1
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
2
|
Ying L, Lu T, Tian Y, Guo H, Wu C, Xu C, Jin J, Zhu R, Liu P, Yang Y, Yang C, Ding W, Xu C, Huang M, Ma Z, Zhang Y, Zhuo Y, Zou R, Su D. A predictive model for prognostic risk stratification of early-stage NSCLC based on clinicopathological and miRNA panel. Lung Cancer 2024; 195:107902. [PMID: 39126888 DOI: 10.1016/j.lungcan.2024.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE The 5-year survival rate of early-stage non-small cell lung cancer (NSCLC) is still not optimistic. We aimed to construct prognostic tools using clinicopathological (CP) and serum 8-miRNA panel to predict the risk of overall survival (OS) in early-stage NSCLC. MATERIALS AND METHODS A total of 799 patients with early-stage NSCLC, treated between April 2008 and September 2019, were included in this study. A sub-group of patients with serum samples, 280, were analyzed for miRNA profiling. The primary endpoint of the study was OS. The CP panel for prognosis was developed using multivariate and forward stepwise selection analyses. The serum 8-miRNA panel was developed using the miRNAs that were significant for prognosis, screened using real-time quantitative PCR (qPCR) followed by differential, univariate and Cox regression analyses. The combined model was developed using CP panel and serum 8-miRNA panel. The predictive performance of the panels and the combined model was evaluated using the area under curve (AUC) values of receiver operating characteristics (ROC) curves and Kaplan-Meier survival analysis. RESULT The prognostic panels and the combined model (comprising CP panel and serum 8-miRNA panel) was used to classify the patients into high-risk and low-risk groups. The OS rates of these two groups were significantly different (P<0.05). The two panels had higher AUC than the two guidelines, and the combined model had the highest AUC. The AUC of the combined model (AUC=0.788; 95 %CI 0.706-0.871) was better than that of the National Comprehensive Cancer Network (NCCN) guideline (AUC=0.601; 95 %CI 0.505-0.697) and Chinese Society of Clinical Oncology (CSCO) guideline (AUC=0.614; 95 %CI 0.520-0.708). CONCLUSION The combined model based on CP panel and serum 8-miRNA panel allows better prognostic risk stratification of patients with early-stage NSCLC to predict risk of OS.
Collapse
Affiliation(s)
- Lisha Ying
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Tingting Lu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yiping Tian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Hui Guo
- MiRXES (Hangzhou) Biotechnology Co., LTD, China.
| | - Conghui Wu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Chen Xu
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Jiaoyue Jin
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Rui Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Pan Liu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Ying Yang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Chaodan Yang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Wenyu Ding
- MiRXES (Hangzhou) Biotechnology Co., LTD, China.
| | - Chenyang Xu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Minran Huang
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhengxiao Ma
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Yuting Zhang
- Zhejiang Cancer Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Yue Zhuo
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China.
| | - Ruiyang Zou
- MiRXES (Hangzhou) Biotechnology Co., LTD, China.
| | - Dan Su
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
3
|
Mlika M, Zorgati MM, Abdennadher M, Bouassida I, Mezni F, Mrabet A. The diagnostic performance of micro-RNA and metabolites in lung cancer: A meta-analysis. Asian Cardiovasc Thorac Ann 2024; 32:45-65. [PMID: 38009802 DOI: 10.1177/02184923231215538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of lung cancer is based on the microscopic exam of tissue or liquid. During the recent decade, many biomarkers have been pointed to have a potential diagnostic role. These biomarkers may be assessed in blood, pleural effusion or sputum and they could avoid biopsies or other risky procedures. The authors aimed to assess the diagnostic performances of biomarkers focusing on micro-RNA and metabolites. METHODS This meta-analysis was conducted under the PRISMA guidelines during a nine-year-period (2013-2022). the Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to our inclusion criteria, 165 studies from 79 articles were included. The pooled SEN, SPE and dOR accounted, respectively, for 0.76, 0.79 and 13.927. The AUC was estimated to 0.859 suggesting a good diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the sample, the number of biomarkers, the biomarker subtype, the tumor stage and the ethnicity revealed the biomarker number (p = 0.009) and the tumor stage (p = 0.0241) as potential sources of heterogeneity. CONCLUSION Even if this meta-analysis highlighted the potential diagnostic utility of biomarkers, more prospective studies should be performed, especially to assess the biomarkers' diagnostic potential in early-stage lung cancers.
Collapse
Affiliation(s)
- Mona Mlika
- Department of Pathology, Center of Traumatology and Major Burns, Ben Arous, Tunis, Tunisia
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | | | - Mehdi Abdennadher
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Imen Bouassida
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Faouzi Mezni
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Ali Mrabet
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Ministry of Health, Tunis, Tunisia
| |
Collapse
|
4
|
Gilyazova I, Ivanova E, Gupta H, Mustafin A, Ishemgulov R, Izmailov A, Gilyazova G, Pudova E, Pavlov V, Khusnutdinova E. miRNA Expression Patterns in Early- and Late-Stage Prostate Cancer Patients: High-Throughput Analysis. Biomedicines 2023; 11:3073. [PMID: 38002073 PMCID: PMC10669269 DOI: 10.3390/biomedicines11113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common types of cancer among men. To date, there have been no specific markers identified for the diagnosis and prognosis or response to treatment of this disease. Thus, there is an urgent need for promising markers, which may be fulfilled by small non-coding RNAs known as microRNAs (miRNAs). Therefore, the present study aimed to investigate the miRNA profile in tissue samples obtained from patients with PCa using microarrays, followed by reverse transcriptase quantitative PCRs (RT-qPCRs). In the discovery phase, 754 miRNAs were screened in tissues obtained from patients (n = 46) with PCa in early and late stages. Expression levels of miRNA-324-3p, miRNA-429, miRNA-570, and miRNA-616 were found to be downregulated, and miRNA-423-5p expression was upregulated in patients with early-stage cancer compared to the late-stage ones. These five miRNAs were further validated in an independent cohort of samples (n = 39) collected from patients with PCa using RT-qPCR-based assays. MiRNA-324-3p, miRNA-429, miRNA-570, and miRNA-616 expression levels remained significantly downregulated in early-stage cancer tissues compared to late-stage tissues. Remarkably, for a combination of three miRNAs, PSA levels and Gleason scores were able to discriminate between patients with early-stage PCa and late-stage PCa, with an AUC of 95%, a sensitivity of 86%, and a specificity close to 94%. Thus, the data obtained in this study suggest a possible involvement of the identified miRNAs in the pathogenesis of PCa, and they may also have the potential to be developed into diagnostic and prognostic tools for PCa. However, further studies with a larger cohort are needed.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia; (E.I.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia; (E.I.)
- Biology Department, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India;
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Ruslan Ishemgulov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Adel Izmailov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elena Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia; (E.I.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia
- Biology Department, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Luo M, Wang H, Zhang J, Yixi K, Shu S, Fu C, Zhong J, Peng W. IMF deposition ceRNA network analysis and functional study of HIF1a in yak. Front Vet Sci 2023; 10:1272238. [PMID: 37915947 PMCID: PMC10616239 DOI: 10.3389/fvets.2023.1272238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The concentration of intramuscular fat (IMF) is a crucial determinant of yak meat quality. However, the molecular mechanisms that regulate IMF in yak remain largely elusive. In our study, we conducted transcriptome sequencing on the longissimus dorsi muscle tissues of yaks with varying IMF contents. We then filtered differentially expressed genes (DEGs), microRNAs (DEMs), and long non-coding RNAs (DELs) to elucidate potential regulatory pathways of adipogenesis in yaks. Overall, our research sheds light on an array of potential mRNAs and noncoding RNAs implicated in IMF deposition and elaborates on the role of HIF1α in yaks. These findings contribute valuable insights that can serve as a guide for further research into the molecular mechanisms governing IMF deposition.
Collapse
Affiliation(s)
- Mengning Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jun Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Kangzhu Yixi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
6
|
Kadkhoda S, Hussen BM, Eslami S, Ghafouri-Fard S. A review on the role of miRNA-324 in various diseases. Front Genet 2022; 13:950162. [PMID: 36035118 PMCID: PMC9399342 DOI: 10.3389/fgene.2022.950162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have revealed important functions of several microRNAs (miRNAs) in the pathogenesis of human diseases. miR-324 is an example of miRNAs with crucial impacts on the pathogenesis of a wide range of disorders. Gene ontology studies have indicated possible role of miR-324 in responses of cells to the leukemia inhibitory factor, long-term synaptic potentiation, positive regulation of cytokines production and sensory perception of sound. In human, miR-324 is encoded by MIR324 gene which resides on chromosome 17p13.1. In the current manuscript, we provide a concise review of the role of miR-324 in the pathogenesis of cancers as well as non-cancerous conditions such as aneurysmal subarachnoid hemorrhage, diabetic nephropathy, epilepsy, pulmonary/renal fibrosis, ischemic stroke and ischemia reperfusion injuries. Moreover, we summarize the role of this miRNA as a prognostic marker for malignant disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
7
|
Padinharayil H, Varghese J, John MC, Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal R, Dey A, Mukherjee AG, Wanjari UR, Gopalakrishnan AV, George A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/09/2022] Open
|
8
|
Hu J, Xiang X, Guan W, Lou W, He J, Chen J, Fu Y, Lou G. MiR-497-5p down-regulates CDCA4 to restrains lung squamous cell carcinoma progression. J Cardiothorac Surg 2021; 16:330. [PMID: 34772428 PMCID: PMC8588708 DOI: 10.1186/s13019-021-01698-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND So far, few have concerned miR-497-5p in lung squamous cell carcinoma (LUSC). METHODS MiR-497-5p expression in LUSC was measured by qRT-PCR. Its impacts on tumor-related cell behaviors were investigated by CCK8 assay, scratch healing assay, flow cytometry and Transwell invasion methods. In addition, interaction between miR-497-5p and CDCA4 in LUSC was also elucidated through rescue experiment, western blot, dual-luciferase, and bioinformatics analysis. RESULTS Low level of miR-497-5p was confirmed in LUSC tissue and cells. Overexpressed miR-497-5p markedly inhibited cancer progression. miR-497-5p restrained CDCA4 expression. Rescue assay showed that overexpressing miR-497-5p eliminated effect of overexpressed CDCA4. CONCLUSION By targeting CDCA4, miR-497-5p restrained development of LUSC.
Collapse
Affiliation(s)
- Jiangwei Hu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Xinqin Xiang
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Wei Guan
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Weihua Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Junming He
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Jian Chen
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Yin Fu
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China
| | - Guoliang Lou
- Department of Cardiovascular Surgery, Yiwu Central Hospital, No.699 Jiangdong Dong Lu, Yiwu City, 322000, Zhejiang Province, China.
| |
Collapse
|
9
|
Circulating MicroRNAs in Relation to Esophageal Adenocarcinoma Diagnosis and Survival. Dig Dis Sci 2021; 66:3831-3841. [PMID: 33403483 PMCID: PMC8257775 DOI: 10.1007/s10620-020-06740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Tissue miRNA can discriminate between esophageal adenocarcinoma (EA) and normal epithelium. However, no studies have examined a comprehensive panel of circulating miRNAs in relation to EA diagnosis and survival. METHODS We used all 62 EA cases from the US Multi-Center case-control study with available serum matched 1:1 to controls. Cases were followed for vital status. MiRNAs (n = 2064) were assessed using the HTG EdgeSeq miRNA Whole Transcriptome Assay. Differential expression analysis of miRNAs in relation to case-control status was conducted. In cases, Cox regression models were fit to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause mortality. P values were adjusted using the Benjamini-Hochberg (BH) procedure for false discovery rate control. Predictive performance was assessed using cross-validation. RESULTS Sixty-eight distinct miRNAs were significantly upregulated between cases and controls (e.g., miR-1255b-2-3p fold change = 1.74, BH-adjusted P = 0.01). Assessing the predictive performance of these significantly upregulated miRNAs yielded 60% sensitivity, 65% specificity, and 0.62 AUC. miR-4253 and miR-1238-5p were associated with risk of mortality after EA diagnosis (HR = 4.85, 95% CI: 2.30-10.23, BH-adjusted P = 0.04 and HR = 3.81, 95% CI: 2.02-7.19, BH-adjusted P = 0.04, respectively). CONCLUSIONS While they require replication, these findings suggest that circulating miRNAs may be associated with EA diagnosis and survival.
Collapse
|
10
|
Šutić M, Vukić A, Baranašić J, Försti A, Džubur F, Samaržija M, Jakopović M, Brčić L, Knežević J. Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J Pers Med 2021; 11:1102. [PMID: 34834454 PMCID: PMC8624402 DOI: 10.3390/jpm11111102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite growing efforts for its early detection by screening populations at risk, the majority of lung cancer patients are still diagnosed in an advanced stage. The management of lung cancer has dramatically improved in the last decade and is no longer based on the "one-fits-all" paradigm or the general histological classification of non-small cell versus small cell lung cancer. Emerging options of targeted therapies and immunotherapies have shifted the management of lung cancer to a more personalized treatment approach, significantly influencing the clinical course and outcome of the disease. Molecular biomarkers have emerged as valuable tools in the prognosis and prediction of therapy response. In this review, we discuss the relevant biomarkers used in the clinical management of lung tumors, from diagnosis to prognosis. We also discuss promising new biomarkers, focusing on non-small cell lung cancer as the most abundant type of lung cancer.
Collapse
Affiliation(s)
- Maja Šutić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Ana Vukić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Jurica Baranašić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Feđa Džubur
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samaržija
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Jakopović
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
- Faculties for Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
12
|
El Founini Y, Chaoui I, Dehbi H, El Mzibri M, Abounader R, Guessous F. MicroRNAs: Key Regulators in Lung Cancer. Microrna 2021; 10:109-122. [PMID: 34047262 DOI: 10.2174/2211536610666210527102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3'UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contribute to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes, microvesicles and secreted in body fluids, mainly the circulation where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.
Collapse
Affiliation(s)
- Younes El Founini
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco.,Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Imane Chaoui
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Fadila Guessous
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|
13
|
Grixti JM, Ayers D, Day PJR. An Analysis of Mechanisms for Cellular Uptake of miRNAs to Enhance Drug Delivery and Efficacy in Cancer Chemoresistance. Noncoding RNA 2021; 7:27. [PMID: 33923485 PMCID: PMC8167612 DOI: 10.3390/ncrna7020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Up until recently, it was believed that pharmaceutical drugs and their metabolites enter into the cell to gain access to their targets via simple diffusion across the hydrophobic lipid cellular membrane, at a rate which is based on their lipophilicity. An increasing amount of evidence indicates that the phospholipid bilayer-mediated drug diffusion is in fact negligible, and that drugs pass through cell membranes via proteinaceous membrane transporters or carriers which are normally used for the transportation of nutrients and intermediate metabolites. Drugs can be targeted to specific cells and tissues which express the relevant transporters, leading to the design of safe and efficacious treatments. Furthermore, transporter expression levels can be manipulated, systematically and in a high-throughput manner, allowing for considerable progress in determining which transporters are used by specific drugs. The ever-expanding field of miRNA therapeutics is not without its challenges, with the most notable one being the safe and effective delivery of the miRNA mimic/antagonist safely to the target cell cytoplasm for attaining the desired clinical outcome, particularly in miRNA-based cancer therapeutics, due to the poor efficiency of neo-vascular systems revolting around the tumour site, brought about by tumour-induced angiogenesis. This acquisition of resistance to several types of anticancer drugs can be as a result of an upregulation of efflux transporters expression, which eject drugs from cells, hence lowering drug efficacy, resulting in multidrug resistance. In this article, the latest available data on human microRNAs has been reviewed, together with the most recently described mechanisms for miRNA uptake in cells, for future therapeutic enhancements against cancer chemoresistance.
Collapse
Affiliation(s)
- Justine M. Grixti
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD 2080, Malta
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| | - Philip J. R. Day
- Faculty of Biology, Medicine and Human Sciences, The University of Manchester, Manchester M1 7DN, UK;
| |
Collapse
|
14
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:333-341. [PMID: 33522578 DOI: 10.1093/abbs/gmaa180] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2020] [Indexed: 12/17/2022] Open
Abstract
Metformin is a widely prescribed hypoglycemic drug. Many studies have shown its anti-cancer properties. In the present study, we aimed to explore the effect of metformin on breast cancer and clarify the underlying mechanism. Our results showed that metformin induced ferroptosis in MDA-MB-231 cells through upregulating miR-324-3p expression. Overexpression of miR-324-3p inhibited cancer cell viability. miR-324-3p inhibitor promoted cell viability. Further studies showed that the effect of miR-324-3p was mediated by directly targeting glutathione peroxidase 4 (GPX4). miR-324-3p bound to the 3'-UTR of GPX4 and led to the downregulation of GPX4. In vivo studies showed that metformin induced ferroptosis by upregulating miR-324-3p in the xenograft model of breast cancer in mice. Our study suggested that metformin promotes ferroptosis of breast cancer by targeting the miR-324-3p/GPX4 axis. Metformin could act as a potential anti-cancer agent through the induction of ferroptosis.
Collapse
Affiliation(s)
- Yifeng Hou
- School of Queen Mary, Nanchang University and Queen Mary University of London Joint Program, Nanchang 330006, China
| | - Shuang Cai
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi 563000, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
16
|
Peng Z, Xu B, Jin F. Circular RNA hsa_circ_0000376 Participates in Tumorigenesis of Breast Cancer by Targeting miR-1285-3p. Technol Cancer Res Treat 2021; 19:1533033820928471. [PMID: 32462972 PMCID: PMC7257864 DOI: 10.1177/1533033820928471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
This study was designed to identify novel circular RNAs and the related regulatory axis
to provide research targets for the diagnosis and treatment of breast cancer. The circular
RNA expression microarray “GSE101123” related to breast cancer was downloaded from the
Gene Expression Omnibus database. The differentially expressed circular RNAs between tumor
and normal samples were screened using Limma package. The targeted microRNAs of the
differentially expressed circular RNAs and the targeted messenger RNAs of the microRNAs
were predicted using miRanda and miRWalk, respectively, and a circular
RNAs–microRNAs–messenger RNAs network was constructed. Then, functional enrichment
analysis, protein–protein interaction network construction, and drug–gene interaction
analysis were conducted for the messenger RNAs. A total of 11 differentially expressed
circular RNAs were identified between the breast cancer and normal samples, of which 3
were upregulated, while 8 were downregulated. The circular RNA–microRNA–messenger RNA
network contained 1 circular RNA (hsa_circ_0000376), 2 microRNAs (miR-1285-3p and
miR-1286), and 353 messenger RNAs. The protein–protein interaction network contained 150
nodes and 240 interactions. The hub genes in the protein–protein interaction network were
all targeted messenger RNAs of miR-1285-3p that were significantly enriched in the
ubiquitin–proteasome system, apoptosis, cell cycle arrest–related pathways, and
cancer-related pathways involving SMAD specific E3 ubiquitin protein ligase 1,
β-transducin repeat containing E3 ubiquitin protein ligase, tumor protein P53 among
others. Twenty-two drugs were predicted to target 4 messenger RNAs, including tumor
protein P53. A novel circular RNA, hsa_circ_0000376, was identified in breast cancer that
may act as a sponge targeting miR-1285-3p expression which through its target genes,
SMURF1, BTRC, and TP53, may further regulate
tumorigenesis.
Collapse
Affiliation(s)
- Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Boyang Xu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
17
|
Fehlmann T, Kahraman M, Ludwig N, Backes C, Galata V, Keller V, Geffers L, Mercaldo N, Hornung D, Weis T, Kayvanpour E, Abu-Halima M, Deuschle C, Schulte C, Suenkel U, von Thaler AK, Maetzler W, Herr C, Fähndrich S, Vogelmeier C, Guimaraes P, Hecksteden A, Meyer T, Metzger F, Diener C, Deutscher S, Abdul-Khaliq H, Stehle I, Haeusler S, Meiser A, Groesdonk HV, Volk T, Lenhof HP, Katus H, Balling R, Meder B, Kruger R, Huwer H, Bals R, Meese E, Keller A. Evaluating the Use of Circulating MicroRNA Profiles for Lung Cancer Detection in Symptomatic Patients. JAMA Oncol 2021; 6:714-723. [PMID: 32134442 DOI: 10.1001/jamaoncol.2020.0001] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Importance The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures. Objective To investigate the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. Design, Setting, and Participants This multicenter, cohort study included patients from case-control and cohort studies (TREND and COSYCONET) with 3102 patients being enrolled by convenience sampling between March 3, 2009, and March 19, 2018. For the cohort study TREND, population sampling was performed. Clinical diagnoses were obtained for 3046 patients (606 patients with non-small cell and small cell lung cancer, 593 patients with nontumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). No samples were removed because of experimental issues. The collected data were analyzed between April 2018 and November 2019. Main Outcomes and Measures Sensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer. Results A total of 3102 patients with a mean (SD) age of 61.1 (16.2) years were enrolled. Data on the sex of the participants were available for 2856 participants; 1727 (60.5%) were men. Genome-wide miRNA profiles of blood samples from 3046 individuals were evaluated by machine-learning methods. Three classification scenarios were investigated by splitting the samples equally into training and validation sets. First, a 15-miRNA signature from the training set was used to distinguish patients diagnosed with lung cancer from all other individuals in the validation set with an accuracy of 91.4% (95% CI, 91.0%-91.9%), a sensitivity of 82.8% (95% CI, 81.5%-84.1%), and a specificity of 93.5% (95% CI, 93.2%-93.8%). Second, a 14-miRNA signature from the training set was used to distinguish patients with lung cancer from patients with nontumor lung diseases in the validation set with an accuracy of 92.5% (95% CI, 92.1%-92.9%), sensitivity of 96.4% (95% CI, 95.9%-96.9%), and specificity of 88.6% (95% CI, 88.1%-89.2%). Third, a 14-miRNA signature from the training set was used to distinguish patients with early-stage lung cancer from all individuals without lung cancer in the validation set with an accuracy of 95.9% (95% CI, 95.7%-96.2%), sensitivity of 76.3% (95% CI, 74.5%-78.0%), and specificity of 97.5% (95% CI, 97.2%-97.7%). Conclusions and Relevance The findings of the study suggest that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests.
Collapse
Affiliation(s)
- Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Mustafa Kahraman
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Nicole Ludwig
- Junior Research Group of Human Genetics, Saarland University, Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Verena Keller
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Lars Geffers
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nathaniel Mercaldo
- Institute for Technology Assessment, Massachusetts General Hospital, Boston
| | | | - Tanja Weis
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Elham Kayvanpour
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Christian Deuschle
- Hertie Institute for Clinical Brain Research, Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Ulrike Suenkel
- Hertie Institute for Clinical Brain Research, Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Anna-Katharina von Thaler
- Hertie Institute for Clinical Brain Research, Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christian Herr
- Department of Internal Medicine V: Pulmonology, Allergology, Intensive Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Sebastian Fähndrich
- Department of Internal Medicine V: Pulmonology, Allergology, Intensive Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Claus Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Philipps-University of Marberg, Member of the German Centre for Lung Research (DZL), Marburg, Germany
| | - Pedro Guimaraes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Florian Metzger
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.,Center for Geriatric Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Caroline Diener
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | | | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University, Saarbrücken, Germany
| | - Ingo Stehle
- Schwerpunktpraxis Hämatologie und Onkologie, Kaiserslautern, Germany
| | - Sebastian Haeusler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Meiser
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Faculty of Medicine, Saarland University, Homburg, Germany
| | - Heinrich V Groesdonk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Faculty of Medicine, Saarland University, Homburg, Germany
| | - Thomas Volk
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Faculty of Medicine, Saarland University, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Hugo Katus
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Benjamin Meder
- Department of Internal Medicine, Heidelberg University, Heidelberg, Germany
| | - Rejko Kruger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Robert Bals
- Department of Internal Medicine V: Pulmonology, Allergology, Intensive Care Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
18
|
Chaniad P, Trakunran K, Geater SL, Keeratichananont W, Thongsuksai P, Raungrut P. Serum miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer. PLoS One 2020; 15:e0241593. [PMID: 33125430 PMCID: PMC7598461 DOI: 10.1371/journal.pone.0241593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor-promoting cytokines are a cause of tumor progression; therefore, identifying key regulatory microRNAs (miRNAs) for controlling their production is important. The aim of this study is to identify promising miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer (NSCLC). We identified circulating miRNAs from 16 published miRNA profiles. The selected miRNAs were validated in the serum of 32 NSCLC patients and compared with 33 patients with other lung diseases and 23 healthy persons using quantitative real-time PCR. The cytokine concentration was investigated using the enzyme-linked immunoassay in the same sample set, with clinical validation of the miRNAs. The correlation between miRNA expression and cytokine concentration was evaluated by Spearman’s rank correlation. For consistent direction, one up-regulated miRNA (miR-145) was found in four studies, and seven miRNAs were reported in three studies. One miRNA (miR-20a) and four miRNAs (miR-25-3p, miR-223, let-7f, and miR-20b) were reported in six and five studies. However, their expression was inconsistent. In the clinical validation, serum miR-145 was significantly down-regulated, whereas serum miR-20a was significantly up-regulated in NSCLC, compared with controls. Regarding serum cytokine, all cytokines [vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and transforming growth factor β (TGF-β)], except tumor necrosis factor-α (TNF-α), had a higher level in NSCLC patients than controls. In addition, we found a moderate correlation between the TGF-β concentration and miR-20a (r = −0.537, p = 0.002) and miR-223 (r = 0.428, p = 0.015) and a weak correlation between the VEGF concentration with miR-20a (r = 0.376, p = 0.037) and miR-223 (r = −0.355, p = 0.046). MiR-145 and miR-20a are potential biomarkers for NSCLC. In addition, the regulation of tumor-promoting cytokine, through miR-20a and miR-223, might be a new therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Pichitpon Chaniad
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Keson Trakunran
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarayut Lucien Geater
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Warangkana Keeratichananont
- Division of Respiratory and Respiratory Critical Care Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Paramee Thongsuksai
- Department of Pathology Department, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pritsana Raungrut
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- * E-mail:
| |
Collapse
|
19
|
Song T, Zhou H, Wei X, Meng Y, Guo Q. Downregulation of microRNA-324-3p inhibits lung cancer by blocking the NCAM1-MAPK axis through ALX4. Cancer Gene Ther 2020; 28:455-470. [PMID: 33087824 DOI: 10.1038/s41417-020-00231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer remains the principal cause of cancer-related death worldwide. As microRNAs (miRNAs) are critically involved in lung cancer, we investigated the potential role of miR-324-3p in lung cancer via the ALX4/NCAM1/MAPK axis. The expression of miR-324-3p and ALX4 was detected in clinical samples, and their interaction confirmed by miRNA-targeted luciferase reporter assay. The mechanisms involved in the miR-324-3p-ALX4 interaction in lung cancer cell biological processes were analyzed through gain- and loss-of function approaches. In addition, cultured lung cancer cells were treated with the p38MAPK pathway activator P79350 in order to explore the role of this pathway in the abovementioned axis. Further, a tumor xenograft model in nude mice was constructed to confirm the in vitro findings. miR-324-3p was highly expressed in lung cancer tissues and cells, and inhibited the expression of ALX4 in A549 cells. After confirming the targeted inhibition of ALX4 by miR-324-3p, we showed that this interaction upregulated the expression of NCAM1 and activated the MAPK pathway. The inhibition of miR-324-3p could suppress lung cancer cell invasion, migration, and autophagy, and retarded the growth of subcutaneous tumors in nude mice. Downregulation of ALX4 or NCAM1 overexpression reversed these favorable effects of decreased miR-324-3p. Our study demonstrated the promotive effect of miR-324-3p on the development and progression of lung cancer, thus suggesting a new target for treatment of this devastating disease.
Collapse
Affiliation(s)
- Tieniu Song
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610000, Chengdu, P.R. China.
| | - Hui Zhou
- Department of Nephrology (2nd Section), Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Xiaoping Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Yuqi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital of Southern Medical University, 518000, Shenzhen, P.R. China
| |
Collapse
|
20
|
A Systematic Analysis of Dysregulated Long Non-Coding RNAs/microRNAs/mRNAs in Lung Squamous Cell Carcinoma. Am J Med Sci 2020; 360:701-710. [PMID: 33012486 DOI: 10.1016/j.amjms.2020.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) accounts up for approximately 30% of all lung cancers with a high mortality. The study was aimed at finding genes critical in the diagnosis and prognosis of LUSC. MATERIALS AND METHODS The differentially expressed (DE) genes (DEGs) and DE lncRNAs (DELs) from 501 LUSC and 49 normal lung tissues, and DE miRNAs (DEMs) from 478 LUSC and 45 normal lung tissues were respectively obtained via the TCGA database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and co-expression network analyses were performed. Survival analysis and receiver operating characteristic curve of hub mRNAs were also analyzed. Competitive endogenous RNA networks of lncRNAs, miRNAs and mRNAs were constructed. RESULTS A total of 5747 DEGs, 378 DEMs and 3141 DELs in LUSC were identified in LUSC. The DEGs including AUARK, CDK1, KIF11 and EXO1 were proven to be significant metastatic indicators in LUSC, and 2 DEGs were significantly associated with the survival in LUSC patients. Some genes might have connections with many other gene nodes through a co-expression network. Four lncRNAs, 2 mRNAs and 2 miRNAs were identified as the candidates for the competitive miRNA-mRNA-lncRNA network and might serve as prognostic markers in LUSC. CONCLUSIONS We identified the differentially expressed lncRNAs, miRNAs and mRNAs in LUSC, providing further insights into the molecular mechanism of LUSC tumorigenesis and the potential prognostic biomarkers or therapeutic targets for LUSC.
Collapse
|
21
|
Ma J, Qi G, Li L. LncRNA NNT-AS1 promotes lung squamous cell carcinoma progression by regulating the miR-22/FOXM1 axis. Cell Mol Biol Lett 2020; 25:34. [PMID: 32514270 PMCID: PMC7257167 DOI: 10.1186/s11658-020-00227-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies have revealed that dysregulated expression of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (lncRNA NNT-AS1) is associated with cell tumorigenicity in non-small cell lung cancer. However, the exact molecular mechanisms of NNT-AS1 in lung squamous cell carcinoma (LUSC) remain largely unknown. Methods The expression of NNT-AS1, microRNA (miR)-22 and Forkhead box protein M1 (FOXM1) was measured using quantitative real-time polymerase chain reaction or western blot, respectively. The interaction between miR-22 and NNT-AS1 or FOXM1 was confirmed using a dual-luciferase reporter assay and RNA immunoprecipitation assay. Cell migration and invasion abilities were measured by Transwell assay. Flow cytometry was used to detect apoptotic cells. Results NNT-AS1 and FOXM1 were up-regulated but miR-22 was down-regulated in LUSC tissues and cell lines. NNT-AS1 was a sponge of miR-22, and NNT-AS1 deletion suppressed the migration and invasion but induced apoptosis in LUSC cells. FOXM1 was a target of miR-22, and overexpression of miR-22 inhibited cell carcinogenesis in LUSC by targeting FOXM1. Additionally, NNT-AS1 could directly regulate FOXM1 expression by binding to miR-22 in LUSC cells. Conclusion LncRNA NNT-AS1 contributes to cell carcinogenesis in LUSC by regulating the miR-22/FOXM1 axis, providing a novel insight into the pathogenesis of LUSC and a new potential therapeutic target for LUSC treatment.
Collapse
Affiliation(s)
- Jing Ma
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, NO.115 Ximen Street, Kaifeng City, Henan Province, Kaifeng, 475000 Henan China
| | - Guanbin Qi
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, NO.115 Ximen Street, Kaifeng City, Henan Province, Kaifeng, 475000 Henan China
| | - Lei Li
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, NO.115 Ximen Street, Kaifeng City, Henan Province, Kaifeng, 475000 Henan China
| |
Collapse
|
22
|
Ghafouri-Fard S, Shoorei H, Branicki W, Taheri M. Non-coding RNA profile in lung cancer. Exp Mol Pathol 2020; 114:104411. [PMID: 32112788 DOI: 10.1016/j.yexmp.2020.104411] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the most frequently diagnosed malignancy and the leading source of cancer-associated mortality. This kind of cancer has heterogeneous nature and is divided into two broad classes of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In addition to aberrant expression of several signaling pathways and oncogenes, lung cancer is associated with dysregulation of expression of non-coding RNAs including both long non-coding RNAs (lncRNAs) and miRNAs. These aberrantly expressed transcripts are putative therapeutic targets and diagnostic/ prognostic markers. Integrative assessment of expression of lncRNAs, miRNAs and mRNAs has led to construction of competing endogenous RNA networks in which several lncRNAs act as molecular sponges to inhibit regulatory function of miRNAs on mRNAs. Notably, some of these networks seem to have subtype-specific functions in lung cancer. In this review, we summarize recent findings about the importance of these networks in the pathogenesis of lung cancer and provide a list of onco-miRNAs, tumor suppressor miRNAs, oncogenic lncRNAs and tumor suppressor lncRNAs based on their roles in the carcinogenic process in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Tsai KW, Kuo WT, Jeng SY. microRNA-324 plays an oncogenic role in bladder cancer cell growth and motility. Transl Cancer Res 2020; 9:707-716. [PMID: 35117416 PMCID: PMC8798271 DOI: 10.21037/tcr.2019.12.01] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
Background Despite advances in the treatment of bladder cancer (BC), patients with late-stage BC have a high mortality rate. microRNA is a small, nonprotein coding RNA, and a dysfunction in its expression is frequently strongly correlated with the prognosis of patients with cancer. Aberrant expression of miR-324 has been reported to contribute to human carcinogenesis. However, the role of miR-324 in BC remains unclear. Methods The expression levels of miR-324-5p and miR-324-3p were analyzed by analyzing The Cancer Genome Atlas (TCGA) database and real-time polymerase chain reaction (PCR) approach. The biological role of miR-324-5p and miR-324-3p were assessed in BFTC950 cells with miR-324-5p or miR-324-3p mimics transfection, respectively. Results In this study, we demonstrated that high expression levels of miR-324-5p and miR-324-3p were significantly correlated with poor survival of patients with BC. Furthermore, miR-324-5p expression significantly accelerated BC cell proliferation, colony formation ability, and invasion ability, whereas miR-324-3p expression slightly increased BC cell growth and motility. Conclusion Our data indicated that miR-324-5p and miR-324-3p play oncogenic roles in BC cells. This finding provides a new insight into potential therapeutic targets or putative biomarkers of BC.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Chemical Biology, National Pingtung University of Education, Pingtung.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei.,School of Medicine, National Yang-Ming University, Taipei
| | - Shaw-Yeu Jeng
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| |
Collapse
|
24
|
Hu XH, Dai J, Shang HL, Zhao ZX, Hao YD. miR-1285-3p is a potential prognostic marker in human osteosarcoma and functions as a tumor suppressor by targeting YAP1. Cancer Biomark 2019; 25:1-10. [PMID: 31006663 DOI: 10.3233/cbm-180013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Despite the major advances in the treatment, the overall survival of osteosarcoma remains poor. MicroRNAs (miRNAs) are involved in tumorigenesis and progression though modulating their target genes. In the present study, the roles of miR-1285-3p in osteosarcoma was investigated. METHODS Microarray profiling was applied to distinguish the up and down regulated microRNAs in osteosarcoma. Quantitative real-time PCR (qRT-PCR) assay was performed to detect the expression of miR-1285-3p and YAP1 expression. MTT and transwell assays were carried out to determine the cells proliferation and invasion respectively. Moreover, dual luciferase reporter assay was performed to evaluate the binding efficiency between miR-1285-3p and the 3'UTR of YAP1. RESULTS MiR-1285-3p was down regulated in osteosarcoma tissues and cell lines and the reduction of miR-1285-3p expression predicted a poor overall survival of osteosarcoma patients. Ectopic expression of miR-1285-3p inhibited osteosarcoma cell proliferation, colony formation and invasion. In addition, YAP1 was further demonstrated as a direct target of miR-1285-3p. Moreover, overexpression of YAP1 reversed the inhibitory effects of miR-1285-3p on osteosarcoma cells proliferation and invasion. CONCLUSIONS MiR-1285-3p which was low expressed in osteosarcoma inhibited the proliferation and invasion of osteosarcoma cells via direct targeting YAP1. These results suggested that miR-1285-3p might be a potential therapeutic targets and biomarker in osteosarcoma.
Collapse
|
25
|
Lv P, Yang S, Liu W, Qin H, Tang X, Wu F, Liu Z, Gao H, Liu X. Circulating plasma lncRNAs as novel markers of EGFR mutation status and monitors of epidermal growth factor receptor-tyrosine kinase inhibitor therapy. Thorac Cancer 2019; 11:29-40. [PMID: 31691525 PMCID: PMC6938758 DOI: 10.1111/1759-7714.13216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) gene mutations predict tumor response to EGFR tyrosine kinase inhibitors (EGFR‐TKIs) in non‐small cell lung cancer (NSCLC). However, even patients with EGFR‐sensitive mutations in NSCLC have limited efficacy with EGFR‐TKI. Studies have shown that long noncoding RNA (lncRNA) is related to diagnosis and prognosis with NSCLC. This study aimed to explore the correlation between lncRNA in NSCLC patients with EGFR mutation status and EGFR‐TKI efficacy. Methods The amplification‐refractory mutation system method was used to test the EGFR mutation status in tumor tissues and pleural effusions of NSCLC patients. Three EGFR‐mutant patients and three EGFR wild‐type patients were selected. Differential lncRNA was performed on the pleural effusions of the two selected groups of patients using Clariom D Human chip technology. Five lncRNAs significantly associated with EGFR mutation status were screened by FC value and GO analysis, and then evaluated by real‐time quantitative polymerase chain reaction in NSCLC patients' pleural effusions. Three were further analyzed in NSCLC patients' plasma. Results There were 61 significant differences in lncRNA between EGFR mutation‐positive and wild‐type patients. Among them, SCARNA7, MALAT1, NONHSAT017369, NONHSAT051892, and FTH1P2 were significantly associated with EGFR mutation status. SCARNA7, MALAT1, and NONHSAT017369 showed consistent results with plasma in pleural effusions compared to EGFR wild‐type, all upregulated in the EGFR mutation group. Conclusion This study shows that lncRNAs can be used not only as potential biomarkers for predicting the mutation status of EGFR and the efficacy of EGFR‐TKI, but also for monitoring the efficacy of EGFR‐TKI.
Collapse
Affiliation(s)
- Panpan Lv
- Academy of Military Medical Science, Beijing, China.,PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Shaoxing Yang
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Haifeng Qin
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Tang
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Wu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zeyuan Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Gao
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaoqing Liu
- Department of Pulmonary Oncology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
han Y, Hu H, zhou J. Knockdown of LncRNA SNHG7 inhibited epithelial-mesenchymal transition in prostate cancer though miR-324-3p/WNT2B axis in vitro. Pathol Res Pract 2019; 215:152537. [DOI: 10.1016/j.prp.2019.152537] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022]
|
27
|
Szelenberger R, Kacprzak M, Saluk-Bijak J, Zielinska M, Bijak M. Plasma MicroRNA as a novel diagnostic. Clin Chim Acta 2019; 499:98-107. [PMID: 31499022 DOI: 10.1016/j.cca.2019.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small, single-stranded, endogenous, non-coding RNAs necessary for proper gene expression. Their mechanism of action controls translation by base-pairing with target messenger RNA (mRNAs) thus leading to translation blockage or mRNA degradation. Many studies have shown that miRNAs play pivotal roles in cancer, cardiovascular disease and neurodegenerative disorders. The lack of blood-derived biomarkers and those markers of poor specificity and sensitivity significantly impact the ability to diagnose in general and at early disease stage specifically. As such, new, non-invasive and quantifiable biomarkers are needed. As post-transcriptional regulators of gene expression, miRNAs have been confirmed to be notably stable in cells, tissues and body fluids. These and other advantages make miRNAs ideal candidates as potential biomarkers and early experimental findings support this finding. This review examines the use of miRNAs as biomarkers in cancer, neurodegenerative, cardiovascular and liver disease and viral infection.
Collapse
Affiliation(s)
- Rafal Szelenberger
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Kacprzak
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marzenna Zielinska
- Intensive Cardiac Therapy Clinic, Medical University of Lodz, Pomorska 251, 91-213 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
28
|
D'Antona P, Cattoni M, Dominioni L, Poli A, Moretti F, Cinquetti R, Gini E, Daffrè E, Noonan DM, Imperatori A, Rotolo N, Campomenosi P. Serum miR-223: A Validated Biomarker for Detection of Early-Stage Non-Small Cell Lung Cancer. Cancer Epidemiol Biomarkers Prev 2019; 28:1926-1933. [PMID: 31488416 DOI: 10.1158/1055-9965.epi-19-0626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The published circulating miRNA signatures proposed for early-stage non-small cell lung cancer (NSCLC) detection are inconsistent and difficult to replicate. Reproducibility and validation of an miRNA simple signature of NSCLC are prerequisites for translation to clinical application. METHODS The serum level of miR-223 and miR-29c, emerging from published studies, respectively, as a highly sensitive and a highly specific biomarker of early-stage NSCLC, was measured with droplet digital PCR (ddPCR) technique in an Italian cohort of 75 patients with stage I-II NSCLC and 111 tumor-free controls. By ROC curve analysis we evaluated the miR-223 and miR-29c performance in discerning NSCLC cases from healthy controls. RESULTS Reproducibility and robust measurability of the two miRNAs using ddPCR were documented. In a training set (40 stage I-II NSCLCs and 56 controls), miR-223 and miR-29c, respectively, showed an AUC of 0.753 [95% confidence interval (CI), 0.655-0.836] and 0.632 (95% CI, 0.527-0.729) in identifying NSCLC. Combination of miR-223 with miR-29c yielded an AUC of 0.750, not improved over that of miR-223 alone. Furthermore, in an independent blind set (35 stage I-II NSCLCs and 55 controls), we validated serum miR-223 as an effective biomarker of stage I-II NSCLC (AUC = 0.808; 95% CI, 0.712-0.884), confirming the miR-223 diagnostic performance reported by others in Chinese cohorts. CONCLUSIONS Using ddPCR technology, miR-223 was externally validated as a reproducible, effective serum biomarker of early-stage NSCLC in ethnically different subjects. Combination with miR-29c did not improve the miR-223 diagnostic performance. IMPACT Serum miR-223 determination may be proposed as a tool for refining NSCLC risk stratification, independent of smoking habit and age.
Collapse
Affiliation(s)
- Paola D'Antona
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Maria Cattoni
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.,Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Lorenzo Dominioni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Albino Poli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesca Moretti
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Elisa Daffrè
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.,Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Andrea Imperatori
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Nicola Rotolo
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy.
| |
Collapse
|
29
|
Ge Y, Wang J, Wu D, Zhou Y, Qiu S, Chen J, Zhu X, Xiang X, Li H, Zhang D. lncRNA NR_038323 Suppresses Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-324-3p/DUSP1 Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:741-753. [PMID: 31430717 PMCID: PMC6709345 DOI: 10.1016/j.omtn.2019.07.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Several studies have suggested that long intergenic noncoding RNAs are involved in the progression of diabetic nephropathy (DN). However, the exact role and regulatory mechanism of long noncoding RNA (lncRNA) NR_038323 in diabetic nephropathy (DN) remain largely unclear. In the present study, we found that lncRNA NR_038323 overexpression ameliorated the high glucose (HG)-induced expression levels of collagen I, collagen IV, and fibronectin, whereas lncRNA NR_038323 knockdown exerted the opposite effects. Moreover, the results of bioinformatic prediction, luciferase assay, and fluorescence in situ hybridization (FISH) demonstrated that lncRNA NR_038323 directly interacted with miR-324-3p. Additionally, miR-324-3p mimic aggravated the HG-induced expression levels of collagen I, collagen IV, and fibronectin by dual-specificity protein phosphatase-1 (DUSP1) expression to activate p38 mitogen-activated protein kinase (MAPK) and ERK1/2 pathways. In contrast, overexpression of DUSP1 attenuated the HG-induced expression levels of collagen I, collagen IV, and fibronectin via inactivation of p38 MAPK and ERK1/2 pathways. In addition, lncRNA NR_038323 knockdown increased the expression levels of collagen I, collagen IV, and fibronectin by upregulating DUSP1 expression during HG treatment, which were markedly reversed by miR-324-3p inhibitor. Furthermore, these molecular changes were verified in the human kidney samples of DN patients. Finally, overexpression of lncRNA NR_038323 ameliorated the interstitial fibrosis in STZ-induced diabetic nephrology (DN) rat via miR-324-3p/DUSP1/p38MAPK and ERK1/2 axis. In conclusion, our data indicate that overexpression of lncRNA NR_038323 may suppress HG-induced renal fibrosis via the miR-324-3p/DUSP1/p38MAPK and ERK1/2 axis, which provides new insights into the pathogenesis of DN.
Collapse
Affiliation(s)
- Yanni Ge
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Juan Wang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Zhou
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Junxiang Chen
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xuejin Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huiling Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
30
|
Yu H, Guan Z, Cuk K, Zhang Y, Brenner H. Circulating MicroRNA Biomarkers for Lung Cancer Detection in East Asian Populations. Cancers (Basel) 2019; 11:E415. [PMID: 30909610 PMCID: PMC6468694 DOI: 10.3390/cancers11030415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer (LC) is the leading cause of cancer-related death in Eastern Asia. The prognosis of LC highly depends on tumor stages and early detection could substantially reduce LC mortality. Accumulating evidence suggested that circulating miRNAs in plasma or serum may have applications in early LC detection. We thus conducted a systematic literature review on the diagnostic value of miRNAs markers for LC in East Asian populations. METHODS PubMed and ISI Web of Knowledge were searched to retrieve relevant articles published up to 17 September 2018. Information on study design, population characteristics, investigated miRNAs and diagnostic accuracy (including sensitivity, specificity and area under the curve (AUC)) were independently extracted by two reviewers. RESULTS Overall, 46 studies that evaluated a total of 88 miRNA markers for LC diagnosis in East Asian populations were identified. Sixteen of the 46 studies have incorporated individual miRNA markers as panels (with 2⁻20 markers). Three promising miRNA panels with ≥90% sensitivity and ≥90% specificity were discovered, two of which were externally validated. Diagnostic performance of circulating miRNAs in East Asian populations was comparable to previously summarized performance in Western populations. Forty-four miRNAs were reported in both populations. No major differences in diagnostic performance by ethnicity of the same miRNA was observed. CONCLUSIONS Circulating miRNAs or miRNA panels, possibly in combination with other promising molecular markers including epigenetic and genetic markers, may be promising candidates for noninvasive LC early detection. However, large studies with samples collected prospectively in true screening settings are required to validate the promising markers or marker panels.
Collapse
Affiliation(s)
- Haixin Yu
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Zhong Guan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Medical Faculty Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany.
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Binderup HG, Houlind K, Brasen CL, Madsen JS. Identification of aspirin resistance using a PDW-miR92a-score: Validation in an intermittent claudication cohort. Clin Biochem 2019; 64:30-36. [DOI: 10.1016/j.clinbiochem.2018.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
|
32
|
Prognostic Role of Circulating miRNAs in Early-Stage Non-Small Cell Lung Cancer. J Clin Med 2019; 8:jcm8020131. [PMID: 30678026 PMCID: PMC6407000 DOI: 10.3390/jcm8020131] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/28/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the primary cause of cancer-related death worldwide, with a low 5-year survival rate even in fully resected early-stage disease. Novel biomarkers to identify patients at higher risk of relapse are needed. We studied the prognostic value of 84 circulating microRNAs (miRNAs) in 182 patients with resected early-stage NSCLC (99 adenocarcinoma (ADC), 83 squamous cell carcinoma (SCC)) from whom peripheral blood samples were collected pre-surgery. miRNA expression was analyzed in relation to disease-free survival (DFS) and overall survival (OS). In univariable analyses, five miRNAs (miR-26a-5p, miR-126-3p, miR-130b-3p, miR-205-5p, and miR-21-5p) were significantly associated with DFS in SCC, and four (miR-130b-3p, miR-26a-5p, miR-126-3p, and miR-205-5p) remained significantly associated with OS. In ADC, miR-222-3p, miR-22-3p, and mir-93-5p were significantly associated with DFS, miR-22-3p remaining significant for OS. Given the high-dimensionality of the dataset, multivariable models were obtained using a regularized Cox regression including all miRNAs and clinical covariates. After adjustment for disease stage, only miR-126-3p showed an independent prognostic role, with higher values associated with longer DFS in SCC patients. With regard to ADC and OS, no miRNA remained significant in multivariable analysis. Further investigation into the role of miR-126 as a prognostic marker in early-stage NSCLC is warranted.
Collapse
|
33
|
Xia E, Kanematsu S, Suenaga Y, Elzawahry A, Kondo H, Otsuka N, Moriya Y, Iizasa T, Kato M, Yoshino I, Yokoi S. MicroRNA induction by copy number gain is associated with poor outcome in squamous cell carcinoma of the lung. Sci Rep 2018; 8:15363. [PMID: 30337605 PMCID: PMC6194131 DOI: 10.1038/s41598-018-33696-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Copy number gains in cancer genomes have been shown to induce oncogene expression and promote carcinogenesis; however, their role in regulating oncogenic microRNAs (onco-miRNAs) remains largely unknown. Our aim was to identify onco-miRNAs induced by copy number gains in human squamous cell carcinoma (Sq) of the lung. We performed a genome-wide screen of onco-miRNAs from 245 Sqs using data sets from RNA-sequencing, comparative genomic hybridization, and the corresponding clinical information from The Cancer Genome Atlas. Among 1001 miRNAs expressed in the samples, 231 were correlated with copy number alternations, with only 11 of these being highly expressed in Sq compared to adenocarcinoma and normal tissues. Notably, miR-296-5p, miR-324-3p, and miR-3928-3p expression was significantly associated with poor prognosis. Multivariate analysis using the Cox proportional hazards model showed that miRNA expression and smoking were independent prognostic factors and were associated with poor prognosis. Furthermore, the three onco-miRNAs inhibited FAM46C to induce MYC expression, promoting proliferation of Sq cells. We found that copy number gains in Sq of the lung induce onco-miRNA expression that is associated with poor prognosis.
Collapse
Affiliation(s)
- Endi Xia
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sotaro Kanematsu
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yusuke Suenaga
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Asmaa Elzawahry
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Hitomi Kondo
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Noriko Otsuka
- Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan
| | - Yasumitsu Moriya
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Toshihiko Iizasa
- Division of Thoracic Diseases, Chiba Cancer Center, Chiba, Japan
| | - Mamoru Kato
- Department of Bioinformatics, National Cancer Center, Tokyo, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan. .,Division of Genetic Diagnostics, Chiba Cancer Center, Chiba, Japan.
| |
Collapse
|
34
|
Ricciardiello F, Capasso R, Kawasaki H, Abate T, Oliva F, Lombardi A, Misso G, Ingrosso D, Leone CA, Iengo M, Caraglia M. A miRNA signature suggestive of nodal metastases from laryngeal carcinoma. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:467-474. [PMID: 29327732 PMCID: PMC5782423 DOI: 10.14639/0392-100x-851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 09/24/2015] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
The discovery that miRNAs are frequently deregulated in tumours offers the opportunity to identify them as prognostic and diagnostic markers. The aim of this multicentric study is to identify a miRNA expression profile specific for laryngeal cancer. The secondary endpoint was to identify specific deregulated miRNAs with potential as prognostic biomarkers for tumour spread and nodal involvement, and specifically to search for a miRNA pattern pathognomonic for N+ laryngeal cancer and for N- tissues. We identified 20 miRNAs specific for laryngeal cancer and a tissue-specific miRNA signature that is predictive of lymph node metastases in laryngeal carcinoma characterised by 11 miRNAs, seven of which are overexpressed (upregulated) and four downregulated. These results allow the identification of a group of potential specific tumour biomarkers for laryngeal carcinoma that can be used to improve its diagnosis, particularly in early stages, as well as its prognosis.
Collapse
Affiliation(s)
- F Ricciardiello
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - R Capasso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - H Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - T Abate
- Ear Nose and Throat Unit, University of Naples Federico II, Naples, Italy
| | - F Oliva
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - A Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - G Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - D Ingrosso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - C A Leone
- Ear Nose and Throat Unit and Neck Surgery, Monaldi Hospital, Naples, Italy
| | - M Iengo
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
35
|
Quantification of microRNA levels in plasma - Impact of preanalytical and analytical conditions. PLoS One 2018; 13:e0201069. [PMID: 30024941 PMCID: PMC6053236 DOI: 10.1371/journal.pone.0201069] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported a potential role for circulating microRNAs as biomarkers in a wide variety of diseases. However, there is a critical reproducibility challenge some of which might be due to differences in preanalytical and/or analytical factors. Thus, in the current study we systematically investigated the impact of selected preanalytical and analytical variables on the measured microRNA levels in plasma. Similar levels of microRNA were found in platelet-poor plasma obtained by dual compared to prolonged single centrifugation. In contrast, poor correlation was observed between measurements in standard plasma compared to platelet-poor plasma. The correlation between quantitative real-time PCR and droplet digital PCR was found to be good, contrary to TaqMan Low Density Array and single TaqMan assays where no correlation could be demonstrated. Dependent on the specific microRNA measured and the normalization strategy used, the intra- and inter-assay variation of quantitative real-time PCR were found to be 4.2–6.8% and 10.5–31.4%, respectively. Using droplet digital PCR the intra-assay variation was 4.4–20.1%, and the inter-assay variation 5.7–26.7%. Plasma preparation and microRNA purification were found to account for 39–73% of the total intra-assay variation, dependent on the microRNA measured and the normalization strategy used. In conclusion, our study highlighted the importance of reporting comprehensive methodological information when publishing, allowing others to perform validation studies where preanalytical and analytical variables as causes for divergent results can be minimized. Furthermore, if microRNAs are to become routinely used diagnostic or prognostic biomarkers, the differences in plasma microRNA levels between health and diseased subjects must exceed the high preanalytical and analytical variability.
Collapse
|
36
|
Clinically Correlated MicroRNAs in the Diagnosis of Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5930951. [PMID: 30050938 PMCID: PMC6046186 DOI: 10.1155/2018/5930951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/05/2018] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
(1) Background. Non-small cell lung cancer (NSCLC) has a high mortality rate. MiRNAs have been found to be diagnostic biomarkers for NSCLC. However, controversial results exist. We conducted this meta-analysis to evaluate the diagnostic value of miRNAs for NSCLC. (2) Methods. Databases and reference lists were searched. Pooled sensitivity (SEN), specificity (SPE), and area under the curve (AUC) were applied to examine the general diagnostic efficacy, and subgroup analysis was also performed. (3) Results. Pooled SEN, SPE, and AUC were 85%, 88%, and 0.93, respectively, for 71 studies. Multiple miRNAs (AUC: 0.96) obtained higher diagnostic value than single miRNA (AUC: 0.86), and the same result was found for Caucasian population (AUC: 0.97) when compared with Asian (AUC: 0.91) and Caucasian/African population (AUC: 0.92). MiRNA had higher diagnostic efficacy when participants contained both smokers and nonsmokers (AUC is 0.95 for imbalanced group and 0.91 for balanced group) than when containing only smokers (AUC: 0.90). Meanwhile, AUC was 0.91 for both miR-21 and miR-210. (4) Conclusions. Multiple miRNAs such as miR-21 and miR-210 could be used as diagnostic tools for NSCLC, especially for the Caucasian and nonsmoking NSCLC.
Collapse
|
37
|
Sun GL, Li Z, Wang WZ, Chen Z, Zhang L, Li Q, Wei S, Li BW, Xu JH, Chen L, He ZY, Ying K, Zhang X, Xu H, Zhang DC, Xu ZK. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway. J Gastroenterol 2018; 53:725-739. [PMID: 29103082 PMCID: PMC5971041 DOI: 10.1007/s00535-017-1408-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/17/2017] [Accepted: 10/29/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Emerging evidence suggested that miRNAs can function as oncogenes or tumor suppressors by regulating downstream target genes. miR-324-3p has been reported to function in several carcinomas, but its role in gastric cancer (GC) is still unknown. This study aims to explore the effects of miR-324-3p on the development of GC. METHODS Expression of miR-324-3p was examined in GC cells and tissues by qRT-PCR. Effects of miR-324-3p on GC cells were evaluated by cell vitality assay, colony formation assay, cell migration assay, and flow cytometric assay. The dual luciferase assay was used to verify whether miR-324-3p could interact with the potential target genes. Western blot was used to assess the expression level of Smad4 and beta-catenin. Intracellular ATP level was also examined. The tumor xenografts were established using nude mice. A gastric organoid model was made from fresh stomach tissue. RESULTS miR-324-3p was expressed at higher levels in the tumor tissues compared with adjacent normal tissues. Overexpression of miR-324-3p promoted cell growth, migration, and decreased apoptosis. miR-324-3p repressed the expression of Smad4, and loss of Smad4 activated the Wnt/beta-catenin signaling pathway. Overexpression of Smad4 rescued the effects of miR-324-3p on GC cells. The intracellular ATP level was upregulated with overexpression of miR-324-3p. miR-324-3p facilitated tumor cell colonization and growth in vivo and contributed to the growth of gastric organoids. CONCLUSIONS The results suggested that miR-324-3p promoted GC through activating the Smad4-mediated Wnt/beta-catenin signaling pathway. The miR-324-3p/Smad4/Wnt signaling axis may be a potential therapeutic target to prevent GC progression.
Collapse
Affiliation(s)
- Guang-Li Sun
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Zheng Li
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Wei-Zhi Wang
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Zheng Chen
- 0000 0004 1936 9916grid.412807.8Department of Surgery, Vanderbilt University Medical Center, Nashville, TN USA
| | - Lei Zhang
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Qing Li
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Song Wei
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Bo-Wen Li
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Jiang-Hao Xu
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Liang Chen
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Zhong-Yuan He
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Kai Ying
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Xuan Zhang
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Hao Xu
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Dian-Cai Zhang
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| | - Ze-Kuan Xu
- 0000 0004 1799 0784grid.412676.0Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou road, Nanjing, Jiangsu China
| |
Collapse
|
38
|
Leng Q, Lin Y, Jiang F, Lee CJ, Zhan M, Fang H, Wang Y, Jiang F. A plasma miRNA signature for lung cancer early detection. Oncotarget 2017; 8:111902-111911. [PMID: 29340099 PMCID: PMC5762367 DOI: 10.18632/oncotarget.22950] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/24/2022] Open
Abstract
The early detection of lung cancer continues to be a major clinical challenge. Using whole-transcriptome next-generation sequencing to analyze lung tumor and the matched noncancerous tissues, we previously identified 54 lung cancer-associated microRNAs (miRNAs). The objective of this study was to investigate whether the miRNAs could be used as plasma biomarkers for lung cancer. We determined expressions of the lung tumor-miRNAs in plasma of a development cohort of 180 subjects by using reverse transcription PCR to develop biomarkers. The development cohort included 92 lung cancer patients and 88 cancer-free smokers. We validated the biomarkers in a validation cohort of 64 individuals comprising 34 lung cancer patients and 30 cancer-free smokers. Of the 54 miRNAs, 30 displayed a significant different expression level in plasma of the lung cancer patients vs. cancer-free controls (all P < 0.05). A plasma miRNA signature (miRs-126, 145, 210, and 205-5p) with the best prediction was developed, producing 91.5% sensitivity and 96.2% specificity for lung cancer detection. Diagnostic performance of the plasma miRNA signature had no association with stage and histological type of lung tumor, and patients' age, sex, and ethnicity (all p > 0.05). The plasma miRNA signature was reproducibly confirmed in the validation cohort. The plasma miRNA signature may provide a blood-based assay for diagnosing lung cancer at the early stage, and thereby reduce the associated mortality and cost.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Fangran Jiang
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Cheng-Ju Lee
- Departments of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Min Zhan
- Departments of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - HongBin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yue Wang
- Department of Mathematics & Statistics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
Moretti F, D’Antona P, Finardi E, Barbetta M, Dominioni L, Poli A, Gini E, Noonan DM, Imperatori A, Rotolo N, Cattoni M, Campomenosi P. Systematic review and critique of circulating miRNAs as biomarkers of stage I-II non-small cell lung cancer. Oncotarget 2017; 8:94980-94996. [PMID: 29212284 PMCID: PMC5706930 DOI: 10.18632/oncotarget.21739] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Selected circulating microRNAs (miRNAs) have been suggested for non-invasive screening of non-small cell lung cancer (NSCLC), however the numerous proposed miRNA signatures are inconsistent. Aiming to identify miRNAs suitable specifically for stage I-II NSCLC screening in serum/plasma samples, we searched the databases "Pubmed", "Medline", "Scopus", "Embase" and "WOS" and systematically reviewed the publications reporting quantitative data on the efficacy [sensitivity, specificity and/or area under the curve (AUC)] of circulating miRNAs as biomarkers of NSCLC stage I and/or II. The 20 studies fulfilling the search criteria included 1110 NSCLC patients and 1009 controls, and were of medium quality according to Quality Assessment of Diagnostic Accuracy Studies checklist. In these studies, the patient cohorts as well as the control groups were heterogeneous for demographics and clinicopathological characteristics; moreover, numerous pre-analytical and analytical variables likely influenced miRNA determinations, and potential bias of hemolysis was often underestimated. We identified four circulating miRNAs scarcely influenced by hemolysis, each featuring high sensitivity (> 80%) and AUC (> 0.80) as biomarkers of stage I-II NSCLC: miR-223, miR-20a, miR-448 and miR-145; four other miRNAs showed high specificity (> 90%): miR-628-3p, miR-29c, miR-210 and miR-1244. In a model of two-step screening for stage I-II NSCLC using first the above panel of serum miRNAs with high sensitivity and high AUC, and subsequently the panel with high specificity, the estimated overall sensitivity is 91.6% and overall specificity is 93.4%. These and other circulating miRNAs suggested for stage I-II NSCLC screening require validation in multiple independent studies before they can be proposed for clinical application.
Collapse
Affiliation(s)
- Francesca Moretti
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Paola D’Antona
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Emanuele Finardi
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Marco Barbetta
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Lorenzo Dominioni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Albino Poli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Andrea Imperatori
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Nicola Rotolo
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Maria Cattoni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and University of Insubria, Varese, Italy
| |
Collapse
|
40
|
Zhou Q, Huang SX, Zhang F, Li SJ, Liu C, Xi YY, Wang L, Wang X, He QQ, Sun CC, Li DJ. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28990243 DOI: 10.1111/cpr.12394] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2017] [Accepted: 09/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is still one of the most serious causes of cancer-related deaths all over the world. MicroRNAs (miRNAs) are defined as small non-coding RNAs which could play a pivotal role in post-transcriptional regulation of gene expression. Increasing evidence demonstrated dysregulation of miRNA expression associates with the development and progression of NSCLC. AIMS To emphasize a variety of tissue-specific miRNAs, circulating miRNAs and miRNA-derived exosomes could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. MATERIALS & METHODS In the current review, we paid attention to the significant discoveries of preclinical and clinical studies, which performed on tissue-specific miRNA, circulating miRNA and exosomal miRNA. The related studies were obtained through a systematic search of Pubmed, Web of Science, Embase. RESULTS A variety of tissue-specific miRNAs and circulating miRNAs with high sensitivity and specificity which could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In addition, we emphasize that the miRNA-derived exosomes become novel diagnostic biomarkers potentially in these patients with NSCLC. CONCLUSION MiRNAs have emerged as non-coding RNAs, which have potential to be candidates for the diagnosis and therapy of NSCLC.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shao-Xin Huang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Feng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Shu-Jun Li
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan, 430022, Hubei, China
| | - Cong Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong-Yong Xi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Liang Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi-Qiang He
- Department of School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
41
|
Yang Y, Hu Z, Zhou Y, Zhao G, Lei Y, Li G, Chen S, Chen K, Shen Z, Chen X, Dai P, Huang Y. The clinical use of circulating microRNAs as non-invasive diagnostic biomarkers for lung cancers. Oncotarget 2017; 8:90197-90214. [PMID: 29163821 PMCID: PMC5685742 DOI: 10.18632/oncotarget.21644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Many studies have investigated the diagnostic role of circulating microRNAs (miRNAs) in patients with lung cancer; however, the results still remain inconclusive. An updated system review and meta-analysis was necessary to give a comprehensive evaluation of diagnostic role of circulating miRNAs in lung cancer. Eligible studies were searched in electronical databases. The sensitivity and specificity were used to plot the summary receiver operator characteristic (SROC) curve and calculate the area under the curve (AUC). The between-study heterogeneity was evaluated by Q test and I2 statistics. Subgroup analyses and meta-regression were further performed to explore the potential sources of heterogeneity. A total of 134 studies from 65 articles (6,919 patients with lung cancer and 7,064 controls) were included for analysis. Overall analysis showed that circulating miRNAs had a good diagnostic performance in lung cancers, with a sensitivity of 0.83, a specificity of 0.84, and an AUC of 0.90. Subgroup analysis suggested that combined miRNAs and Caucasian populations may yield relatively higher diagnostic performance. In addition, we found serum might serve as an ideal material to detecting miRNA as good diagnostic performance. We also found the diagnostic role of miRNAs in early stage lung cancer was still relatively high (the sensitivity, specificity and an AUC of stage I/II was 0.81, 0.82 and 0.88; and for stage I, it was 0.80, 0.81, and 0.88). We also identified a panel of miRNAs such as miR-21-5p, miR-223-3p, miR-155-5p and miR-126-3p might serve as potential biomarkers for lung cancer. As a result, circulating miRNAs, particularly the combination of multiple miRNAs, may serve as promising biomarkers for the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zaoxiu Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yongchun Zhou
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangqiang Zhao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Shuai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Kai Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Zhenghai Shen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Xiao Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Peilin Dai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,Key Laboratory of Lung Cancer Research of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China.,International Joint Laboratory of High Altitude Regional Cancer of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University(Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, PR China
| |
Collapse
|
42
|
Tuo H, Wang Y, Wang L, Yao B, Li Q, Wang C, Liu Z, Han S, Yin G, Tu K, Liu Q. MiR-324-3p promotes tumor growth through targeting DACT1 and activation of Wnt/β-catenin pathway in hepatocellular carcinoma. Oncotarget 2017; 8:65687-65698. [PMID: 29029464 PMCID: PMC5630364 DOI: 10.18632/oncotarget.20058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2017] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Recently, it has been reported that miR-324-3p participates in regulation of the carcinogenesis and tumor progression in various cancers. However, the expression and function of miR-324-3p in hepatocellular carcinoma (HCC) remain unclear. In the current study, miR-324-3p expression was significantly up-regulated in HCC tissues and cell lines. HCC patients with high miR-324-3p level showed poor prognostic features and shorter overall survival and disease-free survival. And in vitro and in vivo experiments revealed that miR-324-3p promoted cell viability, colony formation, proliferation and cell cycle progression of HCC cells. Further studies demonstrated that miR-324-3p could directly target DACT1 (dishevelled binding antagonist of beta catenin 1) and negatively regulated its expression in HCC cells. And rescue experiments revealed that DACT1 could reverse the effects of miR-324-3p on HCC cells. Furthermore, the accumulation of both cytoplasmic and nuclear β-catenin as well as its downstream targets including c-Myc and cyclin D1 could be positively regulated by miR-324-3p. The regulatory effects of miR-324-3p on β-catenin, c-Myc and cyclin D1 levels could be reversed by DACT1. Overall, we concluded that miR-324-3p could promote tumor growth through targeting DACT1 and activation of Wnt/β-catenin pathway in HCC. MiR-324-3p may be a ponderable and promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Hang Tuo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Guozhi Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| |
Collapse
|
43
|
Zhou S, Zhang Z, Zheng P, Zhao W, Han N. MicroRNA-1285-5p influences the proliferation and metastasis of non-small-cell lung carcinoma cells via downregulating CDH1 and Smad4. Tumour Biol 2017. [PMID: 28631567 DOI: 10.1177/1010428317705513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Abnormal expression of microRNAs has been reported to regulate gene expression and cancer cell growth, invasion, and migration. Recently, upregulation of hsa-miR-1285 was demonstrated in bronchoalveolar lavage fluid samples from patients with lung cancer and downregulation in plasma level of stage-I lung cancer patients. However, the function and the underlying mechanism of miR-1285 in non-small-cell lung carcinoma have not been elucidated. In this study, we found that miR-1285-5p, the mature form of miR-1285, was significantly upregulated in human non-small-cell lung carcinoma cell lines A549 and SK-MES-1. Additionally, cells transfected with the miR-1285-5p inhibitor LV-anti-miR-1285-5p demonstrated significantly inhibited proliferation and invasion and depressed migration. Further analysis demonstrated that the miR-1285-5p precursor LV-miR-1285-5p attenuated the expression of Smad4 and cadherin-1 (CDH1) but that LV-anti-miR-1285-5p showed opposite results. A luciferase reporter assay confirmed that miR-1285-5p targeted Smad4 and CDH1. Mechanism analyses revealed that silence of Smad4 and CDH1 significantly attenuated the inhibitory effects of LV-anti-miR-1285-5p on non-small-cell lung carcinoma growth and invasion. Taken together, our data suggest that miR-1285-5p functions as a tumor promoter in the development of non-small-cell lung carcinoma by targeting Smad4 and CDH1, indicating a novel therapeutic strategy for non-small-cell lung carcinoma patients.
Collapse
Affiliation(s)
- Shixia Zhou
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongmian Zhang
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- 2 Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenchao Zhao
- 3 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Han
- 1 Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Hung PS, Chen CY, Chen WT, Kuo CY, Fang WL, Huang KH, Chiu PC, Lo SS. miR-376c promotes carcinogenesis and serves as a plasma marker for gastric carcinoma. PLoS One 2017; 12:e0177346. [PMID: 28486502 PMCID: PMC5423644 DOI: 10.1371/journal.pone.0177346] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric carcinoma is highly prevalent throughout the world. Understanding the pathogenesis of this disease will benefit diagnosis and resolution. Studies show that miRNAs are involved in the tumorigenesis of gastric carcinoma. An initial screening followed by subsequent validation identified that miR-376c is up-regulated in gastric carcinoma tissue and the plasma of patients with the disease. In addition, the urinary level of miR-376c is also significantly increased in gastric carcinoma patients. The plasma miR-376c level was validated as a biomarker for gastric carcinoma, including early stage tumors. The induction of miR-376c was found to enrich the proliferation, migration and anchorage-independent growth of carcinoma cells and, furthermore, the repression of the expression of endogenous miR-376c was able to reduce such oncogenic phenotypes. ARID4A gene is a direct target of miR-376c. Knockdown of endogenous ARID4A increased the oncogenicity of carcinoma cells, while ARID4A was found to be drastically down-regulated in tumor tissue. Thus, expression levels of miR-376c and ARID4A mRNA tended to be opposing in tumor tissue. Our results demonstrate that miR-376c functions by suppressing ARID4A expression, which in turn enhances the oncogenicity of gastric carcinoma cells. It seems likely that the level of miR-376c in plasma and urine could act as invaluable markers for the detection of gastric carcinoma.
Collapse
Affiliation(s)
- Pei-Shih Hung
- Department of Education and Medical Research, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chin-Yau Chen
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Wei-Ting Chen
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chen-Yu Kuo
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Wen-Liang Fang
- Division of General Surgery, Veterans General Hospital–Taipei, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Kuo-Hung Huang
- Division of General Surgery, Veterans General Hospital–Taipei, Taipei, Taiwan
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Peng-Chih Chiu
- Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Su-Shun Lo
- Department of Surgery, National Yang-Ming University Hospital, Yilan, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
45
|
McLoughlin KC, Ripley RT. Looks aren't everything, but neither is microRNA profiling. J Thorac Cardiovasc Surg 2017; 154:728-729. [PMID: 28461055 DOI: 10.1016/j.jtcvs.2017.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Kaitlin C McLoughlin
- Thoracic and Gastrointestinal Oncology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Md
| | - R Taylor Ripley
- Thoracic and Gastrointestinal Oncology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
46
|
Xiao J, Lu X, Chen X, Zou Y, Liu A, Li W, He B, He S, Chen Q. Eight potential biomarkers for distinguishing between lung adenocarcinoma and squamous cell carcinoma. Oncotarget 2017; 8:71759-71771. [PMID: 29069744 PMCID: PMC5641087 DOI: 10.18632/oncotarget.17606] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lung adenocarcinoma (LADC) and squamous cell carcinoma (LSCC) are the most common non-small cell lung cancer histological phenotypes. Accurate diagnosis distinguishing between these two lung cancer types has clinical significance. For this study, we analyzed four Gene Expression Omnibus (GEO) datasets (GSE28571, GSE37745, GSE43580, and GSE50081). We then imported the datasets into the Gene-Cloud of Biotechnology Information online platform to identify genes differentially expressed in LADC and LSCC. We identified DSG3 (desmoglein 3), KRT5 (keratin 5), KRT6A (keratin 6A), KRT6B (keratin 6B), NKX2-1 (NK2 homeobox 1), SFTA2 (surfactant associated 2), SFTA3 (surfactant associated 3), and TMC5 (transmembrane channel-like 5) as potential biomarkers for distinguishing between LADC and LSCC. Receiver operating characteristic curve analysis suggested that KRT5 had the highest diagnostic value for discriminating between these two cancer types. Using the PrognoScan online survival analysis tool and the Kaplan-Meier Plotter, we found that high KRT6A or KRT6B levels, or low NKX2-1, SFTA3, or TMC5 levels correlated with unfavorable prognoses in LADC patients. Further studies will be needed to verify our findings in additional patient samples, and to elucidate the mechanisms of action of these potential biomarkers in non-small cell lung cancer.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Yong Zou
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang 421001, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha 410008, China
| |
Collapse
|