation (CG) groups. Heat pain threshold (HPT) and pain pressure threshold (PPT) were the main variables. Cold detection threshold (CDT), warm detection threshold (WDT), heart rate (HR) and perceived fatigue were the secondary variables. The variables were assessed preintervention, immediately postintervention and 10 min postintervention, except for HR, which was measured continuously during the intervention. Regarding HPT, significant within-group pre-post differences were found in the OE+ group, with a low effect size (p = 0.01, d = -0.39). With regard to ΔPPT, significant intergroup differences were found in Δpost-pre between the SE+ and CG groups (p = 0.012, d = 1.04) and also between SE+ and OE- (p = 0.006, d = 1.08), both with a large effect size. CG, SE-, and OE- groups had poorer CDT and WDT. Regarding HR, significant intergroup differences were found in the postintervention measurement between OE+ and SE-, with a large effect size (p = 0.016, d = 1.34). Lastly, no between-group differences were found regarding perceived fatigue (p > 0.05). The results obtained showed that positive expectations have a slight influence on the increase in heat and mechanical pain detection thresholds. Positive and non-expectancy groups showed an autonomic activation. The results also showed that negative expectations led to poorer perceptual processes.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Faculty of Psychology and Education Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Elena Bocos-Corredor
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - África Espinosa-Giménez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Barrero-Santiago
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Naira Nefa-Díaz
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David Canchal-Crespo
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clovis Varangot-Reille
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Aida Herranz-Gómez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Luis Suso-Martí
- Faculty of Psychology and Education Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, 46010 Valencia, Spain
| | - Núria Sempere-Rubio
- UBIC, Department of Physiotherapy, Faculty of Physiotherapy, Universitat de València, 46010 Valencia, Spain
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), 28003 Madrid, Spain
| |
Collapse
|
13
|
Aristi G, O'Grady C, Bowen C, Beyea S, Lazar SW, Hashmi JA. Top-down threat bias in pain perception is predicted by intrinsic structural and functional connections of the brain. Neuroimage 2022; 258:119349. [PMID: 35690258 DOI: 10.1016/j.neuroimage.2022.119349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Top-down processes such as expectations play a key role in pain perception. In specific contexts, inferred threat of impending pain can affect perceived pain more than the noxious intensity. This biasing effect of top-down threats can affect some individuals more strongly than others due to differences in fear of pain. The specific characteristics of intrinsic brain characteristics that mediate the effects of top-down threat bias are mainly unknown. In this study, we examined whether threat bias is associated with structural and functional brain connectivity. The variability in the top-down bias was mapped to the microstructure of white matter in diffusion weighted images (DWI) using MRTrix3. Mean functional connectivity of five canonical resting state networks was tested for association with bias scores and with the identified DWI metrics. We found that the fiber density of the splenium of the corpus callosum was significantly low in individuals with high top-down threat bias (FWE corrected with 5000 permutations, p < 0.05). The mean functional connectivity within the language/memory and between language/memory and default mode networks predicted the bias scores. Functional connectivity within language memory networks predicted the splenium fiber density, higher pain catastrophizing and lower mindful awareness. Probabilistic tractography showed that the identified region in the splenium connected several sensory regions and high-order parietal regions between the two hemispheres, indicating the splenium's role in sensory integration. These findings demonstrate that individuals who show more change in pain with changes in the threat of receiving a stronger noxious stimulus have lower structural connectivity in the pathway necessary for integrating top-down cue information with bottom-up sensory information. Conversely, systems involved in memory recall, semantic and self-referential processing are more strongly connected in people with top-down threat bias.
Collapse
Affiliation(s)
- Guillermo Aristi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Christopher O'Grady
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Chris Bowen
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Steven Beyea
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada
| | - Sara W Lazar
- Harvard Medical School, Mass General Hospital, Boston, MA. 02129, USA
| | - Javeria Ali Hashmi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax B3H 1V7, Canada.
| |
Collapse
|
14
|
Xu H, Zhang M, Wang Y. Shape deformations of the basal ganglia in patients with classical trigeminal neuralgia: a cross-sectional evaluation. Neurol Sci 2022; 43:5007-5015. [PMID: 35471744 DOI: 10.1007/s10072-022-06091-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Despite the involvement of subcortical brain structures in the pathogenesis of classic trigeminal neuralgia (CTN), the details of morphological abnormalities of basal ganglia to this disorder are still unknown. This study aimed to investigate potential changes in terms of volume and shape of subcortical regions in patients with CTN. METHODS Forty-eight patients with CTN and 46 matched healthy subjects were recruited in the study. The whole-brain T1 anatomical data was acquired at a 3.0 Tesla scanner using a fast spoiled gradient recalled sequence (FSPGR). Vertex-wise analysis was applied to detect the alterations of volume and shape in each subcortical region in the patients with CTN compared to healthy controls. The relationships of morphological abnormalities in subcortical structures to the severity of orofacial pain and the affective disturbance in the patient group were examined using the multiple linear regression model. RESULTS No group difference was found about volumetric measurement in any of the subcortical regions. Vertex-wise analysis revealed areas of significant shape atrophy in bilateral putamen and bilateral pallidum in the patients with CTN compared to healthy controls. Besides, the patient group exhibited shape expansion in the head of the right caudate nucleus compared to healthy subjects. In addition, shape deformation in the head of the right caudate nucleus was positively associated with VAS score in CTN. CONCLUSION The patients with CTN display shape alterations in the specific subregions of basal ganglia, which may contribute to the pathophysiology of this refractory disorder and may be useful for translational medicine.
Collapse
Affiliation(s)
- Hui Xu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuan Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
15
|
Wang S, Veinot J, Goyal A, Khatibi A, Lazar SW, Hashmi JA. Distinct networks of periaqueductal gray columns in pain and threat processing. Neuroimage 2022; 250:118936. [PMID: 35093518 DOI: 10.1016/j.neuroimage.2022.118936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Noxious events that can cause physical damage to the body are perceived as threats. In the brainstem, the periaqueductal gray (PAG) ensures survival by generating an appropriate response to these threats. Hence, the experience of pain is coupled with threat signaling and interfaces in the dl/l and vlPAG columns. In this study, we triangulate the functional circuits of the dl/l and vlPAG by using static and time-varying functional connectivity (FC) in multiple fMRI scans in healthy participants (n = 37, 21 female). The dl/l and vlPAG were activated during cue, heat, and rating periods when the cue signaled a high threat of experiencing heat pain and when the incoming intensity of heat pain was unknown. Responses were significantly lower after low threat cues. The two regions responded similarly to the cued conditions but showed prominent distinctions in the extent of FC with other brain regions. Thus, both static and time-varying FC showed significant differences in the functional circuits of dl/l and vlPAG in rest and task scans. The dl/lPAG consistently synchronized with the salience network and the thalamus, suggesting a role in threat detection, while the vlPAG exhibited more widespread synchronization and frequently connected with memory/language and sensory regions. Hence, these two PAG regions process heat pain when stronger pain is expected or when it is uncertain, and preferentially synchronize with distinct brain circuits in a reproducible manner. The dl/lPAG seems more directly involved in salience detection, while the vlPAG seems engaged in contextualizing threats.
Collapse
Affiliation(s)
- Sean Wang
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Jennika Veinot
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Amita Goyal
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Sara W Lazar
- Harvard Medical School, Mass General Hospital, Boston, MA, US 02129
| | | |
Collapse
|
16
|
Kantak SS, Johnson T, Zarzycki R. Linking Pain and Motor Control: Conceptualization of Movement Deficits in Patients With Painful Conditions. Phys Ther 2022; 102:6497839. [PMID: 35079833 DOI: 10.1093/ptj/pzab289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive, psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain. This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry-grounded in the contemporary model of motor control-are outlined to advance understanding and improve the assessment and treatment of PRMD. IMPACT This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive, and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful conditions.
Collapse
Affiliation(s)
- Shailesh S Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Ryan Zarzycki
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
17
|
Aristi G, Kamintsky L, Ross M, Bowen C, Calkin C, Friedman A, Hashmi JA. Symptoms reported by Canadians posted in Havana are linked with reduced white matter fibre density. Brain Commun 2022; 4:fcac053. [PMID: 35505689 PMCID: PMC9050567 DOI: 10.1093/braincomms/fcac053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/09/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Diplomats representing the USA have reported with unusual neurologic symptoms and MRI changes after being posted in Havana, Cuba between late 2016 and 2018. Here, we examined white matter microstructure and network connectivity of individuals stationed in Havana, using diffusion-weighted MRI, fixel-based analysis and structural connectomics as implemented in MRtrix3. MRI data acquisition and clinical assessments were done in a total of 24 diplomats and their family members and 40 healthy controls. The diplomat data were grouped into an exposed cohort (n = 16) and an unexposed cohort (n = 10), and among these, two individuals were assessed before and after potential exposure. Fixel-based analysis revealed a reduction in fibre density in two specific regions: the fornix and the splenium, in exposed individuals, relative to unexposed individuals and healthy controls. Post hoc analyses showed the effect remained present (P < 0.05) in both regions when comparing exposed and unexposed diplomats; and reduced fibre density was correlated with longer time period stationed in Cuba after age correction. Reduction of fibre density was also found to be linked with clinical symptoms of persistent migraine, tinnitus, sound sensitivity and fatigue. Network statistical comparisons revealed decreased structural connectivity in two distinct networks, comprising subcortical and cortical systems in exposed individuals, relative to unexposed and normative data. While the cause for the differences between the groups remains unknown, our results reveal region-specific white matter injury, that is, significantly correlated with clinical symptoms.
Collapse
Affiliation(s)
- Guillermo Aristi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada, B3H 1V7
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Margaux Ross
- Department of Psychiatry, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Chris Bowen
- Department of Diagnostic Radiology, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Cynthia Calkin
- Department of Psychiatry, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, NSHA, Halifax, Canada, B3H 1V7
| | - Javeria A. Hashmi
- Department of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada, B3H 1V7
| |
Collapse
|
18
|
Kim DJ, Lim M, Kim JS, Chung CK. Structural and functional thalamocortical connectivity study in female fibromyalgia. Sci Rep 2021; 11:23323. [PMID: 34857797 PMCID: PMC8640058 DOI: 10.1038/s41598-021-02616-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
Dysfunctional thalamocortical interactions have been suggested as putative mechanisms of ineffective pain modulation and also suggested as possible pathophysiology of fibromyalgia (FM). However, it remains unclear which specific thalamocortical networks are altered and whether it is related to abnormal pain perception in people with FM. Here, we conducted combined vertex-wise subcortical shape, cortical thickness, structural covariance, and resting-state functional connectivity analyses to address these questions. FM group exhibited a regional shape deflation of the left posterior thalamus encompassing the ventral posterior lateral and pulvinar nuclei. The structural covariance analysis showed that the extent of regional deflation of the left posterior thalamus was negatively covaried with the left inferior parietal cortical thickness in the FM group, whereas those two regions were positively covaried in the healthy controls. In functional connectivity analysis with the left posterior thalamus as a seed, FM group had less connectivity with the periaqueductal gray compared with healthy controls, but enhanced connectivity between the posterior thalamus and bilateral inferior parietal regions, associated with a lower electrical pain threshold at the hand dorsum (pain-free point). Overall, our findings showed the structural thalamic alteration interacts with the cortical regions in a functionally maladaptive direction, leading the FM brain more responsive to external stimuli and potentially contributing to pain amplification.
Collapse
Affiliation(s)
- Dajung J Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea.,Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Manyoel Lim
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 08826, Republic of Korea.,Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - June Sic Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea.,Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chun Kee Chung
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
19
|
Evans S, Dowding C, Olive L, Payne LA, Druitt M, Seidman LC, Skvarc D, Mikocka-Walus A. Pain catastrophizing, but not mental health or social support, is associated with menstrual pain severity in women with dysmenorrhea: A cross-sectional survey. PSYCHOL HEALTH MED 2021; 27:1410-1420. [PMID: 34190659 DOI: 10.1080/13548506.2021.1948581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to understand the relationship between psychosocial factors, including mental health, pain cognitions and social support associated with menstrual pain severity in women with dysmenorrhea of no identified medical cause (primary dysmenorrhea; PD) and dysmenorrhea related to endometriosis. Participants included 1192 women aged 18-50 years with menstrual pain, recruited to an online cross-sectional survey in 2019. Questionnaires assessed self-reported menstrual pain severity, depression, anxiety, stress, pain catastrophizing, and social support. Women with endometriosis had significantly higher menstrual pain severity (p < 0.001) and pain catastrophizing (p < 0.001) than women with PD. Of the psychosocial factors, only pain catastrophizing (specifically, the helplessness sub-scale) predicted menstrual pain severity in each group. Overall, 36% of women with PD and 58% with endometriosis had clinically relevant levels of pain catastrophizing. Findings suggest a common psychological mechanism in women with menstrual pain, regardless of etiology. Interventions to reduce pain helplessness may be beneficial in supporting women with dysmenorrhea.
Collapse
Affiliation(s)
- Subhadra Evans
- Center for Social and Early Emotional Development , School of Psychology, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- Center for Social and Early Emotional Development , School of Psychology, Deakin University, Geelong, Australia.,Centre for Innovation in Mental and Physical Health and Clinical Treatment, Deakin University, Geelong, Australia
| | - Laura A Payne
- McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA
| | - Marilla Druitt
- University Hospital Geelong, Australia.,School of Medicine, Deakin University, Geelong, Australia
| | | | - David Skvarc
- Center for Social and Early Emotional Development , School of Psychology, Deakin University, Geelong, Australia
| | - Antonina Mikocka-Walus
- Center for Social and Early Emotional Development , School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
20
|
Bunzli S, Taylor N, O'Brien P, Dowsey M, Wallis J, Choong P, Shields N. How Do People Communicate About Knee Osteoarthritis? A Discourse Analysis. PAIN MEDICINE 2021; 22:1127-1148. [PMID: 33502513 DOI: 10.1093/pm/pnab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore the ways in which people talk about knee osteoarthritis and how this may influence engagement in physical activity and activity-based interventions as recommended by clinical practice guidelines. DESIGN A qualitative synthesis using discourse analysis methods. METHODS Systematic review methods were used to identify qualitative studies exploring the perceptions of people with knee osteoarthritis, their carers, and/or clinicians. Methodological quality was evaluated through the use of the Critical Appraisal Skills Programme. Raw quotes extracted from each study were analyzed with inductive discourse analysis. RESULTS A search of five electronic databases from inception until August 2019 yielded 778 articles. Sixty-two articles from 56 studies were included, reporting data (1,673 direct quotes) from people with knee osteoarthritis, carers, and clinicians in 16 countries. Two overarching discourses were identified-impairment and participation. The overarching impairment discourse prevailed in all participant groups and study settings. In this discourse, knee osteoarthritis was likened to a machine that inevitably wore down over time and required a doctor to repair. The overarching participatory discourse almost always coexisted alongside an impairment discourse. According to this discourse, a "busy body" was perceived as "healthy," and people could remain active despite knee osteoarthritis. CONCLUSION The prevailing impairment discourse may potentially discourage people from using knees that have passed their "use-by date" and increase reliance on doctors to repair joint damage. Consistent with recommendations in clinical practice guidelines, a participatory discourse may provide an alternative way of communicating that may encourage people with knee osteoarthritis to continue to engage in physical activity by focusing on what they can do, rather than what they cannot do.
Collapse
Affiliation(s)
- Samantha Bunzli
- University of Melbourne, Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Nicholas Taylor
- School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Victoria, Australia.,Allied Health Clinical Research Office, Eastern Health, Melbourne, Victoria, Australia
| | - Penny O'Brien
- University of Melbourne, Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Michelle Dowsey
- University of Melbourne, Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Jason Wallis
- Allied Health Clinical Research Office, Eastern Health, Melbourne, Victoria, Australia.,Monash Department of Clinical Epidemiology, Cabrini Institute, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peter Choong
- University of Melbourne, Department of Surgery, St Vincent's Hospital Melbourne, Victoria, Australia
| | - Nora Shields
- Allied Health Clinical Research Office, Eastern Health, Melbourne, Victoria, Australia.,School of Allied Health, Human Services and Sport, La Trobe University, Australia
| |
Collapse
|
21
|
The relationship between dissociation and acute pain: the impact of prior and reactive dissociation. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Lim M, Nascimento TD, Kim DJ, Ellingrod VL, DaSilva AF. Aberrant Brain Signal Variability and COMT Genotype in Chronic TMD Patients. J Dent Res 2021; 100:714-722. [PMID: 33622085 DOI: 10.1177/0022034521994089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The analysis of brain signal variability is a promising approach to understand pathological brain function related to chronic pain. This study investigates whether blood-oxygen-level-dependent signal variability (BOLDSV) in specific frequency bands is altered in temporomandibular disorder (TMD) and correlated to its clinical features. Twelve patients with chronic myofascial TMD and 24 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging. The BOLDSV was measured as the standard deviation of the BOLD time series at each voxel and compared between groups. We also examined the potential relationship between the BOLDSV and the catechol-O-methyltransferase (COMT) Val158Met polymorphism. We assessed sensory-discriminative pain in the craniofacial region, pain sensitivity to sustained masseteric pain challenge, and TMD pain frequency for clinical correlation. Patients displayed reduced BOLDSV in the dorsolateral prefrontal cortex (dlPFC) as compared with HC in all frequency bands. In the slow-3 band, patients also showed reduced BOLDSV in the medial dorsal thalamus, primary motor cortex (M1), and primary somatosensory cortex (S1) and heightened BOLDSV in the temporal pole. Notably, we found a significant correlation between lower BOLDSV (slow-3) in the orofacial M1/S1 regions and higher clinical pain (intensity/area) and higher sensitivity of the masseter muscle pain. Moreover, lower BOLDSV (slow-3) in the dlPFC and ventrolateral PFC was associated with a higher TMD pain frequency. Participants who had the COMT 158Met substitution exhibited lower BOLDSV in the dlPFC and higher BOLDSV in the temporal pole as compared with participants without the COMT 158Met substitution. An increasing number of Met alleles was associated with lower dlPFC and greater temporal pole BOLDSV in both HC and TMD groups. Together, we demonstrated that chronic TMD patients exhibit aberrant BOLDSV in the top-down pain modulatory and sensorimotor circuits associated with their pain frequency and severity. COMT Val158Met polymorphism might affect clinical symptoms in association with regional brain signal variability, specifically involved in cognitive and emotional regulation of pain.
Collapse
Affiliation(s)
- M Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - T D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - D J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - V L Ellingrod
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - A F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.,Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Lim M, Jassar H, Kim DJ, Nascimento TD, DaSilva AF. Differential alteration of fMRI signal variability in the ascending trigeminal somatosensory and pain modulatory pathways in migraine. J Headache Pain 2021; 22:4. [PMID: 33413090 PMCID: PMC7791681 DOI: 10.1186/s10194-020-01210-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The moment-to-moment variability of resting-state brain activity has been suggested to play an active role in chronic pain. Here, we investigated the regional blood-oxygen-level-dependent signal variability (BOLDSV) and inter-regional dynamic functional connectivity (dFC) in the interictal phase of migraine and its relationship with the attack severity. METHODS We acquired resting-state functional magnetic resonance imaging from 20 migraine patients and 26 healthy controls (HC). We calculated the standard deviation (SD) of the BOLD time-series at each voxel as a measure of the BOLD signal variability (BOLDSV) and performed a whole-brain voxel-wise group comparison. The brain regions showing significant group differences in BOLDSV were used to define the regions of interest (ROIs). The SD and mean of the dynamic conditional correlation between those ROIs were calculated to measure the variability and strength of the dFC. Furthermore, patients' experimental pain thresholds and headache pain area/intensity levels during the migraine ictal-phase were assessed for clinical correlations. RESULTS We found that migraineurs, compared to HCs, displayed greater BOLDSV in the ascending trigeminal spinal-thalamo-cortical pathways, including the spinal trigeminal nucleus, pulvinar/ventral posteromedial (VPM) nuclei of the thalamus, primary somatosensory cortex (S1), and posterior insula. Conversely, migraine patients exhibited lower BOLDSV in the top-down modulatory pathways, including the dorsolateral prefrontal (dlPFC) and inferior parietal (IPC) cortices compared to HCs. Importantly, abnormal interictal BOLDSV in the ascending trigeminal spinal-thalamo-cortical and frontoparietal pathways were associated with the patient's headache severity and thermal pain sensitivity during the migraine attack. Migraineurs also had significantly lower variability and greater strength of dFC within the thalamo-cortical pathway (VPM-S1) than HCs. In contrast, migraine patients showed greater variability and lower strength of dFC within the frontoparietal pathway (dlPFC-IPC). CONCLUSIONS Migraine is associated with alterations in temporal signal variability in the ascending trigeminal somatosensory and top-down modulatory pathways, which may explain migraine-related pain and allodynia. Contrasting patterns of time-varying connectivity within the thalamo-cortical and frontoparietal pathways could be linked to abnormal network integrity and instability for pain transmission and modulation.
Collapse
Affiliation(s)
- Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Hassan Jassar
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Dajung J. Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thiago D. Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave, Room 1014A, Ann Arbor, MI 48109-1078 USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
24
|
The association between daily physical exercise and pain among women with fibromyalgia: the moderating role of pain catastrophizing. Pain Rep 2020; 5:e832. [PMID: 32766468 PMCID: PMC7390593 DOI: 10.1097/pr9.0000000000000832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022] Open
Abstract
Daily physical exercise is associated with more self-reported pain intensity in women with fibromyalgia pain, particularly among those with higher levels of pain catastrophizing. Introduction: Fibromyalgia (FM) is a condition marked by widespread chronic pain and an array of somatic and psychological symptoms. The primary objective of this study was to explore daily associations between physical activity and pain intensity among a sample of women with FM and the potential moderation of this association by pain catastrophizing. Methods: Women with FM (N = 107) completed questionnaires assessing pain, FM symptoms, and psychological measures and were then asked to report their levels of daily pain catastrophizing, physical activity, and pain intensity once per day for a period of 1 week using daily electronic diary-based tracking. In addition, objective measures of physical activity were collected using an activity tracker (Fitbit Flex), which measured step counts. Daily self-report physical activity was used as the independent variable and pain intensity (Brief Pain Inventory) was the outcome, whereas daily pain catastrophizing was tested in the model as the potential moderator. Results: Moderation analyses demonstrated associations between physical activity and pain intensity, which were moderated by patient's level of catastrophizing (B = 0.003, SE = 0.001, P < 0.05), with patients scoring higher in daily catastrophizing showing a relatively stronger link between higher day-to-day physical activity and increased daily FM pain. Significant associations were observed between pain catastrophizing, pain intensity, and Fitbit Flex step count (P < 0.05). Conclusions: Our findings suggest that increases in daily physical activity is associated with more self-reported pain intensity in women with FM pain, particularly among those with higher levels of pain catastrophizing.
Collapse
|
25
|
Beliefs about the body and pain: the critical role in musculoskeletal pain management. Braz J Phys Ther 2020; 25:17-29. [PMID: 32616375 DOI: 10.1016/j.bjpt.2020.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Beliefs about the body and pain play a powerful role in behavioural and emotional responses to musculoskeletal pain. What a person believes and how they respond to their musculoskeletal pain can influence how disabled they will be by pain. Importantly, beliefs are modifiable and are therefore considered an important target for the treatment of pain-related disability. Clinical guidelines recommend addressing unhelpful beliefs as the first line of treatment in all patients presenting with musculoskeletal pain. However, many clinicians hold unhelpful beliefs themselves; while others feel ill-equipped to explore and target the beliefs driving unhelpful responses to pain. As a result, clinicians may reinforce unhelpful beliefs, behaviours and resultant disability among the patients they treat. METHODS To assist clinicians, in Part 1 of this paper we discuss what beliefs are; how they are formed; the impact they can have on a person's behaviour, emotional responses and outcomes of musculoskeletal pain. In Part 2, we discuss how we can address beliefs in clinical practice. A clinical case is used to illustrate the critical role that beliefs can have on a person's journey from pain and disability to recovery. CONCLUSIONS We encourage clinicians to exercise self-reflection to explore their own beliefs and better understand their biases, which may influence their management of patients with musculoskeletal pain. We suggest actions that may benefit their practice, and we propose key principles to guide a process of behavioural change.
Collapse
|