1
|
Vargas Gonzalez E, Yang Z, Dodet P, Leu-Semenescu S, Londner C, Patout M, Straus C, Similowski T, Grabli D, Vidailhet M, Arnulf I. Increased sighing during sleep as a marker of multiple system atrophy. NPJ Parkinsons Dis 2024; 10:176. [PMID: 39285169 PMCID: PMC11405711 DOI: 10.1038/s41531-024-00765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/01/2024] [Indexed: 09/22/2024] Open
Abstract
Parkinson's disease (PD) and multiple system atrophy (MSA) can be preceded by isolated REM sleep behavior disorder (iRBD). As excessive sighing during wakefulness is a red flag for MSA in individuals with parkinsonism, we measured sighing during slow wave sleep (N3) and REM sleep as potential biomarkers in 73 participants with MSA, 111 with iRBD, 257 with PD, and 115 controls. The number of sighs/hour of N3 (index) was higher in the MSA group than in the other groups. Sighs were rarer in REM sleep than in N3 sleep. A sigh index greater than 3.4/h of N3 was 95% sensitive in discriminating participants with MSA from controls, and a sigh index greater than 0.8 sigh/h of REM sleep was 87% specific in discriminating participants with MSA from controls. MSA participants with (vs. without) sigh were younger, had a lower apnea-hypopnea index (but no more stridor), and had no other difference in motor, autonomic, cognitive, and sensory symptoms. The sigh index could be used for screening for MSA in the millions of middle-aged persons who receive polysomnography for other purposes. Whether sighing in iRBD predicts preferential conversion towards MSA should be measured in a longitudinal study.
Collapse
Affiliation(s)
- Estefania Vargas Gonzalez
- Sorbonne University, Paris, France
- Bioserenity, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
| | - Zhongmei Yang
- University-Town Hospital of Chongqing Medical University, Department of Neurology, Chongqing, China
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Pauline Dodet
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Smaranda Leu-Semenescu
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Cécile Londner
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maxime Patout
- Sorbonne University, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Christian Straus
- Sorbonne University, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP. Sorbonne Université, Site Pitié-Salpêtrière, Service d'Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée, Département, Paris, France
| | - Thomas Similowski
- Sorbonne University, Paris, France
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département, Paris, France
| | - David Grabli
- Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Marie Vidailhet
- Sorbonne University, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Isabelle Arnulf
- Sorbonne University, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, France.
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France.
| |
Collapse
|
2
|
Bush NE, Ramirez JM. Latent neural population dynamics underlying breathing, opioid-induced respiratory depression and gasping. Nat Neurosci 2024; 27:259-271. [PMID: 38182835 PMCID: PMC10849970 DOI: 10.1038/s41593-023-01520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Breathing is vital and must be concurrently robust and flexible. This rhythmic behavior is generated and maintained within a rostrocaudally aligned set of medullary nuclei called the ventral respiratory column (VRC). The rhythmic properties of individual VRC nuclei are well known, yet technical challenges have limited the interrogation of the entire VRC population simultaneously. Here we characterize over 15,000 medullary units using high-density electrophysiology, opto-tagging and histological reconstruction. Population dynamics analysis reveals consistent rotational trajectories through a low-dimensional neural manifold. These rotations are robust and maintained even during opioid-induced respiratory depression. During severe hypoxia-induced gasping, the low-dimensional dynamics of the VRC reconfigure from rotational to all-or-none, ballistic efforts. Thus, latent dynamics provide a unifying lens onto the activities of large, heterogeneous populations of neurons involved in the simple, yet vital, behavior of breathing, and well describe how these populations respond to a variety of perturbations.
Collapse
Affiliation(s)
- Nicholas Edward Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Severs LJ, Bush NE, Quina LA, Hidalgo-Andrade S, Burgraff NJ, Dashevskiy T, Shih AY, Baertsch NA, Ramirez JM. Purinergic signaling mediates neuroglial interactions to modulate sighs. Nat Commun 2023; 14:5300. [PMID: 37652903 PMCID: PMC10471608 DOI: 10.1038/s41467-023-40812-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC). Our experimental evidence suggests that purinergic signaling is necessary to generate spontaneous and hypoxia-induced sighs in a mouse model. Our results demonstrate that driving calcium increases in astrocytes through pharmacological methods robustly increases sigh, but not eupnea, frequency. Calcium imaging of preBötC slices corroborates this finding with an increase in astrocytic calcium upon application of sigh modulators, increasing intracellular calcium through g-protein signaling. Moreover, photo-activation of preBötC astrocytes is sufficient to elicit sigh activity, and this response is blocked with purinergic antagonists. We conclude that sighs are modulated through neuron-glia coupling in the preBötC network, where the distinct modulatory responses of neurons and glia allow for both rhythms to be independently regulated.
Collapse
Affiliation(s)
- Liza J Severs
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Skyler Hidalgo-Andrade
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA.
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
5
|
Yu B, Wang Y, Gao S. Motor Rhythm Dissection From the Backward Circuit in C. elegans. Front Mol Neurosci 2022; 15:845733. [PMID: 35370545 PMCID: PMC8966088 DOI: 10.3389/fnmol.2022.845733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
Motor rhythm is initiated and sustained by oscillatory neuronal activity. We recently discovered that the A-class excitatory motor neurons (MNs) (A-MNs) function as intrinsic oscillators. They drive backward locomotion by generating rhythmic postsynaptic currents (rPSCs) in body wall muscles. Molecular underpinning of the rPSCs, however, is not fully elucidated. We report here that there are three types of the rPSC patterns, namely the phasic, tonic, and long-lasting, each with distinct kinetics and channel-dependence. The Na+ leak channel is required for all rPSC patterns. The tonic rPSCs exhibit strong dependence on the high-voltage-gated Ca2+ channels. Three K+ channels, the BK-type Ca2+-activated K+ channel, Na+-activated K+ channel, and voltage-gated K+ channel (Kv4), primarily inhibit tonic and long-lasting rPSCs with varying degrees and preferences. The elaborate regulation of rPSCs by different channels, through increasing or decreasing the rPSCs frequency and/or charge, correlates with the changes in the reversal velocity for respective channel mutants. The molecular dissection of different A-MNs-rPSC components therefore reveals different mechanisms for multiplex motor rhythm.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shangbang Gao,
| |
Collapse
|
6
|
Severs L, Vlemincx E, Ramirez JM. The psychophysiology of the sigh: I: The sigh from the physiological perspective. Biol Psychol 2022; 170:108313. [DOI: 10.1016/j.biopsycho.2022.108313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
|
7
|
Abstract
Breathing is a critical, complex, and highly integrated behavior. Normal rhythmic breathing, also referred to as eupnea, is interspersed with different breathing related behaviors. Sighing is one of such behaviors, essential for maintaining effective gas exchange by preventing the gradual collapse of alveoli in the lungs, known as atelectasis. Critical for the generation of both sighing and eupneic breathing is a region of the medulla known as the preBötzinger Complex (preBötC). Efforts are underway to identify the cellular pathways that link sighing as well as sneezing, yawning, and hiccupping with other brain regions to better understand how they are integrated and regulated in the context of other behaviors including chemosensation, olfaction, and cognition. Unraveling these interactions may provide important insights into the diverse roles of these behaviors in the initiation of arousal, stimulation of vigilance, and the relay of certain behavioral states. This chapter focuses primarily on the function of the sigh, how it is locally generated within the preBötC, and what the functional implications are for a potential link between sighing and cognitive regulation. Furthermore, we discuss recent insights gained into the pathways and mechanisms that control yawning, sneezing, and hiccupping.
Collapse
|
8
|
Abstract
Opiates, such as morphine, and synthetic opioids, such as fentanyl, constitute a class of drugs acting on opioid receptors which have been used therapeutically and recreationally for centuries. Opioid drugs have strong analgesic properties and are used to treat moderate to severe pain, but also present side effects including opioid dependence, tolerance, addiction, and respiratory depression, which can lead to lethal overdose if not treated. This chapter explores the pathophysiology, the neural circuits, and the cellular mechanisms underlying opioid-induced respiratory depression and provides a translational perspective of the most recent research. The pathophysiology discussed includes the effects of opioid drugs on the respiratory system in patients, as well as the animal models used to identify underlying mechanisms. Using a combination of gene editing and pharmacology, the neural circuits and molecular pathways mediating neuronal inhibition by opioids are examined. By using pharmacology and neuroscience approaches, new therapies to prevent or reverse respiratory depression by opioid drugs have been identified and are currently being developed. Considering the health and economic burden associated with the current opioid epidemic, innovative research is needed to better understand the side effects of opioid drugs and to discover new therapeutic solutions to reduce the incidence of lethal overdoses.
Collapse
|
9
|
Layer N, Brandes J, Lührs PJ, Wuttke TV, Koch H. The effect of lamotrigine and other antiepileptic drugs on respiratory rhythm generation in the pre-Bötzinger complex. Epilepsia 2021; 62:2790-2803. [PMID: 34553376 DOI: 10.1111/epi.17066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lamotrigine and other sodium-channel blocking agents are among the most commonly used antiepileptic drugs (AEDs). Because other sodium channel blockers, such as riluzole, can severely alter respiratory rhythm generation during hypoxia, we wanted to investigate if AEDs can have similar effects. This is especially important in the context of sudden unexpected death in epilepsy (SUDEP), the major cause of death in patients suffering from therapy-resistant epilepsy. Although the mechanism of action is not entirely understood, respiratory dysfunction after generalized tonic-clonic seizures seems to play a major role. METHODS We used transverse brainstem slice preparations from neonatal and juvenile mice containing the pre-Bötzinger complex (PreBötC) and measured population as well as intracellular activity of the rhythm-generating network under normoxia and hypoxia in the presence or absence of AEDs. RESULTS We found a substantial inhibition of the gasping response induced by the application of sodium channel blockers (lamotrigine and carbamazepine). In contrast, levetiracetam, an AED-modulating synaptic function, had a much smaller effect. The inhibition of gasping by lamotrigine was accompanied by a significant reduction of the persistent sodium current (INap) in PreBötC neurons. Surprisingly, the suppression of persistent sodium currents by lamotrigine did not affect the voltage-dependent bursting activity in PreBötC pacemaker neurons, but led to a hypoxia-dependent shift of the action potential rheobase in all measured PreBötC neurons. SIGNIFICANCE Our results contribute to the understanding of the effects of AEDs on the vital respiratory functions of the central nervous system. Moreover, our study adds further insight into sodium-dependent changes occurring during hypoxia and the contribution of cellular properties to the respiratory rhythm generation in the pre-Bötzinger complex. It raises the question of whether sodium channel blocking AEDs could, in conditions of extreme hypoxia, contribute to SUDEP, an important issue that warrants further studies.
Collapse
Affiliation(s)
- Nikolas Layer
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janine Brandes
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Philipp Justus Lührs
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Epileptology, Neurology, RWTH University of Aachen, Aachen, Germany
| |
Collapse
|
10
|
Shi J, Wang H, Shi S, Yuan G, Jia Q, Shi S, Zhang X, Hu Y. Bibliometric analysis of calcium channel research (2010-2019). Channels (Austin) 2020; 14:193-202. [PMID: 32654583 PMCID: PMC7515533 DOI: 10.1080/19336950.2020.1788903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Calcium channels are involved in pathologies across all the major therapeutic areas involving the cardiac, neurological, metabolic, and respiratory systems. Although calcium channels have been the hotspot of multidisciplinary research for decades, the hotspots and frontier trends of calcium channel research have not been comprehensively analyzed by bibliometrics. Here, we collected scientific publications on calcium channel research in the past decade to explore the hotspots and frontier directions of calcium channel research by bibliometric analysis. Publications were retrieved from the Web of Science Core Collection (WOSCC) database from 2010 to 2019. Citespace5.6 R5 was used to perform bibliometric analysis on the countries, institutions, authors, and related research areas. In total, 26,664 articles were analyzed. The United States and the University of California are the most productive country and institution for calcium channel research. The most productive researchers were Lang, Florian, Zamponi, Gerald W, and Jan, Chung-Ren. PLoS One had the most significant number of publications (986). Research hotspots can be summarized as the regulation mechanism of calcium channels, calcium channel blockers, and ryanodine receptor. The research frontiers were the effect of calcium channel on cell proliferation, gene mutation, calcium channels in neuropathic pain, and calcium-signaling pathway. This is the first report to visualize and analyze hotspots and emerging trends in calcium channel research.
Collapse
Affiliation(s)
- Jingjing Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - QiuLei Jia
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Shi
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuesong Zhang
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Moya‐Díaz J, Bayonés L, Montenegro M, Cárdenas AM, Koch H, Doi A, Marengo FD. Ca 2+ -independent and voltage-dependent exocytosis in mouse chromaffin cells. Acta Physiol (Oxf) 2020; 228:e13417. [PMID: 31769918 DOI: 10.1111/apha.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
AIM It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Collapse
Affiliation(s)
- José Moya‐Díaz
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Mauricio Montenegro
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso Facultad de Ciencias Universidad de Valparaíso Valparaíso Chile
| | - Henner Koch
- Center for Integrative Brain Research Seattle Children's Research Institute Seattle WA USA
- Department of Neurology and Epileptology Hertie‐Institute for Clinical Brain ResearchUniversity of Tübingen Tübingen Germany
| | - Atsushi Doi
- Department of Rehabilitation Graduate School of Health Science Kumamoto Health Science University Kumamoto Japan
| | - Fernando D. Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias Departamento de Fisiología y Biología Molecular y Celular Facultad de Ciencias Exactas y Naturales Universidad de Buenos AiresConsejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| |
Collapse
|
12
|
Zheng F, Nixdorf-Bergweiler BE, Edelmann E, van Brederode JFM, Alzheimer C. Muscarinic Modulation of Morphologically Identified Glycinergic Neurons in the Mouse PreBötzinger Complex. Front Cell Neurosci 2020; 13:562. [PMID: 31998077 PMCID: PMC6962194 DOI: 10.3389/fncel.2019.00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
The cholinergic system plays an essential role in central respiratory control, but the underlying mechanisms remain elusive. We used whole-cell recordings in brainstem slices from juvenile mice expressing enhanced green fluorescent protein (EGFP) under the control of the glycine transporter type 2 (GlyT2) promoter, to examine muscarinic modulation of morphologically identified glycinergic neurons in the preBötzinger complex (preBötC), an area critical for central inspiratory rhythm generation. Biocytin-filled reconstruction of glycinergic neurons revealed that the majority of them had few primary dendrites and had axons arborized within their own dendritic field. Few glycinergic neurons had axon collaterals extended towards the premotor/motor areas or ran towards the contralateral preBötC, and had more primary dendrites and more compact dendritic trees. Spontaneously active glycinergic neurons fired regular spikes, or less frequently in a "burst-like" pattern at physiological potassium concentration. Muscarine suppressed firing in the majority of regular spiking neurons via M2 receptor activation while enhancing the remaining neurons through M1 receptors. Interestingly, rhythmic bursting was augmented by muscarine in a small group of glycinergic neurons. In contrast to its heterogeneous modulation of glycinergic neuronal excitability, muscarine generally depressed inhibitory and excitatory synaptic inputs onto both glycinergic and non-glycinergic preBötC neurons, with a stronger effect on inhibitory input. Notably, presynaptic muscarinic attenuation of excitatory synaptic input was dependent on M1 receptors in glycinergic neurons and on M2 receptors in non-glycinergic neurons. Additional field potential recordings of excitatory synaptic potentials in the M2 receptor knockout mice indicate that glycinergic and non-glycinergic neurons contribute equally to the general suppression by muscarine of excitatory activity in preBötC circuits. In conclusion, our data show that preBötC glycinergic neurons are morphologically heterogeneous, and differ in the properties of synaptic transmission and muscarinic modulation in comparison to non-glycinergic neurons. The dominant and cell-type-specific muscarinic inhibition of synaptic neurotransmission and spiking may contribute to central respiratory disturbances in high cholinergic states.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara E Nixdorf-Bergweiler
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Johannes F M van Brederode
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019; 10:1407. [PMID: 31824331 PMCID: PMC6882777 DOI: 10.3389/fphys.2019.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) is the major cause of death associated with opioid analgesics and drugs of abuse, but the underlying cellular and molecular mechanisms remain poorly understood. We investigated opioid action in vivo in unanesthetized mice and in in vitro medullary slices containing the preBötzinger Complex (preBötC), a locus critical for breathing and inspiratory rhythm generation. Although hypothesized as a primary mechanism, we found that mu-opioid receptor (MOR1)-mediated GIRK activation contributed only modestly to OIRD. Instead, mEPSC recordings from genetically identified Dbx1-derived interneurons, essential for rhythmogenesis, revealed a prevalent presynaptic mode of action for OIRD. Consistent with MOR1-mediated suppression of presynaptic release as a major component of OIRD, Cacna1a KO slices lacking P/Q-type Ca2+ channels enhanced OIRD. Furthermore, OIRD was mimicked and reversed by KCNQ potassium channel activators and blockers, respectively. In vivo whole-body plethysmography combined with systemic delivery of GIRK- and KCNQ-specific potassium channel drugs largely recapitulated these in vitro results, and revealed state-dependent modulation of OIRD. We propose that respiratory failure from OIRD results from a general reduction of synaptic efficacy, leading to a state-dependent collapse of rhythmic network activity.
Collapse
Affiliation(s)
- Aguan D. Wei
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
14
|
Kruszynski S, Stanaitis K, Brandes J, Poets CF, Koch H. Doxapram stimulates respiratory activity through distinct activation of neurons in the nucleus hypoglossus and the pre-Bötzinger complex. J Neurophysiol 2019; 121:1102-1110. [DOI: 10.1152/jn.00304.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doxapram is a respiratory stimulant used for decades as a treatment option in apnea of prematurity refractory to methylxanthine treatment. Its mode of action, however, is still poorly understood. We investigated direct effects of doxapram on the pre-Bötzinger complex (PreBötC) and on a downstream motor output system, the hypoglossal nucleus (XII), in the transverse brainstem slice preparation. While doxapram has only a modest stimulatory effect on frequency of activity generated within the PreBötC, a much more robust increase in the amplitude of population activity in the subsequent motor output generated in the XII was observed. In whole cell patch-clamp recordings of PreBötC and XII neurons, we confirmed significantly increased firing of evoked action potentials in XII neurons in the presence of doxapram, while PreBötC neurons showed no significant alteration in firing properties. Interestingly, the amplitude of activity in the motor output was not increased in the presence of doxapram compared with control conditions during hypoxia. We conclude that part of the stimulatory effects of doxapram is caused by direct input on brainstem centers with differential effects on the rhythm generating kernel (PreBötC) and the downstream motor output (XII). NEW & NOTEWORTHY The clinically used respiratory stimulant doxapram has distinct effects on the rhythm generating kernel (pre-Bötzinger complex) and motor output centers (nucleus hypoglossus). These effects are obliterated during hypoxia and are mediated by distinct changes in the intrinsic properties of neurons of the nucleus hypoglossus and synaptic transmission received by pre-Bötzinger complex neurons.
Collapse
Affiliation(s)
- Sandra Kruszynski
- Department of Neonatology, Tübingen University Hospital, Tübingen, Germany
| | - Kornelijus Stanaitis
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janine Brandes
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christian F. Poets
- Department of Neonatology, Tübingen University Hospital, Tübingen, Germany
| | - Henner Koch
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Phillips RS, John TT, Koizumi H, Molkov YI, Smith JC. Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model. eLife 2019; 8:41555. [PMID: 30907727 PMCID: PMC6433470 DOI: 10.7554/elife.41555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
An autorhythmic population of excitatory neurons in the brainstem pre-Bötzinger complex is a critical component of the mammalian respiratory oscillator. Two intrinsic neuronal biophysical mechanisms—a persistent sodium current (INaP) and a calcium-activated non-selective cationic current (ICAN)—were proposed to individually or in combination generate cellular- and circuit-level oscillations, but their roles are debated without resolution. We re-examined these roles in a model of a synaptically connected population of excitatory neurons with ICAN and INaP. This model robustly reproduces experimental data showing that rhythm generation can be independent of ICAN activation, which determines population activity amplitude. This occurs when ICAN is primarily activated by neuronal calcium fluxes driven by synaptic mechanisms. Rhythm depends critically on INaP in a subpopulation forming the rhythmogenic kernel. The model explains how the rhythm and amplitude of respiratory oscillations involve distinct biophysical mechanisms.
Collapse
Affiliation(s)
- Ryan S Phillips
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States.,Department of Physics, University of New Hampshire, Durham, United States
| | - Tibin T John
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Hidehiko Koizumi
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, United States.,Neuroscience Institute, Georgia State University, Atlanta, United States
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
16
|
Thoby-Brisson M. Neural mechanisms for sigh generation during prenatal development. J Neurophysiol 2018; 120:1162-1172. [PMID: 29897860 DOI: 10.1152/jn.00314.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory network of the preBötzinger complex (preBötC), which controls inspiratory behavior, can in normal conditions simultaneously produce two types of inspiration-related rhythmic activities: the eupneic rhythm composed of monophasic, low-amplitude, and relatively high-frequency bursts, interspersed with sigh rhythmic activity, composed of biphasic, high-amplitude, and lower frequency bursts. By combining electrophysiological recordings from transverse brainstem slices with computational modeling, new advances in the mechanisms underlying sigh production have been obtained during prenatal development. The present review summarizes recent findings that establish when sigh rhythmogenesis starts to be produced during embryonic development as well as the cellular, membrane, and synaptic properties required for its expression. Together, the results demonstrate that although generated by the same network, the eupnea and sigh rhythms have different developmental onset times and rely on distinct network properties. Because sighs (also known as augmented breaths) are important in maintaining lung function (by reopening collapsed alveoli), gaining insight into their underlying neural mechanisms at early developmental stages is likely to help in the treatment of prematurely born babies often suffering from breathing deficiencies.
Collapse
Affiliation(s)
- Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux , Bordeaux , France
| |
Collapse
|
17
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
18
|
Respiratory Rhythm Generation: The Whole Is Greater Than the Sum of the Parts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:147-161. [DOI: 10.1007/978-3-319-62817-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Jung D, Hwang YJ, Ryu H, Kano M, Sakimura K, Cho J. Conditional Knockout of Cav2.1 Disrupts the Accuracy of Spatial Recognition of CA1 Place Cells and Spatial/Contextual Recognition Behavior. Front Behav Neurosci 2016; 10:214. [PMID: 27857685 PMCID: PMC5093114 DOI: 10.3389/fnbeh.2016.00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022] Open
Abstract
Hippocampal pyramidal neurons play an essential role in processing spatial information as implicated with its place-dependent firing. Although, previous slice physiology studies have reported that voltage gated calcium channels contribute to spike shapes and corresponding firing rate in the hippocampus, the roles of P/Q type calcium channels (Cav2.1) underlying neural activity in behaving mice have not been well-investigated. To determine physiological and behavioral roles of Cav2.1, we conducted place cell recordings in CA1 and hippocampus dependent learning/memory tasks using mice lacking Cav2.1 in hippocampal pyramidal neurons under CamK2α-Cre recombinase expression. Results suggested that impairments shown in behavioral tasks requiring spatial and contextual information processing were statistically significant while general neurological behaviors did not differ between groups. In particular, deficits were more profound in recognition than in acquisition. Furthermore, place cell recordings also revealed that the ability to recollect spatial representation on re-visit in the conditional knockout was also altered in terms of the cue recognition while the capability of a place cell to encode a place was intact compared to the control group. Interestingly, CA1 pyramidal neurons of conditional knockout mice showed reduced burst frequency as well as abnormal temporal patterns of burst spiking. These results provide potential evidence that Cav2.1 in hippocampal pyramidal cells modulates temporal integration of bursts, which, in turn, might influence the recognition of place field and consequently disrupt spatial recognition ability.
Collapse
Affiliation(s)
- Dahee Jung
- Center for Neuroscience, Korea Institute of Science and TechnologySeoul, South Korea; Neuroscience Program, Korea University of Science and TechnologyDaejeon, South Korea
| | - Yu J Hwang
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology Seoul, South Korea
| | - Hoon Ryu
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and TechnologySeoul, South Korea; VA Boston Healthcare System, Department of Neurology and Boston University Alzheimer's Disease Centre, Boston University School of Medicine, BostonMA, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, University of Tokyo Tokyo, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Jeiwon Cho
- Center for Neuroscience, Korea Institute of Science and TechnologySeoul, South Korea; Neuroscience Program, Korea University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
20
|
Rajani V, Zhang Y, Revill A, Funk G. The role of P2Y1 receptor signaling in central respiratory control. Respir Physiol Neurobiol 2016; 226:3-10. [DOI: 10.1016/j.resp.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
|
21
|
Garcia AJ, Zanella S, Dashevskiy T, Khan SA, Khuu MA, Prabhakar NR, Ramirez JM. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex. Front Neurosci 2016; 10:4. [PMID: 26869872 PMCID: PMC4740384 DOI: 10.3389/fnins.2016.00004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA) and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC) is a pre-motor respiratory network critical for inspiratory rhythm generation. Here, we test the hypothesis that CIH increases irregular output from the isolated preBötC, which can be mitigated by antioxidant treatment. Electrophysiological recordings from brainstem slices revealed that CIH enhanced burst-to-burst irregularity in period and/or amplitude. Irregularities represented a change in individual fidelity among preBötC neurons, and changed transmission from preBötC to the hypoglossal motor nucleus (XIIn), which resulted in increased transmission failure to XIIn. CIH increased the degree of lipid peroxidation in the preBötC and treatment with the antioxidant, 5,10,15,20-Tetrakis (1-methylpyridinium-4-yl)-21H,23H-porphyrin manganese(III) pentachloride (MnTMPyP), reduced CIH-mediated irregularities on the network rhythm and improved transmission of preBötC to the XIIn. These findings suggest that CIH promotes a pro-oxidant state that destabilizes rhythmogenesis originating from the preBötC and changes the local rhythm generating circuit which in turn, can lead to intermittent transmission failure to the XIIn. We propose that these CIH-mediated effects represent a part of the central mechanism that may perpetuate apneas and respiratory instability, which are hallmark traits in several dysautonomic conditions.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Sebastien Zanella
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Tatiana Dashevskiy
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Shakil A Khan
- Institute for Integrative Physiology, The University of Chicago Chicago, IL, USA
| | - Maggie A Khuu
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
| | - Nanduri R Prabhakar
- Institute for Integrative Physiology, The University of Chicago Chicago, IL, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research InstituteSeattle, WA, USA; Departments of Neurological Surgery and Pediatrics, University of WashingtonSeattle, WA, USA
| |
Collapse
|
22
|
Toporikova N, Chevalier M, Thoby-Brisson M. Sigh and Eupnea Rhythmogenesis Involve Distinct Interconnected Subpopulations: A Combined Computational and Experimental Study. eNeuro 2015; 2:ENEURO.0074-14.2015. [PMID: 26464980 PMCID: PMC4596094 DOI: 10.1523/eneuro.0074-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/21/2023] Open
Abstract
Neural networks control complex motor outputs by generating several rhythmic neuronal activities, often with different time scales. One example of such a network is the pre-Bötzinger complex respiratory network (preBötC) that can simultaneously generate fast, small-amplitude, monophasic eupneic breaths together with slow, high-amplitude, biphasic augmented breaths (sighs). However, the underlying rhythmogenic mechanisms for this bimodal discharge pattern remain unclear, leaving two possible explanations: the existence of either reconfiguring processes within the same network or two distinct subnetworks. Based on recent in vitro data obtained in the mouse embryo, we have built a computational model consisting of two compartments, interconnected through appropriate synapses. One compartment generates sighs and the other produces eupneic bursts. The model reproduces basic features of simultaneous sigh and eupnea generation (two types of bursts differing in terms of shape, amplitude, and frequency of occurrence) and mimics the effect of blocking glycinergic synapses. Furthermore, we used this model to make predictions that were subsequently tested on the isolated preBötC in mouse brainstem slice preparations. Through a combination of in vitro and in silico approaches we find that (1) sigh events are less sensitive to network excitability than eupneic activity, (2) calcium-dependent mechanisms and the Ih current play a prominent role in sigh generation, and (3) specific parameters of Ih activation set the low sensitivity to excitability in the sigh neuronal subset. Altogether, our results strongly support the hypothesis that distinct subpopulations within the preBötC network are responsible for sigh and eupnea rhythmogenesis.
Collapse
Affiliation(s)
- Natalia Toporikova
- Department of Biology, Washington and Lee University, Lexington, Virginia 24450
| | - Marc Chevalier
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33076 Bordeaux, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, CNRS UMR 5287, Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
23
|
Koch H, Caughie C, Elsen FP, Doi A, Garcia AJ, Zanella S, Ramirez JM. Prostaglandin E2 differentially modulates the central control of eupnoea, sighs and gasping in mice. J Physiol 2014; 593:305-19. [PMID: 25556802 DOI: 10.1113/jphysiol.2014.279794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/24/2014] [Indexed: 01/10/2023] Open
Abstract
Prostaglandin E2 (PGE2) augments distinct inspiratory motor patterns, generated within the preBötzinger complex (preBötC), in a dose-dependent way. The frequency of sighs and gasping are stimulated at low concentrations, while the frequency of eupnoea increases only at high concentrations. We used in vivo microinjections into the preBötC and in vitro isolated brainstem slice preparations to investigate the dose-dependent effects of PGE2 on the preBötC activity. Synaptic measurements in whole cell voltage clamp recordings of inspiratory neurons revealed no changes in inhibitory or excitatory synaptic transmission in response to PGE2 exposure. In current clamp recordings obtained from inspiratory neurons of the preBötC, we found an increase in the frequency and amplitude of bursting activity in neurons with intrinsic bursting properties after exposure to PGE2. Riluzole, a blocker of the persistent sodium current, abolished the effect of PGE2 on sigh activity, while flufenamic acid, a blocker of the calcium-activated non-selective cation conductance, abolished the effect on eupnoeic activity caused by PGE2. Prostaglandins are important regulators of autonomic functions in the mammalian organism. Here we demonstrate in vivo that prostaglandin E2 (PGE2) can differentially increase the frequency of eupnoea (normal breathing) and sighs (augmented breaths) when injected into the preBötzinger complex (preBötC), a medullary area that is critical for breathing. Low concentrations of PGE2 (100-300 nm) increased the sigh frequency, while higher concentrations (1-2 μm) were required to increase the eupnoeic frequency. The concentration-dependent effects were similarly observed in the isolated preBötC. This in vitro preparation also revealed that riluzole, a blocker of the persistent sodium current (INap), abolished the modulatory effect on sighs, while flufenamic acid, an antagonist for the calcium-activated non-selective cation conductance (ICAN ) abolished the effect of PGE2 on fictive eupnoea at higher concentrations. At the cellular level PGE2 significantly increased the amplitude and frequency of intrinsic bursting in inspiratory neurons. By contrast PGE2 affected neither excitatory nor inhibitory synaptic transmission. We conclude that PGE2 differentially modulates sigh, gasping and eupnoeic activity by differentially increasing INap and ICAN currents in preBötC neurons.
Collapse
Affiliation(s)
- Henner Koch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, 98104, USA; Department of Neurology, University of Tübingen, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Agosti F, López Soto EJ, Cabral A, Castrogiovanni D, Schioth HB, Perelló M, Raingo J. Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons. Eur J Neurosci 2014; 40:2755-65. [PMID: 24943127 DOI: 10.1111/ejn.12650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the Gαs pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ω conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.
Collapse
Affiliation(s)
- Francina Agosti
- Laboratory of Electrophysiology, Multidisciplinary Institute of Cell Biology (IMBICE), Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
Chapuis C, Autran S, Fortin G, Simmers J, Thoby-Brisson M. Emergence of sigh rhythmogenesis in the embryonic mouse. J Physiol 2014; 592:2169-81. [PMID: 24591570 DOI: 10.1113/jphysiol.2013.268730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In mammals, eupnoeic breathing is periodically interrupted by spontaneous augmented breaths (sighs) that include a larger-amplitude inspiratory effort, typically followed by a post-sigh apnoea. Previous in vitro studies in newborn rodents have demonstrated that the respiratory oscillator of the pre-Bötzinger complex (preBötC) can generate the distinct inspiratory motor patterns for both eupnoea- and sigh-related behaviour. During mouse embryonic development, the preBötC begins to generate eupnoeic rhythmicity at embryonic day (E) 15.5, but the network's ability to also generate sigh-like activity remains unexplored at prenatal stages. Using transverse brainstem slice preparations we monitored the neuronal population activity of the preBötC at different embryonic ages. Spontaneous sigh-like rhythmicity was found to emerge progressively, being expressed in 0/32 slices at E15.5, 7/30 at E16.5, 9/22 at E17.5 and 23/26 at E18.5. Calcium imaging showed that the preBötC cell population that participates in eupnoeic-like discharge was also active during fictive sighs. However, patch-clamp recordings revealed the existence of an additional small subset of neurons that fired exclusively during sigh activity. Changes in glycinergic inhibitory synaptic signalling, either by pharmacological blockade, functional perturbation or natural maturation of the chloride co-transporters KCC2 or NKCC1 selectively, and in an age-dependent manner, altered the bi-phasic nature of sigh bursts and their coordination with eupnoeic bursting, leading to the generation of an atypical monophasic sigh-related event. Together our results demonstrate that the developmental emergence of a sigh-generating capability occurs after the onset of eupnoeic rhythmogenesis and requires the proper maturation of chloride-mediated glycinergic synaptic transmission.
Collapse
Affiliation(s)
- Coralie Chapuis
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, 33076 Bordeaux, France
| | - Sandra Autran
- Institut de Neurobiologie Alfred Fessard, Neurobiology and Development, CNRS UPR 3294, 91190 Gif sur Yvette, France
| | - Gilles Fortin
- Institut de Neurobiologie Alfred Fessard, Neurobiology and Development, CNRS UPR 3294, 91190 Gif sur Yvette, France
| | - John Simmers
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, 33076 Bordeaux, France
| | - Muriel Thoby-Brisson
- University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, 33076 Bordeaux, France
| |
Collapse
|
26
|
Ramirez JM. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology. PROGRESS IN BRAIN RESEARCH 2014; 209:91-129. [PMID: 24746045 DOI: 10.1016/b978-0-444-63274-6.00006-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
"Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Viemari JC, Garcia AJ, Doi A, Elsen G, Ramirez JM. β-Noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro. Front Neural Circuits 2013; 7:179. [PMID: 24273495 PMCID: PMC3824105 DOI: 10.3389/fncir.2013.00179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/23/2013] [Indexed: 11/13/2022] Open
Abstract
The pre-Bötzinger complex (preBötC), an area that is critical for generating breathing (eupnea), gasps and sighs is continuously modulated by catecholamines. These amines and the generation of sighs have also been implicated in the regulation of arousal. Here we studied the catecholaminergic modulation of sighs not only in anesthetized freely breathing mice (in vivo), but also in medullary slice preparations that contain the preBötC and that generate fictive eupneic and sigh rhythms in vitro. We demonstrate that activating β-noradrenergic receptors (β-NR) specifically increases the frequency of sighs, while eupnea remains unaffected both in vitro and in vivo. β-NR activation specifically increased the frequency of intrinsically bursting pacemaker neurons that rely on persistent sodium current (I(Nap)). By contrast, all parameters of bursting pacemakers that rely on the non-specific cation current (I(CAN)) remained unaffected. Moreover, riluzole, which blocks bursting in I(Nap) pacemakers abolished sighs altogether, while flufenamic acid (FFA) which blocks the I(CAN) current did not alter the sigh-increasing effect caused by β-NR. Our results suggest that the selective β-NR action of sighs may result from the modulation of I(Nap) pacemaker activity and that disturbances in noradrenergic system may contribute to abnormal arousal response. The β-NR action on the preBötC may be an important mechanism in modulating behaviors that are specifically associated with sighs, such as the regulation of the early events leading to the arousal response.
Collapse
Affiliation(s)
- Jean-Charles Viemari
- Team P3M, Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Univesité , Marseille, France
| | | | | | | | | |
Collapse
|
28
|
Ramirez JM, Garcia AJ, Anderson TM, Koschnitzky JE, Peng YJ, Kumar GK, Prabhakar NR. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189:344-53. [PMID: 23770311 DOI: 10.1016/j.resp.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
Apnea, the cessation of breathing, is a common physiological and pathophysiological phenomenon. Among the different forms of apnea, obstructive sleep apnea (OSA) is clinically the most prominent manifestation. OSA is characterized by repetitive airway occlusions that are typically associated with peripheral airway obstructions. However, it would be an oversimplification to conclude that OSA is caused by peripheral obstructions. OSA is the result of a dynamic interplay between chemo- and mechanosensory reflexes, neuromodulation, behavioral state and the differential activation of the central respiratory network and its motor outputs. This interplay has numerous neuronal and cardiovascular consequences that are initially adaptive but in the long-term become major contributors to morbidity and mortality. Not only OSA, but also central apneas (CA) have multiple, and partly overlapping mechanisms. In OSA and CA the underlying mechanisms are neither "exclusively peripheral" nor "exclusively central" in origin. This review discusses the complex interplay of peripheral and central nervous components that characterizes the cessation of breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Montandon G, Horner RL. State-dependent contribution of the hyperpolarization-activated Na+/K+ and persistent Na+ currents to respiratory rhythmogenesis in vivo. J Neurosci 2013; 33:8716-28. [PMID: 23678115 PMCID: PMC6618818 DOI: 10.1523/jneurosci.5066-12.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 01/21/2023] Open
Abstract
How rhythms are generated by neuronal networks is fundamental to understand rhythmic behaviors such as respiration, locomotion, and mastication. Respiratory rhythm is generated by the preBötzinger complex (preBötC), an anatomically and functionally discrete population of brainstem neurons, central and necessary for respiratory rhythm. In specific in vitro conditions, preBötC neurons depend on voltage-dependent inward currents to generate respiratory rhythm. In the mature and intact organism, where preBötC neurons are deeply embedded in the respiratory network, the contribution of ionic currents to respiratory rhythm is unclear. We propose that a set of ionic currents plays a key role in generating respiratory rhythm in the mature organism in vivo. By microperfusing ionic current blockers into the preBötC of adult rats, we identify the hyperpolarization-activated cation current as a critical component of the mechanism promoting respiratory rhythm, and that this current, in combination with the persistent sodium current, is essential to respiratory rhythm in vivo. Importantly, both currents contribute to rhythmic activity in states of anesthesia, quiet wakefulness, and sleep, but not when the organism is engaged in active behaviors. These data show that a set of ionic currents at the preBötC imparts the network with rhythmicity in reduced states of arousal, although the network can override their contribution to adjust its activity for nonrhythmic behaviors in active wakefulness.
Collapse
Affiliation(s)
- Gaspard Montandon
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Richard L. Horner
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
30
|
Kang JJ, Wei XY, Liu JP, Wong-Riley MTT, Ju G, Liu YY. Expression of phospho-Ca(2+) /calmodulin-dependent protein kinase II in the pre-Bötzinger complex of rats. J Neurochem 2013; 126:349-59. [PMID: 23651084 DOI: 10.1111/jnc.12297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
The pre-Bötzinger complex (pre-BötC) in the ventrolateral medulla oblongata is a presumed kernel of respiratory rhythmogenesis. Ca(2+) -activated non-selective cationic current is an essential cellular mechanism for shaping inspiratory drive potentials. Ca(2+) /calmodulin-dependent protein kinase II (CaMKII), an ideal 'interpreter' of diverse Ca(2+) signals, is highly expressed in neurons in mediating various physiological processes. Yet, less is known about CaMKII activity in the pre-BötC. Using neurokinin-1 receptor as a marker of the pre-BötC, we examined phospho (P)-CaMKII subcellular distribution, and found that P-CaMKII was extensively expressed in the region. P-CaMKII-ir neurons were usually oval, fusiform, or pyramidal in shape. P-CaMKII immunoreactivity was distributed within somas and dendrites, and specifically in association with the post-synaptic density. In dendrites, most synapses (93.1%) examined with P-CaMKII expression were of asymmetric type, occasionally with symmetric type (6.9%), whereas in somas, 38.1% were of symmetric type. P-CaMKII asymmetric synaptic identification implicates that CaMKII may sense and monitor Ca(2+) activity, and phosphorylate post-synaptic proteins to modulate excitatory synaptic transmission, which may contribute to respiratory modulation and plasticity. In somas, CaMKII acts on both symmetric and asymmetric synapses, mediating excitatory and inhibitory synaptic transmission. P-CaMKII was also localized to the perisynaptic and extrasynaptic regions in the pre-BötC.
Collapse
Affiliation(s)
- Jun-Jun Kang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|