1
|
Wang Q, Zhang C, Jiang H, He W. Targeting CAMK2N1/CAMK2 inhibits invasion, migration and angiogenesis of non-small cell lung cancer by promoting autophagy and apoptosis via AKT/mTOR signaling pathway. Gene 2024; 913:148375. [PMID: 38490509 DOI: 10.1016/j.gene.2024.148375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Deregulation of calcium/calmodulin-dependent protein kinase II (CAMK2) inhibitor 1 (CAMK2N1) has been reported to be associated with the development of several malignancies. To date, there have been few studies on the role of CAMK2N1 in lung cancer. This study aimed to investigate the relationship between CAMK2N1 and the progression of non-small cell lung cancer (NSCLC). Methodological quality was assessed using the ARRIVE guidelines. CAMK2N1 was expressed at low levels in NSCLC tissues. Overexpression of CAMK2N1 in NSCLC cell lines resulted in changes such as proliferation inhibition, metastasis inhibition, autophagy increase, and apoptosis. Mechanistic studies revealed the regulatory role of CAMK2N1/CAMK2 in AKT/mTOR signaling. Upregulation of CAMK2N1 decreased the expression levels of phosphorylated calmodulin kinase 2 (p-CaMK2), phosphorylated Akt (p-Akt), and phosphorylated-mTOR (p-mTOR). In contrast, CAMK2 overexpression increased p-AKT and p-mTOR levels. Inhibition of autophagy or activation of AKT signaling reduced CAMK2N1-mediated tumor suppression. The tumorigenic ability of CAMK2N1 overexpressing cells significantly diminished in nude mice. In conclusion, this study demonstrated the cancer suppressive function of CAMK2N1 in NSCLC and showed that CAMK2N1/CAMK2 exerted anti-cancer effects by inhibiting the AKT/mTOR signaling pathway to promote autophagy.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Cardiothoracic Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Chao Zhang
- Clinical Skills Center, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hai Jiang
- Department of Cardiothoracic Vascular Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med (Wars) 2024; 19:20240981. [PMID: 38868315 PMCID: PMC11167713 DOI: 10.1515/med-2024-0981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by a high mortality rate, high resistance to cytotoxic chemotherapy, and radiotherapy due to its highly aggressive nature. The pathophysiology of GBM is characterized by multifarious genetic abrasions that deactivate tumor suppressor genes, induce transforming genes, and over-secretion of pro-survival genes, resulting in oncogene sustainability. Synthetic lethality is a destructive process in which the episode of a single genetic consequence is tolerable for cell survival, while co-episodes of multiple genetic consequences lead to cell death. This targeted drug approach, centered on the genetic concept of synthetic lethality, is often selective for DNA repair-deficient GBM cells with restricted toxicity to normal tissues. DNA repair pathways are key modalities in the generation, treatment, and drug resistance of cancers, as DNA damage plays a dual role as a creator of oncogenic mutations and a facilitator of cytotoxic genomic instability. Although several research advances have been made in synthetic lethality modalities for GBM therapy, no review article has summarized these therapeutic modalities. Thus, this review focuses on the innovative advances in synthetic lethality modalities for GBM therapy.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Volta Region, Ho, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Izady M, Khatami F, Ahadi Z, Roudgari H, Aghamir SMK. Updates on Overcoming Bicalutamide Resistance: A Glimpse into Resistance to a Novel Antiandrogen. ACS Pharmacol Transl Sci 2024; 7:905-914. [PMID: 38633597 PMCID: PMC11020064 DOI: 10.1021/acsptsci.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/19/2024]
Abstract
The standard androgen deprivation therapy for advanced prostate cancer includes the use of bicalutamide, which is a well-known antagonist of androgen receptors. Despite numerous benefits of the drugs in prostate cancer treatment, there is always a risk of developing a resistant phenotype, which paves the way for a more aggressive and low-survival type of prostate cancer. Over the years, many studies have investigated the candidate mechanisms of such resistance and have managed to find possible therapeutic solutions. In this Review, we shed light on the heterogeneous dynamics of progression to resistance against bicalutamide treatment, referring to the most recent studies and the approaches that have been so far discussed. This Review tries to offer a deep and comprehensive understanding about how the resistant cells become sensitive to the drug and what corresponding pathways lead to an appropriate solution for the antiandrogen resistance challenge.
Collapse
Affiliation(s)
- Mehrnaz Izady
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
- Department
of Stem Cells Technology and Tissue Regeneration, School of Biology,
College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Fatemeh Khatami
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Zeinab Ahadi
- Urology
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| | - Hassan Roudgari
- Genomic
Research Center (GRC), Shahid Beheshti University
of Medical Sciences (SBMU), Tehran 19839-63113, Iran
- Department
of Applied Medicine, Medical School, Aberdeen
University, Aberdeen AB24 3FX, United Kingdom
| | | |
Collapse
|
4
|
Xu C, Xu H, Liu B. Head and neck squamous cell carcinoma-specific prognostic signature and drug sensitive subtypes based on programmed cell death-related genes. PeerJ 2023; 11:e16364. [PMID: 38025757 PMCID: PMC10668860 DOI: 10.7717/peerj.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background As a complex group of malignancies, head and neck squamous cell carcinoma (HNSC) is one of the leading causes of cancer mortality. This study aims to establish a reliable clinical classification and gene signature for HNSC prognostic prediction and precision treatments. Methods A consensus clustering analysis was performed to group HNSC patients in The Cancer Genome Atlas (TCGA) database based on genes linked to programmed cell death (PCD). Differentially expressed genes (DEGs) between subtypes were identified using the "limma" R package. The TCGA prognostic signature and PCD-related prognostic genes were found using a least absolute shrinkage and selection operator (LASSO) regression analysis and univariate Cox regression analysis. The robustness of the LASSO analysis was validated using datasets GSE65858 and GSE41613. A cell counting kit-8 (CCK-8) test, Western blot, and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) were used to evaluate the expression and viability of prognostic genes. Results Four molecular subtypes were identified in PCD-related genes. Subtype C4 had the best prognosis and the highest immune score, while subtype C1 exhibited the most unfavorable outcomes. Three hundred shared DEGs were identified among the four subtypes, and four prognostic genes (CTLA4, CAMK2N1, PLAU and CALML5) were used to construct a TCGA-HNSC prognostic model. High-risk patients manifested poorer prognosis, more inflammatory pathway enrichment, and lower immune cell infiltration. High-risk patients were more prone to immune escape and were more likely to be resistant to Cisplatin and 5-Fluorouracil. Prognosis prediction was validated in external datasets. The expression of CTLA4, CAMK2N1, PLAU and CALML5 was enhanced in CAL-27 and SCC-25 cell lines, and CALML5 inhibited CAL-27 and SCC-25 cell viability. Conclusion This study shares novel insights into HNSC classification and provides a reliable PCD-related prognostic signature for prognosis prediction and treatment for patients with HNSC.
Collapse
Affiliation(s)
- Chengbo Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Hongfang Xu
- Department of Otolaryngology Head and Neck Surgery, Jinhua Wenrong Hospital, Jinhua, China
| | - Baimei Liu
- Department of Otolaryngology Head and Neck Surgery, Yongkang First People’s Hospital, Yongkang, China
| |
Collapse
|
5
|
Kamashev D, Shaban N, Lebedev T, Prassolov V, Suntsova M, Raevskiy M, Gaifullin N, Sekacheva M, Garazha A, Poddubskaya E, Sorokin M, Buzdin A. Human Blood Serum Can Diminish EGFR-Targeted Inhibition of Squamous Carcinoma Cell Growth through Reactivation of MAPK and EGFR Pathways. Cells 2023; 12:2022. [PMID: 37626832 PMCID: PMC10453612 DOI: 10.3390/cells12162022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Regardless of the presence or absence of specific diagnostic mutations, many cancer patients fail to respond to EGFR-targeted therapeutics, and a personalized approach is needed to identify putative (non)responders. We found previously that human peripheral blood and EGF can modulate the activities of EGFR-specific drugs on inhibiting clonogenity in model EGFR-positive A431 squamous carcinoma cells. Here, we report that human serum can dramatically abolish the cell growth rate inhibition by EGFR-specific drugs cetuximab and erlotinib. We show that this phenomenon is linked with derepression of drug-induced G1S cell cycle transition arrest. Furthermore, A431 cell growth inhibition by cetuximab, erlotinib, and EGF correlates with a decreased activity of ERK1/2 proteins. In turn, the EGF- and human serum-mediated rescue of drug-treated A431 cells restores ERK1/2 activity in functional tests. RNA sequencing revealed 1271 and 1566 differentially expressed genes (DEGs) in the presence of cetuximab and erlotinib, respectively. Erlotinib- and cetuximab-specific DEGs significantly overlapped. Interestingly, the expression of 100% and 75% of these DEGs restores to the no-drug level when EGF or a mixed human serum sample, respectively, is added along with cetuximab. In the case of erlotinib, EGF and human serum restore the expression of 39% and 83% of DEGs, respectively. We further assessed differential molecular pathway activation levels and propose that EGF/human serum-mediated A431 resistance to EGFR drugs can be largely explained by reactivation of the MAPK signaling cascade.
Collapse
Affiliation(s)
- Dmitri Kamashev
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Moscow 119991, Russia; (T.L.); (V.P.)
| | - Maria Suntsova
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Mikhail Raevskiy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Nurshat Gaifullin
- Department of Pathology, Faculty of Medicine, Lomonosov Moscow State University, Moscow 119992, Russia;
| | - Marina Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Andrew Garazha
- Oncobox Ltd., Moscow 121205, Russia;
- Omicsway Corp., Walnut, CA 91789, USA
| | - Elena Poddubskaya
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
| | - Maksim Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (N.S.); (A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (M.R.); (E.P.)
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
6
|
Butler W, Xu L, Zhou Y, Cheng Q, Hauck S, He Y, Marek R, Hartman Z, Cheng L, Yang Q, Wang ME, Chen M, Zhang H, Armstrong AJ, Huang J. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer. J Pathol 2023; 260:43-55. [PMID: 36752189 PMCID: PMC10273879 DOI: 10.1002/path.6063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Neuroendocrine (NE) cells comprise ~1% of epithelial cells in benign prostate and prostatic adenocarcinoma (PCa). However, they become enriched in hormonally treated and castration-resistant PCa (CRPC). In addition, close to 20% of hormonally treated tumors recur as small cell NE carcinoma (SCNC), composed entirely of NE cells, which may be the result of clonal expansion or lineage plasticity. Since NE cells do not express androgen receptors (ARs), they are resistant to hormonal therapy and contribute to therapy failure. Here, we describe the identification of glypican-3 (GPC3) as an oncofetal cell surface protein specific to NE cells in prostate cancer. Functional studies revealed that GPC3 is critical to the viability of NE tumor cells and tumors displaying NE differentiation and that it regulates calcium homeostasis and signaling. Since our results demonstrate that GPC3 is specifically expressed by NE cells, patients with confirmed SCNC may qualify for GPC3-targeted therapy which has been developed in the context of liver cancer and displays minimal toxicity due to its tumor-specific expression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- William Butler
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Yinglu Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston MA, USA
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham NC, USA
| | - Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Yiping He
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Robert Marek
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Zachary Hartman
- Department of Surgery, Duke University School of Medicine, Durham NC, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence RI, USA
| | - Qing Yang
- School of Nursing, Duke University School of Medicine, Durham NC 27710, USA
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Hong Zhang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Andrew J. Armstrong
- Department of Medicine, Duke University School of Medicine, Durham NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| |
Collapse
|
7
|
Peng W, Feng H, Pang L, Zhang J, Hao Y, Wei X, Xia Q, Wei Z, Song W, Wang S, Liu J, Chen K, Wang T. Downregulation of CAMK2N1 due to DNA Hypermethylation Mediated by DNMT1 that Promotes the Progression of Prostate Cancer. JOURNAL OF ONCOLOGY 2023; 2023:4539045. [PMID: 36755811 PMCID: PMC9902116 DOI: 10.1155/2023/4539045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependentprotein kinase II inhibitor I (CAMK2N1) as one of the tumor suppressor genes is significantly downregulated in prostate cancer (PCa). Reduced expression of CAMK2N1 is positively correlated with PCa progression. However, the mechanisms of CAMK2N1 downregulation in PCa are still unclear. The promoter region of CAMK2N1 contains a large number of CG loci, providing the possibility for DNA methylation. Consequently, we hypothesized that DNA methylation can result in the reduced expression of CAMK2N1 in PCa. In the presented study, the DNA methylation level of CAMK2N1 in prostate cells and clinical specimens was determined by bisulfite sequencing (BS), pyrosequencing, and in silico analysis. Results showed that CAMK2N1 was highly methylated in PCa cells and tissues compared to normal prostate epithelial cells and nonmalignant prostate tissues, which was associated with the clinicopathological characteristics in PCa patients. Afterwards, we explored the expression of CAMK2N1 and its DNA methylation level by qRT-PCR, western blot, BS, and methylation-specific PCR in PCa cells after 5-Aza-CdR treatment or DNMT1 genetic modification, which demonstrated that the reduced expression of CAMK2N1 can be restored by 5-Aza-CdR treatment via demethylation. Moreover, DNMT1 formed a positive feedback loop with CAMK2N1 in PCa cells. The expression of CAMK2N1 was downregulated by DNMT1-mediated DNA methylation, which reversely induced DNMT1 expression through activating AKT or ERK signaling pathway. Finally, functional assays including wound healing, invasion, and migration assay, as well as the xenograft model in nude mice indicated that CAMK2N1 inhibited the invasion, migration, and proliferation of PCa cells and these effects were reversed by DNMT1 overexpression. In conclusion, DNMT1-mediated hypermethylation of CAMK2N1 not only downregulates the gene expression but also promotes the progression of PCa.
Collapse
Affiliation(s)
- Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Suining Central Hospital, Chongqing Medical University, Suining, China
| | - Junfeng Zhang
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewen Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Peng K, Ren X, Ren Q. NcRNA-mediated upregulation of CAMK2N1 is associated with poor prognosis and tumor immune infiltration of gastric cancer. Front Genet 2022; 13:888672. [PMID: 36092901 PMCID: PMC9452964 DOI: 10.3389/fgene.2022.888672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Gastric cancer (GC) is still notorious for its poor prognosis and aggressive characteristics. Though great developments have been made in diagnosis and therapy for GC, the prognosis of patient is still perishing. In this study, differentially expressed genes (DEGs) in GC were first screened using three Gene Expression Omnibus (GEO) datasets (GSE13911, GSE29998, and GSE26899). Second, The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to validate expression of these DEGs and perform survival analysis. We selected seven candidate genes (CAMK2N1, OLFML2B, AKR7A3, CYP4X1, FMO5, MT1H, and MT1X) to carry out the next analysis. To construct the ceRNA network, we screened the most potential upstream ncRNAs of the candidate genes. A series of bioinformatics analyses, including expression analysis, correlation analysis, and survival analysis, revealed that the SNHG10–hsa-miR-378a-3p might be the most potential regulatory axis in GC. Then, the expression of CAMK2N1, miR-378a-3p, and SNHG10 was verified in GC cell lines (GES-1, MGC-803, BGC-823, HGC-27, MKN-45, and AGS) by qRT-PCR and Western blotting. We found that SNHG10 and CAMK2N1 were highly expressed in gastric cancer lines, and the miR-378a-3p was lowly expressed in BGC-823, HGC-27, and MKN-45. Furthermore, CAMK2N1 levels were significantly negatively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression. In summary, our results suggest that the ncRNA-mediated high expression of CAMK2N1 is associated with poor prognosis and tumor immune infiltration of GC.
Collapse
Affiliation(s)
- Kaipeng Peng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiangqing Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qian Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Qian Ren,
| |
Collapse
|
9
|
Zhang X, Tian L, Li Z, Liu R, Yu J, Liu B. CAMK2N1 has a cancer-suppressive function in colorectal carcinoma via effects on the Wnt/β-catenin pathway. Biochem Biophys Res Commun 2022; 626:220-228. [PMID: 35998547 DOI: 10.1016/j.bbrc.2022.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
The deregulation of calcium/calmodulin-dependent protein kinase II inhibitor 1 (CAMK2N1) is linked to the carcinogenesis reported in several malignancies. To date, studies describing the role of CAMK2N1 in colorectal carcinoma are scarce. The current project was carried out to study the relationship between CAMK2N1 and colorectal carcinoma progression. CAMK2N1 levels were lowered in colorectal carcinoma tissue, which also correlated to poor overall survival in patients. Colorectal carcinoma cell lines with overexpressed CAMK2N1 showed a reduction in transformative phenotypes, including proliferation suppression, the blocking of cell cycle progression, metastasis inhibition and chemoresistance reduction, whereas CAMK2N1-silenced cells showed the opposite effect. Mechanistic studies revealed a novel regulatory role of CAMK2N1 on Wnt/β-catenin transduction. Up-regulation of CAMK2N1 lowered the level of disheveled 2, phosphorylated GSK-3β, β-catenin, c-myc and cyclin D1. Re-expression of β-catenin decreased the CAMK2N1-mediated tumor-inhibiting effects. Moreover, blocking of Wnt/β-catenin diminished CAMK2N1-silencing-elicited cancer-enhancing effect. Critically, the tumorigenicity of CAMK2N1-overexpressed cells was markedly weakened in nude mice. To conclude, the study demonstrated a cancer-suppressive function of CAMK2N1 in colorectal carcinoma and illustrated that CAMK2N1 exerts the tumor-inhibiting effects via suppression of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Bo Liu
- Department of Ultrasound Diagnosis, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
10
|
Yao B, Zhu S, Wei X, Chen MK, Feng Y, Li Z, Xu X, Zhang Y, Wang Y, Zhou J, Tang N, Ji C, Jiang P, Zhao SC, Qin C, Feng N. The circSPON2/miR-331-3p axis regulates PRMT5, an epigenetic regulator of CAMK2N1 transcription and prostate cancer progression. Mol Cancer 2022; 21:119. [PMID: 35624451 PMCID: PMC9137111 DOI: 10.1186/s12943-022-01598-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and its mechanism remains poorly understood. Therefore, it is urgent to discover potential novel diagnostic biomarkers and therapeutic targets that can potentially facilitate the development of efficient anticancer strategies. METHODS A series of functional in vitro and in vivo experiments were conducted to evaluate the biological behaviors of PCa cells. RNA pulldown, Western blot, luciferase reporter, immunohistochemistry and chromatin immunoprecipitation assays were applied to dissect the detailed underlying mechanisms. High-throughput sequencing was performed to screen for differentially expressed circRNAs in PCa and adjacent normal tissues. RESULTS Upregulation of protein arginine methyltransferase 5 (PRMT5) is associated with poor progression-free survival and the activation of multiple signaling pathways in PCa. PRMT5 inhibits the transcription of CAMK2N1 by depositing the repressive histone marks H4R3me2s and H3R8me2s on the proximal promoter region of CAMK2N1, and results in malignant progression of PCa both in vitro and in vivo. Moreover, the expression of circSPON2, a candidate circRNA in PCa tissues identified by RNA-seq, was found to be associated with poor clinical outcomes in PCa patients. Further results showed that circSPON2 induced PCa cell proliferation and migration, and that the circSPON2-induced effects were counteracted by miR-331-3p. Particularly, circSPON2 acted as a competitive endogenous RNA (ceRNA) of miR-331-3p to attenuate the repressive effects of miR-331-3p on its downstream target PRMT5. CONCLUSIONS Our findings showed that the epigenetic regulator PRMT5 aggravates PCa progression by inhibiting the transcription of CAMK2N1 and is modulated by the circSPON2/miR-331-3p axis, which may serve as a potential therapeutic target for patients with aggressive PCa.
Collapse
Affiliation(s)
- Bing Yao
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Sha Zhu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiyi Wei
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming-Kun Chen
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China
| | - Yangkun Feng
- Medical School of Nantong University, Nantong, 226001, China
| | - Zhimin Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinyu Xu
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yuwei Zhang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Wang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Jingwan Zhou
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Ningyuan Tang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Chengjian Ji
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jiang
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China. .,Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chao Qin
- The State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ninghan Feng
- Department of Urology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Department of Medical Genetics, Nanjing Medical University, Nanjing, 211166, China. .,Wuxi Clinical College, Nantong University, Wuxi, 214002, China.
| |
Collapse
|
11
|
Miller KJ, Asim M. Unravelling the Role of Kinases That Underpin Androgen Signalling in Prostate Cancer. Cells 2022; 11:cells11060952. [PMID: 35326402 PMCID: PMC8946764 DOI: 10.3390/cells11060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) signalling pathway is the key driver in most prostate cancers (PCa), and is underpinned by several kinases both upstream and downstream of the AR. Many popular therapies for PCa that target the AR directly, however, have been circumvented by AR mutation, such as androgen receptor variants. Some upstream kinases promote AR signalling, including those which phosphorylate the AR and others that are AR-regulated, and androgen regulated kinase that can also form feed-forward activation circuits to promotes AR function. All of these kinases represent potentially druggable targets for PCa. There has generally been a divide in reviews reporting on pathways upstream of the AR and those reporting on AR-regulated genes despite the overlap that constitutes the promotion of AR signalling and PCa progression. In this review, we aim to elucidate which kinases—both upstream and AR-regulated—may be therapeutic targets and require future investigation and ongoing trials in developing kinase inhibitors for PCa.
Collapse
|
12
|
Discovery of a New CaMKII-Targeted Synthetic Lethal Therapy against Glioblastoma Stem-like Cells. Cancers (Basel) 2022; 14:cancers14051315. [PMID: 35267623 PMCID: PMC8909660 DOI: 10.3390/cancers14051315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma stem-like cells (GSCs) drive tumor initiation, cancer invasion, immune evasion, and therapeutic resistance and are thus a key therapeutic target for improving treatment for glioblastoma multiforme (GBM). We previously identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an emerging molecular target for eliminating GSCs. In this study, we aim to explore a new CaMKII-targeted synthetic lethal therapy for GSCs. Through high-throughput drug combination screening using CaMKII inhibitors and a bioactive compound library in GSCs, neurokinin 1 receptor (NK1R) inhibitors such as SR 140333 and aprepitant are found to be potential anticancer agents that exhibit chemical synthetic lethal interactions with CaMKII inhibitors, including hydrazinobenzoylcurcumin (HBC), berbamine, and KN93. Combined treatment with NK1R and CaMKII inhibitors markedly suppresses the viability and neurosphere formation of U87MG- and U373MG-derived GSCs. In addition, the combination of HBC and NK1R inhibitors significantly inhibits U87MG GSC tumor growth in a chick embryo chorioallantoic membrane (CAM) model. Furthermore, the synthetic lethal interaction is validated using RNA interference of CaMKIIγ and NK1R. Notably, the synthetic lethal effects in GSCs are associated with the activation of caspase-mediated apoptosis by inducing p53 expression and reactive oxygen species generation, as well as the suppression of stemness marker expression by reducing nuclear factor-kappa B (NF-κB) activity. This follows the downregulation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling and a decrease in intracellular calcium concentration. Moreover, NK1R affects CaMKIIγ activation. These findings demonstrate that NK1R is a potential synthetic lethal partner of CaMKII that is involved in eradicating GSCs, and they suggest a new CaMKII-targeted combination therapy for treating GBM.
Collapse
|
13
|
Ghosal S, Zhu B, Huynh TT, Meuter L, Jha A, Talvacchio S, Knue M, Patel M, Prodanov T, Das S, Zeiger MA, Nilubol N, Shankavaram UT, Taieb D, Pacak K. A long noncoding RNA-microRNA expression signature predicts metastatic signature in pheochromocytomas and paragangliomas. Endocrine 2022; 75:244-253. [PMID: 34536193 DOI: 10.1007/s12020-021-02857-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE In hopes of discovering new markers for metastatic or aggressive phenotypes of pheochromocytomas and paragangliomas (PCPG), we analyzed the noncoding transcriptome from patient gene expression data in The Cancer Genome Atlas. METHODS Differential expression of miRNAs was observed between PCPG molecular subtypes. We specifically characterized candidate miRNAs that are upregulated in pseudohypoxic PCPGs with mutations in succinate dehydrogenase complex subunits, B and/or D (SDHB and/or SDHD, respectively), which are mutations associated with unfavorable clinical outcomes. RESULTS Our computational analysis identified four candidate miRNAs that showed elevated expression in metastatic compared to non-metastatic PCPGs: miR-182, miR-183, miR-96, and miR-383. We also found six candidate lncRNAs harboring opposite expression patterns from the miRNAs when we analyzed the expression profiles of their predicted target lncRNAs. Three of these lncRNA candidates, USP3-AS1, LINC00877, and AC009312.1, were validated to have reduced expression in metastatic compared to non-metastatic PCPGs. Finally, using univariate and multivariate analysis, we found miRNA miR-182 to be an independent predictor of metastasis-free survival in PCPGs. CONCLUSIONS We identified candidate miRNA and lncRNAs associated with metastasis-free survival in PCPGs.
Collapse
Affiliation(s)
- Suman Ghosal
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Boqun Zhu
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Thanh-Truc Huynh
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leah Meuter
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marianne Knue
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martha A Zeiger
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Uma T Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France
- European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
CaMKII Mediates TGFβ1-Induced Fibroblasts Activation and Its Cross Talk with Colon Cancer Cells. Dig Dis Sci 2022; 67:134-145. [PMID: 33528688 DOI: 10.1007/s10620-021-06847-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/01/2019] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. TGFβ1 has been the mostly accepted factor to fuel normal fibroblasts transformation into CAFs. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is thought to play an important role in fibroblasts activation induced by TGFβ1. The aim of this study is to investigate the potential role of CaMKII in TGFβ1-induced fibroblasts activation and CAF-like differentiation. Cross talk between CaMKII-dependent fibroblasts and colon cancer in colon cancer progression also was addressed RESULTS: Immunostaining demonstrated that in colon cancer stroma, CaMKII overexpressed in stromal CAFs. In vitro, TGFβ1 increased CAF markers expression in human colon fibroblasts CCD-18Co, but not in CaMKII depletion fibroblasts. CaMKII knockdown by CaMKII shRNA significantly inhibited TGFβ1-induced fibroblasts activation and CAF-like differentiation. Smad3, AKT, and MAPK were targeted in TGFβ1-CaMKII-mediated pathway. Human colon cancer cell line HCT-116 activated fibroblasts directly, whereas CaMKII depletion dragged CCD-18Co fibroblasts undergoing CAF-associated trans-differentiation. Furthermore, increased proliferation, migration, and invasion of colon cancer cells were stimulated when co-cultured with normal fibroblasts, but not with CaMKII depletion fibroblasts. CONCLUSIONS These findings provide evidence that CaMKII is a critical mediator in TGFβ1-induced fibroblasts activation and is involved in the cross talk with colon cancer cells. CaMKII is a potentially effective target for future treatment of colon cancer.
Collapse
|
15
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
16
|
Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel) 2021; 11:ani11041134. [PMID: 33921032 PMCID: PMC8071398 DOI: 10.3390/ani11041134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The reproduction of mammals is regulated by the hypothalamic-pituitary-gonadal axis. Follicle stimulating hormone, as one of the gonadotropins secreted by the pituitary gland, plays an immeasurable role. This article mainly reviews the molecular basis and classical signaling pathways that regulate the synthesis and secretion of follicle stimulating hormone, and summarizes its internal molecular mechanism, which provides a certain theoretical basis for the research of mammalian reproduction regulation and the application of follicle stimulating hormone in production practice. Abstract Mammalian reproduction is mainly driven and regulated by the hypothalamic-pituitary-gonadal (HPG) axis. Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior pituitary gland, is a key regulator that ultimately affects animal fertility. As a dimeric glycoprotein hormone, the biological specificity of FSH is mainly determined by the β subunit. As research techniques are being continuously innovated, studies are exploring the underlying molecular mechanism regulating the secretion of mammalian FSH. This article will review the current knowledge on the molecular mechanisms and signaling pathways systematically regulating FSH synthesis and will present the latest hypothesis about the nuclear cross-talk among the various endocrine-induced pathways for transcriptional regulation of the FSH β subunit. This article will provide novel ideas and potential targets for the improved use of FSH in livestock breeding and therapeutic development.
Collapse
|
17
|
Rio PD, Madan P. Does miRNA Expression in the Spent Media Change During Early Embryo Development? Front Vet Sci 2021; 8:658968. [PMID: 33898550 PMCID: PMC8060439 DOI: 10.3389/fvets.2021.658968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Distinct miRNA populations have been detected in the spent media of in-vitro culture systems. However, profiling has been limited to media conditioned with blastocyst-stage embryos. Therefore, the aim of the study was to profile extracellular miRNAs throughout the pre-implantation period in bovine embryos. To achieve this, cumulus oocyte complexes were aspirated from ovaries, in-vitro matured, fertilized, and cultured under standard laboratory procedures to the 2-cell, 8-cell, or blastocyst stage of development. At each developmental stage, 25 μl of spent in-vitro culture media was collected, pooled to 300 μl, and processed for total RNA extraction. In-vitro culture media, which never came in contact with any embryos, were additionally processed for total RNA extraction to serve as a negative control. Following hybridization on a GeneChip miRNA 4.0 array, comparative analysis was conducted between spent media and control samples. In total, 111 miRNAs were detected in the spent media samples, with 56 miRNAs identified in blastocyst spent media, 14 miRNAs shared between 8-cell and blastocyst spent media, 7 miRNAs shared between all 3 conditions, and 6 miRNAs exclusive to 2-cell spent media. miRNA-mRNA target prediction analysis revealed that the majority of genes predicted to be regulated by the miRNAs identified in the study have roles in cellular process, metabolic process, and biological regulation. Overall, the study suggest that miRNAs can be detected in the spent media of in-vitro culture system throughout the pre-implantation period and the detected miRNAs may influence genes impacting early embryo development.
Collapse
Affiliation(s)
| | - Pavneesh Madan
- Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Jiao F, Gao F, Liu Y, Fan Z, Xiang X, Xia C, Lv Y, Xie Y, Bai H, Zhang W, Qin W, Qian X. A facile "one-material" strategy for tandem enrichment of small extracellular vesicles phosphoproteome. Talanta 2021; 223:121776. [PMID: 33298282 DOI: 10.1016/j.talanta.2020.121776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Small extracellular vesicles (SEVs), are cell-derived, membrane-enclosed nanometer-sized vesicles that play vital roles in many biological processes. Recent years, more and more evidences proved that small EVs have close relationship with many diseases such as cancers and Alzheimer's disease. The use of phosphoproteins in SEVs as potential biomarkers is a promising new choice for early diagnosis and prognosis of cancer. However, current techniques for SEVs isolation still facing many challenges, such as highly instrument dependent, time consuming and insufficient purity. Furthermore, complex enrichment procedures and low microgram amounts of proteins available from clinical sources largely limit the throughput and the coveage depth of SEVs phosphoproteome mapping. Here, we synthesized Ti4+-modified magnetic graphene-oxide composites (GFST) and developed a "one-material" strategy for facile and efficient phosphoproteome enrichment and identification in SEVs from human serum. By taking advantage of chelation and electrostatic interactions between metal ions and phosphate groups, GFST shows excellent performance in both SEVs isolation and phosphopeptide enrichment. Close to 85% recovery is achieved within a few minutes by simple incubation with GFST and magnetic separation. Proteome profiling of the isolated serum SEVs without phosphopeptide enrichment results in 515 proteins, which is approximately one-fold more than those otained by ultracentrifugation or coprecipitation kits. Further application of GFST in one-material-based enrichment led to identification of 859 phosphosites in 530 phosphoproteins. Kinase-substrate correlation analysis reveals enriched substrates of CAMK in serum SEVs phosphoproteome. Therefore, we expect that the low instrument dependency and the limited sample requirement of this new strategy may facilitate clinical investigations in SEV-based transportation of abnormal kinases and substrates for drug target discovery and cancer monitoring.
Collapse
Affiliation(s)
- Fenglong Jiao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fangyuan Gao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuanyuan Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Zhiya Fan
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaochao Xiang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chaoshuang Xia
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yayao Lv
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuping Xie
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Haihong Bai
- Phase I Clinical Trial Center, Capital Medical University Affiliated Beijing Shijitan Hospital University, Beijing, 100038, China
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China; College of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| |
Collapse
|
19
|
Risal S, Manti M, Lu H, Fornes R, Larsson H, Benrick A, Deng Q, Cesta CE, Rosenqvist MA, Stener-Victorin E. Prenatal androgen exposure causes a sexually dimorphic transgenerational increase in offspring susceptibility to anxiety disorders. Transl Psychiatry 2021; 11:45. [PMID: 33441551 PMCID: PMC7806675 DOI: 10.1038/s41398-020-01183-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
If and how obesity and elevated androgens in women with polycystic ovary syndrome (PCOS) affect their offspring's psychiatric health is unclear. Using data from Swedish population health registers, we showed that daughters of mothers with PCOS have a 78% increased risk of being diagnosed with anxiety disorders. We next generated a PCOS-like mouse (F0) model induced by androgen exposure during late gestation, with or without diet-induced maternal obesity, and showed that the first generation (F1) female offspring develop anxiety-like behavior, which is transgenerationally transmitted through the female germline into the third generation of female offspring (F3) in the androgenized lineage. In contrast, following the male germline, F3 male offspring (mF3) displayed anxiety-like behavior in the androgenized and the obese lineages. Using a targeted approach to search for molecular targets within the amygdala, we identified five differentially expressed genes involved in anxiety-like behavior in F3 females in the androgenized lineage and eight genes in the obese lineage. In mF3 male offspring, three genes were dysregulated in the obese lineage but none in the androgenized lineage. Finally, we performed in vitro fertilization (IVF) using a PCOS mouse model of continuous androgen exposure. We showed that the IVF generated F1 and F2 offspring in the female germline did not develop anxiety-like behavior, while the F2 male offspring (mF2) in the male germline did. Our findings provide evidence that elevated maternal androgens in PCOS and maternal obesity may underlie the risk of a transgenerational transmission of anxiety disorders in children of women with PCOS.
Collapse
Affiliation(s)
- Sanjiv Risal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Manti
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Romina Fornes
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Anna Benrick
- grid.8761.80000 0000 9919 9582Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.412798.10000 0001 2254 0954School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Qiaolin Deng
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolyn E. Cesta
- grid.4714.60000 0004 1937 0626Department of Medicine, Solna, Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Mina A. Rosenqvist
- grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
20
|
Peng JM, Tseng RH, Shih TC, Hsieh SY. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett 2020; 497:66-76. [PMID: 33068700 DOI: 10.1016/j.canlet.2020.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 01/24/2023]
Abstract
Human kinome/phosphatome screen identified CAMK2N1 genes suppressing the development of human hepatocellular carcinoma (HCC). CAMK2N1 downregulation was found in 47% HCCs and associated with poor prognosis. The downregulation was mainly attributed to its genome deletion (28.4%) and DNA hypermethylation of its promoter (12.5%). Silencing and ectopic expression of CAMK2N1 respectively enhanced and suppressed cell proliferation, colony formation, and xenograft tumor growth in nude mice. Comparative proteomics revealed that CAMK2N1 silencing transcriptionally deregulated the genes regulated by E2F1 (89 out of the 114 E2F-signaling targets, P = 8.8E-240). The promoter assays revealed that CAMK2N1 suppressed E2F1-mediated transcriptional activities. CAMK2N1 silencing induced cyclins D/E expression, whereas its ectopic expression induced P27/KIP1 expression and suppressed the cell cycle. CAMK2N1 was translocated from the nuclei to the cytoplasm when cell proliferation reached the stationary phase, where its functions as an endogenous inhibitor of CAMK2. In conclusion, CAMK2NA is a novel 1p36 tumor suppressor gene that inhibits E2F1 transcriptional activities and induces P27/KIP1 expression. CAMK2N1-CAMK2 signaling forms a mechanism that restricts the cell cycle progression. Its deregulation could lead to tumorigenesis and might serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ruo-Han Tseng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Tsung-Chieh Shih
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chang Gung University, Institute of Biomedical Sciences, College of Medicine, Taoyuan, 333, Taiwan.
| |
Collapse
|
21
|
Hu Y, Zhang Y, Liu C, Qin R, Gong D, Wang R, Zhang D, Che L, Chen D, Xin G, Gao F, Hu Q. Multi-omics profiling highlights lipid metabolism alterations in pigs fed low-dose antibiotics. BMC Genet 2020; 21:112. [PMID: 32957918 PMCID: PMC7507292 DOI: 10.1186/s12863-020-00918-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2019] [Accepted: 09/11/2020] [Indexed: 02/02/2023] Open
Abstract
Background In order to study the relations of hepatocellular functions, weight gain and metabolic imbalance caused by low-dose antibiotics (LDA) via epigenetic regulation of gene transcription, 32 weaned piglets were employed as animal models and randomly allocated into two groups with diets supplemented with 0 or LDA (chlorotetracycline and virginiamycin). Results During the 4 weeks of the experiment, LDA showed a clear growth-promoting effect, which was exemplified by the significantly elevated body weight and average daily gain. Promoter methylome profiling using liquid hybridization capture-based bisulfite sequencing (LHC-BS) indicated that most of the 745 differential methylation regions (DMRs) were hypermethylated in the LDA group. Several DMRs were significantly enriched in genes related with fatty acids metabolic pathways, such as FABP1 and PCK1. In addition, 71 differentially expressed genes (DEGs) were obtained by strand-specific transcriptome analysis of liver tissues, including ALOX15, CXCL10 and NNMT, which are three key DEGs that function in lipid metabolism and immunity and which had highly elevated expression in the LDA group. In accordance with these molecular changes, the lipidome analyses of serum by LC-MS identified 38 significantly differential lipids, most of which were downregulated in the LDA group. Conclusions Our results indicate that LDA could induce epigenetic and transcriptional changes of key genes and lead to enhanced efficiency of lipid metabolism in the liver.
Collapse
Affiliation(s)
- Yue Hu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yihe Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cong Liu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Rui Qin
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Desheng Gong
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ru Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625014, Sichuan Province, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625014, Sichuan Province, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625014, Sichuan Province, China
| | - Guizhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, DK, Denmark
| | - Qi Hu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
22
|
Suppression of CaMKIIβ Inhibits ANO1-Mediated Glioblastoma Progression. Cells 2020; 9:cells9051079. [PMID: 32357567 PMCID: PMC7290681 DOI: 10.3390/cells9051079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
ANO1, a Ca2+-activated chloride channel, is highly expressed in glioblastoma cells and its surface expression is involved in their migration and invasion. However, the regulation of ANO1 surface expression in glioblastoma cells is largely unknown. In this study, we found that Ca2+/Calmodulin-dependent protein kinase II (CaMKII) β specifically enhances the surface expression and channel activity of ANO1 in U251 glioblastoma cells. When KN-93, a CaMKII inhibitor, was used to treat U251 cells, the surface expression and channel activity of ANO1 were significantly reduced. Only CaMKIIβ, among the four CaMKII isoforms, increased the surface expression and channel activity of ANO1 in a heterologous expression system. Additionally, gene silencing of CaMKIIβ suppressed the surface expression and channel activity of ANO1 in U251 cells. Moreover, gene silencing of CaMKIIβ or ANO1 prominently reduced the migration and invasion of U251 and U87 MG glioblastoma cells. We thus conclude that CaMKIIβ plays a specific role in the surface expression of ANO1 and in the ANO1-mediated tumorigenic properties of glioblastoma cells, such as migration and invasion.
Collapse
|
23
|
Wu C, Miao C, Tang Q, Zhou X, Xi P, Chang P, Hua L, Ni H. MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. J Cell Mol Med 2019; 24:2098-2108. [PMID: 31876385 PMCID: PMC7011149 DOI: 10.1111/jcmm.14050] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2018] [Revised: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunqing Miao
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Qingsheng Tang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Xunrong Zhou
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Pengshan Xi
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Ping'an Chang
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| | - Lixin Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haodong Ni
- Department of Urology, People's Hospital of Dongtai City, Dongtai, Jiangsu, China
| |
Collapse
|
24
|
Carneiro I, Quintela-Vieira F, Lobo J, Moreira-Barbosa C, Menezes FD, Martins AT, Oliveira J, Silva R, Jerónimo C, Henrique R. Expression of EMT-Related Genes CAMK2N1 and WNT5A is increased in Locally Invasive and Metastatic Prostate Cancer. J Cancer 2019; 10:5915-5925. [PMID: 31762801 PMCID: PMC6856586 DOI: 10.7150/jca.34564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Prostate cancer (PCa) varies clinically from very indolent, not requiring therapeutic intervention, to highly aggressive, entailing radical treatment. Currently, stratification of PCa aggressiveness is mostly based on Gleason score, serum PSA and TNM stage, but outcome prediction in an individual basis is suboptimal. Thus, perfecting pre-therapeutic discrimination between indolent and aggressive PCa, avoiding overtreatment is a major challenge. Epithelial to mesenchymal transition (EMT) allows epithelial cells to acquire mesenchymal properties, constituting a critical step in tumor invasion and metastization. Thus, we hypothesized that EMT-related markers might allow for improved assessment of PCa aggressiveness. Methods and Results: Using RealTime ready Custom Panel 384 assay, 93 EMT-related genes were assessed in normal prostate tissues (NPT, n=5), stage pT2a+b-PCa (n=5) and stage pT3b-PCa (n=5), from which CAMK2N1, CD44, KRT14, TGFβ3 and WNT5A genes emerged as the most significantly altered. Expression levels were then evaluated in a larger series (16 NPT and 94 PCa) of frozen tissues using quantitative RT-PCR. Globally, CAMK2N1, CD44 and WNT5A displayed higher expression levels at higher stages and less differentiated PCa. CAMK2N1 and WNT5A immunoexpression analysis disclosed significantly lower expression in NPT and increasing proportion of high-expression cases from pT2a+b to pT3b and metastatic PCa. Furthermore, higher CAMK2N1 and WNT5A transcript levels associated with shorter disease-free and disease-specific survival. In multivariable analysis, a trend for WNT5A expression levels to independently predict DFS was disclosed (p=0.056). Conclusions: Globally, our findings suggest an association between PCa aggressiveness and increased expression of CAMK2N1 and WNT5A, reflecting the acquisition of effective EMT characteristics by PCa cells.
Collapse
Affiliation(s)
- Isa Carneiro
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Filipa Quintela-Vieira
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisco Duarte Menezes
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Ana Teresa Martins
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Regina Silva
- School of Health, Polytechnic of Porto (ESS), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| |
Collapse
|
25
|
Eizuka K, Nakashima D, Oka N, Wagai S, Takahara T, Saito T, Koike K, Kasamatsu A, Shiiba M, Tanzawa H, Uzawa K. SYT12 plays a critical role in oral cancer and may be a novel therapeutic target. J Cancer 2019; 10:4913-4920. [PMID: 31598163 PMCID: PMC6775516 DOI: 10.7150/jca.32582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Synaptotagmin12 (SYT12) has been well characterized as the regulator of transmitter release in the nervous system, however the relevance and molecular mechanisms of SYT12 in oral squamous cell carcinoma (OSCC) are not understood. In the current study, we investigated the expression of SYT12 and its molecular biological functions in OSCC by quantitative reverse transcriptase polymerase chain reaction, immunoblot analysis, and immunohistochemistry. SYT12 were up-regulated significantly in OSCC-derived cell lines and primary OSCC tissue compared with the normal counterparts (P<0.05) and the SYT12 expression levels were correlated significantly with clinical indicators, such as the primary tumoral size, lymph node metastasis, and TNM stage (P<0.05). SYT12 knockdown OSCC cells showed depressed cellular proliferation, migration, and invasion with cell cycle arrest at G1 phase. Surprisingly, we found increased calcium/calmodulin-dependent protein kinase 2 (CAMK2) inhibitor 1 (CAMK2N1) and decreased CAMK2-phosphorylation in the knockdown cells. Furthermore, treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), a drug approved for Parkinson's disease, led to down-regulation of SYT12 and similar phenotypes to SYT12 knockdown cells. Taken together, we concluded that SYT12 plays a significant role in OSCC progression via CAMK2N1 and CAMK2, and that L-dopa would be a new drug for OSCC treatment through the SYT12 expression.
Collapse
Affiliation(s)
- Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritoshi Oka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshikazu Takahara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
26
|
Xu K, Hu X, Sun L, Liang Q, Ouyang G, Zhang Y, Mu Q, Yan X. MicroRNA-532 exerts oncogenic functions in t(4;14) multiple myeloma by targeting CAMK2N1. Hum Cell 2019; 32:529-539. [PMID: 31452083 DOI: 10.1007/s13577-019-00276-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm which is characterized by widespread genetic heterogeneity. The MMs with t(4;14) translocation exhibit poor outcomes. However, the mechanism underlying has not been well dissected. Our study aimed to identify key microRNA involved in the oncogenesis of t(4;14) MM. We here performed an integrated analysis to screen important regulators in the pathogenesis of t(4;14) MM. We used real-time quantitative polymerase chain reaction and western blotting to evaluate the mRNA and protein expression of the indicated microRNA or protein. Cell proliferation assay, colony formation assay, and transwell assay were used to examine the cell growth and metastasis. More importantly, the tumor growth and metastasis were analyzed in nude mice injected with MM cells. The integrated analysis indicated that miR-532 functioned as a pivotal regulator in t(4;14) MM. miR-532 was upregulated in t(4;14) MMs and promotes cell growth and metastasis in vitro and in vivo. Notably, though combing bioinformatics analysis and functional assays, CAMK2N1 was revealed as a functional target of miR-532 in MM cells. CAMK2N1 plays an anti-proliferative and anti-migration role in MM cells, and miR-532 exerts its oncogenic role though inhibiting CAMK2N1 expression in MMs. miR-532 promotes cell proliferation and invasion in t(4;14) MMs by targeting CAMK2N1. Our study, thus, provides possible targets for t(4;14) MM therapy.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China.
| | - Xuezhen Hu
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Laifang Sun
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qingyue Liang
- Department of Nutrition, The Second Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Guangan, Sichuan, 638500, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital, No. 59 Liuting Street, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
27
|
Qu J, Mei Q, Niu R. Oxidative CaMKII as a potential target for inflammatory disease (Review). Mol Med Rep 2019; 20:863-870. [PMID: 31173191 DOI: 10.3892/mmr.2019.10309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2018] [Accepted: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
CaMKII is a calcium‑activated kinase, proved to be modulated by oxidation. Currently, the oxidative activation of CaMKII exists in several models of asthma, chronic rhinosinusitis with nasal polyps, cardiovascular disease, diabetes mellitus, acute ischemic stroke and cancer. Oxidized CaMKII (ox‑CaMKII) may be important in several of these diseases. The present review examines the mechanism underlying the oxidative activation of CaMKII and summarizes the current findings associated with the function of ox‑CaMKII in inflammatory diseases. Taken together, the findings of this review aim to improve current understanding of the function of ox‑CaMKII and provide novel insights for future research.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410008, P.R. China
| | - Quanhui Mei
- Department of Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan 410005, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
28
|
Xu J, Wang H, Hu Y, Zhang YS, Wen L, Yin F, Wang Z, Zhang Y, Li S, Miao Y, Lin B, Zuo D, Wang G, Mao M, Zhang T, Ding J, Hua Y, Cai Z. Inhibition of CaMKIIα Activity Enhances Antitumor Effect of Fullerene C60 Nanocrystals by Suppression of Autophagic Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801233. [PMID: 31016106 PMCID: PMC6468974 DOI: 10.1002/advs.201801233] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2018] [Revised: 12/04/2018] [Indexed: 05/28/2023]
Abstract
Fullerene C60 nanocrystals (nano-C60) possess various attractive bioactivities, including autophagy induction and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) activation. CaMKIIα is a multifunctional protein kinase involved in many cellular processes including tumor progression; however, the biological effects of CaMKIIα activity modulated by nano-C60 in tumors have not been reported, and the relationship between CaMKIIα activity and autophagic degradation remains unclear. Herein, nano-C60 is demonstrated to elicit reactive oxygen species (ROS)-dependent cytotoxicity and persistent activation of CaMKIIα in osteosarcoma (OS) cells. CaMKIIα activation, in turn, produces a protective effect against cytotoxicity from nano-C60 itself. Inhibition of CaMKIIα activity by either the chemical inhibitor KN-93 or CaMKIIα knockdown dramatically promotes the anti-OS effect of nano-C60. Moreover, inhibition of CaMKIIα activity causes lysosomal alkalinization and enlargement, and impairs the degradation function of lysosomes, leading to autophagosome accumulation. Importantly, excessive autophagosome accumulation and autophagic degradation blocking are shown to play an important role in KN-93-enhanced-OS cell death. The synergistic anti-OS efficacy of KN-93 and nano-C60 is further revealed in an OS-xenografted murine model. The results demonstrate that CaMKIIα inhibition, along with the suppression of autophagic degradation, presents a promising strategy for improving the antitumor efficacy of nano-C60.
Collapse
Affiliation(s)
- Jing Xu
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yi Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life SciencesUniversity of Science and Technology of China96 Jinzhai StreetHefei230026P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical School65 Landsdowne StreetCambridgeMA02139USA
| | - Longping Wen
- School of MedicineSouth China University of TechnologyNanobio LaboratoryInstitutes for Life SciencesSouth China University of Technology381 Wushan StreetGuangzhou510006P. R. China
| | - Fei Yin
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhuoying Wang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yingchao Zhang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Yanyan Miao
- Key Laboratory of Gene Engineering of the Ministry of EducationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen University135 West Xingang StreetGuangzhou510275P. R. China
| | - Binhui Lin
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Gangyang Wang
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Min Mao
- Shanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Tao Zhang
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yingqi Hua
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| | - Zhengdong Cai
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai Bone Tumor Institution100 Haining StreetShanghai200080P. R. China
| |
Collapse
|
29
|
Duan W, Hu J, Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol 2019; 107:171-178. [PMID: 30817910 DOI: 10.1016/j.yexmp.2019.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2018] [Revised: 01/19/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Ketamine, a common N-methyl-d-aspartate receptor (NMDAR) antagonist, is an option for cancer pain treatment in clinical practice. Ketamine has been shown to have the capacity to attenuate cancer cells malignancy. However, the underlying mechanism remains elusive. In the present study, we reported that ketamine inhibited the malignant potential of colorectal cancer cells and investigated the possible mechanisms involved. Ketamine suppressed the expression of VEGF, HIF-1α, p-AKT, p-ERK, and p-CaMK II, and reduced intracellular Ca2+ level in a concentration dependent manner (1, 5, 10 μg/ml). Furthermore, AP5 and MK801 (NMDAR inhibitors), and KN93 (CaMK II inhibitor), decreased the expression of VEGF, HIF-1a, p-AKT, p-ERK, and p-CaMK II, which were similar to the effect of ketamine. Further, the anti-tumor effect of ketamine was reversed by d-serine (NMDAR activator). Ketamine did not affect NMDA receptor expression, however knockdown of NMDA receptor using siRNA attenuated the effect of ketamine on cell migration. Collectively, these findings demonstrated that ketamine attenuated the expression of VEGF and cell migration ability in colorectal cancer cells, probably via blockage of NMDA receptor.
Collapse
Affiliation(s)
- Wenming Duan
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China
| | - Jianjun Hu
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China
| | - Yahua Liu
- Department of Anaesthesiology, Xinjiang Medical University, Affiliated Tumour Hospital, Xinjiang, PR China.
| |
Collapse
|
30
|
Aouidate A, Ghaleb A, Ghamali M, Chtita S, Ousaa A, Choukrad M, Sbai A, Bouachrine M, Lakhlifi T. Structural basis of pyrazolopyrimidine derivatives as CAMKIIδ kinase inhibitors: insights from 3D QSAR, docking studies and in silico ADMET evaluation. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0510-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/14/2022]
|
31
|
Martínez-Noël G, Luck K, Kühnle S, Desbuleux A, Szajner P, Galligan JT, Rodriguez D, Zheng L, Boyland K, Leclere F, Zhong Q, Hill DE, Vidal M, Howley PM. Network Analysis of UBE3A/E6AP-Associated Proteins Provides Connections to Several Distinct Cellular Processes. J Mol Biol 2018; 430:1024-1050. [PMID: 29426014 PMCID: PMC5866790 DOI: 10.1016/j.jmb.2018.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Perturbations in activity and dosage of the UBE3A ubiquitin-ligase have been linked to Angelman syndrome and autism spectrum disorders. UBE3A was initially identified as the cellular protein hijacked by the human papillomavirus E6 protein to mediate the ubiquitylation of p53, a function critical to the oncogenic potential of these viruses. Although a number of substrates have been identified, the normal cellular functions and pathways affected by UBE3A are largely unknown. Previously, we showed that UBE3A associates with HERC2, NEURL4, and MAPK6/ERK3 in a high-molecular-weight complex of unknown function that we refer to as the HUN complex (HERC2, UBE3A, and NEURL4). In this study, the combination of two complementary proteomic approaches with a rigorous network analysis revealed cellular functions and pathways in which UBE3A and the HUN complex are involved. In addition to finding new UBE3A-associated proteins, such as MCM6, SUGT1, EIF3C, and ASPP2, network analysis revealed that UBE3A-associated proteins are connected to several fundamental cellular processes including translation, DNA replication, intracellular trafficking, and centrosome regulation. Our analysis suggests that UBE3A could be involved in the control and/or integration of these cellular processes, in some cases as a component of the HUN complex, and also provides evidence for crosstalk between the HUN complex and CAMKII interaction networks. This study contributes to a deeper understanding of the cellular functions of UBE3A and its potential role in pathways that may be affected in Angelman syndrome, UBE3A-associated autism spectrum disorders, and human papillomavirus-associated cancers.
Collapse
Affiliation(s)
- Gustavo Martínez-Noël
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katja Luck
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Simone Kühnle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alice Desbuleux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; GIGA-R, University of Liège, Liège 4000, Belgium
| | - Patricia Szajner
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey T Galligan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Diana Rodriguez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Leon Zheng
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Boyland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Flavian Leclere
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Zhong
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter M Howley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
McClurg UL, Nabbi A, Ricordel C, Korolchuk S, McCracken S, Heer R, Wilson L, Butler LM, Irving-Hooper BK, Pedeux R, Robson CN, Riabowol KT, Binda O. Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein. Br J Cancer 2018; 118:713-726. [PMID: 29381681 PMCID: PMC5846061 DOI: 10.1038/bjc.2017.447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although the founding members of the INhibitor of Growth (ING) family of histone mark readers, ING1 and ING2, were defined as tumour suppressors in animal models, the role of other ING proteins in cellular proliferation and cancer progression is unclear. METHODS We transduced ex vivo benign prostate hyperplasia tissues with inducible lentiviral particles to express ING proteins. Proliferation was assessed by H3S10phos immunohistochemistry (IHC). The expression of ING3 was assessed by IHC on a human prostate cancer tissue microarray (TMA). Gene expression was measured by DNA microarray and validated by real-time qPCR. RESULTS We found that ING3 stimulates cellular proliferation in ex vivo tissues, suggesting that ING3 could be oncogenic. Indeed, ING3 overexpression transformed normal human dermal fibroblasts. We observed elevated levels of ING3 in prostate cancer samples, which correlated with poorer patient survival. Consistent with an oncogenic role, gene-silencing experiments revealed that ING3 is required for the proliferation of breast, ovarian, and prostate cancer cells. Finally, ING3 controls the expression of an intricate network of cell cycle genes by associating with chromatin modifiers and the H3K4me3 mark at transcriptional start sites. CONCLUSIONS Our investigations create a shift in the prevailing view that ING proteins are tumour suppressors and redefine ING3 as an oncoprotein.
Collapse
Affiliation(s)
- Urszula L McClurg
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Arash Nabbi
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Charles Ricordel
- Université Rennes 1, CLCC Eugène Marquis, INSERM ERL440-OSS, Rue Bataille Flandres Dunkerque, Batiment D, 1er étage, Rennes 35042, France
| | - Svitlana Korolchuk
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Stuart McCracken
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Rakesh Heer
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Laura Wilson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Lisa M Butler
- School of Medicine and Freemasons Foundation Centre for Men’s Health, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Bronwyn Kate Irving-Hooper
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Rémy Pedeux
- Université Rennes 1, CLCC Eugène Marquis, INSERM ERL440-OSS, Rue Bataille Flandres Dunkerque, Batiment D, 1er étage, Rennes 35042, France
| | - Craig N Robson
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - Karl T Riabowol
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivier Binda
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| |
Collapse
|
33
|
Wu Q, Chen X, Wang J, Sun P, Weng M, Chen W, Sun Z, Zhu M, Miao C. Nalmefene attenuates malignant potential in colorectal cancer cell via inhibition of opioid receptor. Acta Biochim Biophys Sin (Shanghai) 2018; 50:156-163. [PMID: 29267844 DOI: 10.1093/abbs/gmx131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2017] [Indexed: 11/13/2022] Open
Abstract
Morphine is postulated a risk factor in promoting tumor growth and metastasis during the preoperative period, and high glycolysis of tumor cells is proved to accelerate tumor progression. In this study, we investigated whether nalmefene, an opioid receptor inhibitor, could inhibit CT26 colon cancer cell growth through influencing cell glycolysis. CCK8 and transwell migration assays showed that nalmefene inhibited CT26 cells viability and migration in a concentration-dependent manner. Extracellular acidification rate and oxygen consumption rate showed that nalmefene inhibited glycolysis of CT26 cells. Moreover, western blot analysis and quantitative real-time PCR revealed that nalmefene decreased the expressions of enzymes related to glycolysis. Flow cytometry results revealed that intracellular calcium (Ca2+) level was changed by nalmefene, western blot analysis showed that nalmefene decreased calmodulin expression and calcium/calmodulin dependent protein kinases II (CaMK II) phosphorylation, thus inhibiting the serine/threonine kinase (AKT)-glycogen synthase kinase-3β (GSK-3β) pathway. Furthermore, the effects of KN93, an inhibitor of CaMK II, were similar to the effects of nalmefene, and the anti-tumor effect of nalmefene could be counteracted by morphine. In conclusion, the anti-tumor effect of nalmefene may be achieved by inhibiting opioid receptor and down-regulating calmodulin expression and CaMK II phosphorylation, thus inhibiting AKT-GSK-3β pathway and the glycolysis of CT26 cells.
Collapse
Affiliation(s)
- Qichao Wu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiaqiang Wang
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Pengfei Sun
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meilin Weng
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wankun Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhirong Sun
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changhong Miao
- Department of Anaesthesiology, Fudan University Shanghai Cancer Centre, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Sun X, Xu C, Xiao G, Meng J, Wang J, Tang SC, Qin S, Du N, Li G, Ren H, Liu D. Breast cancer stem-like cells are sensitized to tamoxifen induction of self-renewal inhibition with enforced Let-7c dependent on Wnt blocking. Int J Mol Med 2018; 41:1967-1975. [PMID: 29336465 PMCID: PMC5810214 DOI: 10.3892/ijmm.2018.3388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2017] [Accepted: 12/04/2017] [Indexed: 01/04/2023] Open
Abstract
Let-7 microRNAs have been reported to have tumor suppressive functions; however, the effect of Let-7 when used in combination with chemotherapies is uncertain, but may have potential for use in clinical practice. In this study, we used RT-qPCR, western blot analysis, cell proliferation assay, flow cytometry analysis, immunohistochemistry (IHC) staining, luciferase assays, cell sorting analysis and xenografted tumor model to explore the role of Let-7 in the chemotherapy sensitivity of breast cancer stem cells. The findings of the current study indicated that Let‑7 enhances the effects of endocrine therapy potentially by regulating the self‑renewal of cancer stem cells. Let‑7c increased the anticancer functions of tamoxifen and reduced the ratio of cancer stem‑like cells (CSCs), sensitizing cells to therapy-induced repression in an estrogen receptor (ER)‑dependent manner. Notably, Let‑7 decreased the tumor formation ability of estrogen‑treated breast CSCs in vivo and suppressed Wnt signaling, which further consolidated the previously hypothesis that Let‑7 decreases the self‑renewal ability, contributing to reduced tumor formation ability of stem cells. The suppressive effects exerted by Let‑7 on stem‑like cells involved Let‑7c/ER/Wnt signaling, and the functions of Let‑7c exerted with tamoxifen were dependent on ER. Taken together, the findings identified a biochemical and functional link between Let‑7 and endocrine therapy in breast CSCs, which may facilitate clinical treatment in the future using delivery of suppressive Let-7.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Xiao
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinying Meng
- Department of Surgery Oncology, The First People's Hospital of Xianyang City, Xianyang, Shaanxi 712000, P.R. China
| | - Jichang Wang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Solid Tumor Clinical Trials, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, The Second Department of Thoracic Surgery, Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
35
|
Chen W, An P, Quan XJ, Zhang J, Zhou ZY, Zou LP, Luo HS. Ca 2+/calmodulin-dependent protein kinase II regulates colon cancer proliferation and migration via ERK1/2 and p38 pathways. World J Gastroenterol 2017; 23:6111-6118. [PMID: 28970726 PMCID: PMC5597502 DOI: 10.3748/wjg.v23.i33.6111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/06/2017] [Revised: 06/10/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of calmodulin-dependent protein kinase II (CaMKII) in colon cancer growth, migration and invasion.
METHODS CaMKII expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of CaMKIIin tissue samples and MMP2, MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by qRT-PCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and wound-healing assay.
RESULTS We first demonstrated that CaMKII was over-expressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116, the CaMKII-specific inhibitor KN93, but not its inactive analogue KN92, decreased cancer cell proliferation. Furthermore, KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.
CONCLUSION Our findings highlight CaMKII as a potential critical mediator in human colon tumor development and metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Ping An
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, United States
| | - Xiao-Jing Quan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhong-Yin Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Li-Ping Zou
- Department of Education, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - He-Sheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
36
|
Liu C, Armstrong CM, Lou W, Lombard AP, Cucchiara V, Gu X, Yang JC, Nadiminty N, Pan CX, Evans CP, Gao AC. Niclosamide and Bicalutamide Combination Treatment Overcomes Enzalutamide- and Bicalutamide-Resistant Prostate Cancer. Mol Cancer Ther 2017; 16:1521-1530. [PMID: 28500234 DOI: 10.1158/1535-7163.mct-16-0912] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2016] [Revised: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
Abstract
Activation of the androgen receptor (AR) and its splice variants is linked to advanced prostate cancer and drives resistance to antiandrogens. The roles of AR and AR variants in the development of resistance to androgen deprivation therapy (ADT) and bicalutamide treatment, however, are still incompletely understood. To determine whether AR variants play a role in bicalutamide resistance, we developed bicalutamide-resistant LNCaP cells (LNCaP-BicR) and found that these resistant cells express significantly increased levels of AR variants, particularly AR-V7, both at the mRNA and protein levels. Exogenous expression of AR-V7 in bicalutamide-sensitive LNCaP cells confers resistance to bicalutamide treatment. Knockdown of AR-V7 in bicalutamide- and enzalutamide-resistant CWR22Rv1, enzalutamide-resistant C4-2B (C4-2B MDVR), and LNCaP-BicR cells reversed bicalutamide resistance. Niclosamide, a potent inhibitor of AR variants, significantly enhanced bicalutamide treatment. Niclosamide and bicalutamide combination treatment not only suppressed AR and AR variants expression and inhibited their recruitment to the PSA promoter, but also significantly induced apoptosis in bicalutamide- and enzalutamide-resistant CWR22Rv1 and C4-2B MDVR cells. In addition, combination of niclosamide with bicalutamide inhibited the growth of enzalutamide-resistant tumors. In summary, our results demonstrate that AR variants, particularly AR-V7, drive bicalutamide resistance and that targeting AR-V7 with niclosamide can resensitize bicalutamide-resistant cells to bicalutamide treatment. Furthermore, combination of niclosamide with bicalutamide inhibits enzalutamide resistant tumor growth, suggesting that the combination of niclosamide and bicalutamide could be a potential cost-effective strategy to treat advanced prostate cancer in patients, including those who fail to respond to enzalutamide therapy. Mol Cancer Ther; 16(8); 1521-30. ©2017 AACR.
Collapse
Affiliation(s)
- Chengfei Liu
- Department of Urology, University of California Davis, California
| | | | - Wei Lou
- Department of Urology, University of California Davis, California
| | - Alan P Lombard
- Department of Urology, University of California Davis, California
| | - Vito Cucchiara
- Department of Urology, University of California Davis, California
| | - Xinwei Gu
- Department of Urology, University of California Davis, California
| | - Joy C Yang
- Department of Urology, University of California Davis, California
| | | | - Chong-Xian Pan
- Department of Medicine, University of California Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, California.,VA Northern California Health Care System, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California Davis, California.,UC Davis Comprehensive Cancer Center, University of California Davis, California
| | - Allen C Gao
- Department of Urology, University of California Davis, California. .,UC Davis Comprehensive Cancer Center, University of California Davis, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
37
|
Gu P, Chen X, Xie R, Han J, Xie W, Wang B, Dong W, Chen C, Yang M, Jiang J, Chen Z, Huang J, Lin T. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5. Mol Ther 2017; 25:1959-1973. [PMID: 28487115 DOI: 10.1016/j.ymthe.2017.04.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 02/01/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) that occurs after the failure of androgen deprivation therapy is the leading cause of deaths in prostate cancer patients. Thus, there is an obvious and urgent need to fully understand the mechanism of CRPC and discover novel therapeutic targets. Long noncoding RNAs (lncRNAs) are crucial regulators in many human cancers, yet their potential roles and molecular mechanisms in CRPC are poorly understood. In this study, we discovered that an lncRNA HOXD-AS1 is highly expressed in CRPC cells and correlated closely with Gleason score, T stage, lymph nodes metastasis, and progression-free survival. Knockdown of HOXD-AS1 inhibited the proliferation and chemo-resistance of CRPC cells in vitro and in vivo. Furthermore, we identified several cell cycle, chemo-resistance, and castration-resistance-related genes, including PLK1, AURKA, CDC25C, FOXM1, and UBE2C, that were activated transcriptionally by HOXD-AS1. Further investigation revealed that HOXD-AS1 recruited WDR5 to directly regulate the expression of target genes by mediating histone H3 lysine 4 tri-methylation (H3K4me3). In conclusion, our findings indicate that HOXD-AS1 promotes proliferation, castration resistance, and chemo-resistance in prostate cancer by recruiting WDR5. This sheds a new insight into the regulation of CRPC by lncRNA and provides a potential approach for the treatment of CRPC.
Collapse
Affiliation(s)
- Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Junyi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziyue Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Pediatric Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
38
|
Chattopadhyay I, Wang J, Qin M, Gao L, Holtz R, Vessella RL, Leach RW, Gelman IH. Src promotes castration-recurrent prostate cancer through androgen receptor-dependent canonical and non-canonical transcriptional signatures. Oncotarget 2017; 8:10324-10347. [PMID: 28055971 PMCID: PMC5354662 DOI: 10.18632/oncotarget.14401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Progression of prostate cancer (PC) to castration-recurrent growth (CRPC) remains dependent on sustained expression and transcriptional activity of the androgen receptor (AR). A major mechanism contributing to CRPC progression is through the direct phosphorylation and activation of AR by Src-family (SFK) and ACK1 tyrosine kinases. However, the AR-dependent transcriptional networks activated by Src during CRPC progression have not been elucidated. Here, we show that activated Src (Src527F) induces androgen-independent growth in human LNCaP cells, concomitant with its ability to induce proliferation/survival genes normally induced by dihydrotestosterone (DHT) in androgen-dependent LNCaP and VCaP cells. Src induces additional gene signatures unique to CRPC cell lines, LNCaP-C4-2 and CWR22Rv1, and to CRPC LuCaP35.1 xenografts. By comparing the Src-induced AR-cistrome and/or transcriptome in LNCaP to those in CRPC and LuCaP35.1 tumors, we identified an 11-gene Src-regulated CRPC signature consisting of AR-dependent, AR binding site (ARBS)-associated genes whose expression is altered by DHT in LNCaP[Src527F] but not in LNCaP cells. The differential expression of a subset (DPP4, BCAT1, CNTNAP4, CDH3) correlates with earlier PC metastasis onset and poorer survival, with the expression of BCAT1 required for Src-induced androgen-independent proliferation. Lastly, Src enhances AR binding to non-canonical ARBS enriched for FOXO1, TOP2B and ZNF217 binding motifs; cooperative AR/TOP2B binding to a non-canonical ARBS was both Src- and DHT-sensitive and correlated with increased levels of Src-induced phosphotyrosyl-TOP2B. These data suggest that CRPC progression is facilitated via Src-induced sensitization of AR to intracrine androgen levels, resulting in the engagement of canonical and non-canonical ARBS-dependent gene signatures.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Binding Sites
- Cell Line, Tumor
- Cell Proliferation
- Dihydrotestosterone/pharmacology
- Disease Progression
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Phosphorylation
- Promoter Regions, Genetic
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/enzymology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptome
- Transfection
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Indranil Chattopadhyay
- Department of Life Sciences, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, India
| | - Jianmin Wang
- Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Maochun Qin
- Department of Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lingqiu Gao
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Renae Holtz
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ, USA
| | - Irwin H. Gelman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
39
|
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo W, Wang Z, Wang SL. Artesunate Suppresses the Growth of Prostatic Cancer Cells through Inhibiting Androgen Receptor. Biol Pharm Bull 2017; 40:479-485. [DOI: 10.1248/bpb.b16-00908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhenzhong Wang
- School of Public Health, Nanjing Medical University
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Chao Wang
- School of Public Health, Nanjing Medical University
| | - Ziyu Wu
- Department of Urology, Huai’an Hospital Affiliated with Xuzhou Medical University
| | - Jun Xue
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Baixin Shen
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Wei Zuo
- Department of Urology, the Second Affiliated Hospital of Nanjing Medical University
| | - Zengjun Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University
| | | |
Collapse
|
40
|
Propofol attenuates pancreatic cancer malignant potential via inhibition of NMDA receptor. Eur J Pharmacol 2016; 795:150-159. [PMID: 27986626 DOI: 10.1016/j.ejphar.2016.12.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022]
Abstract
Propofol is a commonly used intravenous anesthetic, and could attenuate cancer cells malignant potential via inhibiting hypoxia-inducible factor-1α (HIF-1α) expression. However, the mechanism is still inclusive. In the present study, we mainly focus on the mechanism by which propofol down-regulated HIF-1α expression and malignant potential in pancreatic cancer cells. Human pancreatic cancer cells (Miapaca-2 and Panc-1) in vitro and murine pancreatic cancer cell (Panc02) in vivo were used to assess the effect of propofol on vascular endothelial growth factor (VEGF) expression and migration of pancreatic cancer cells. Propofol inhibited cells migration, expression of VEGF and HIF-1α, phosphorylation of extracellular regulated protein kinases (ERK), AKT, Ca2+/calmodulin dependent protein kinases II (CaMK II), and Ca2+ concentration in a concentration-dependent manner (5, 25, 50, 100μM). Furthermore, MK801, an inhibitor of NMDA receptor, and KN93, an inhibitor of CaMK II, could inhibit the expression of VEGF, HIF-1a, p-AKT, p-ERK, p-CaMK II in vitro, growth of tumor and VEGF expression in vivo, which were similar to the effect of propofol. In addition, the anti-tumor effect of propofol could be counteracted by rapastinel, an activator of NMDA receptor. Our study indicated that propofol suppressed VEGF expression and migration ability of pancreatic cancer cells in vitro and in vivo, probably via inhibiting NMDA receptor.
Collapse
|
41
|
Naschberger E, Liebl A, Schellerer VS, Schütz M, Britzen-Laurent N, Kölbel P, Schaal U, Haep L, Regensburger D, Wittmann T, Klein-Hitpass L, Rau TT, Dietel B, Méniel VS, Clarke AR, Merkel S, Croner RS, Hohenberger W, Stürzl M. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest 2016; 126:4187-4204. [PMID: 27721236 PMCID: PMC5096916 DOI: 10.1172/jci78260] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2014] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Vera S. Schellerer
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manuela Schütz
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Patrick Kölbel
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ute Schaal
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Lisa Haep
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Daniela Regensburger
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Thomas Wittmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, Faculty of Medicine, University Medical Center Essen, Essen, Germany
| | - Tilman T. Rau
- Institute of Pathology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Cardiology and Angiology, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| | - Valérie S. Méniel
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Alan R. Clarke
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Susanne Merkel
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Roland S. Croner
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Werner Hohenberger
- Department of Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Translational Research Center, Erlangen, Germany
| |
Collapse
|
42
|
Sun X, Jiang S, Liu J, Wang H, Zhang Y, Tang SC, Wang J, Du N, Xu C, Wang C, Qin S, Zhang J, Liu D, Zhang Y, Li X, Wang J, Dong J, Wang X, Xu S, Tao Z, Xu F, Zhou J, Wang T, Ren H. MiR-208a stimulates the cocktail of SOX2 and β-catenin to inhibit the let-7 induction of self-renewal repression of breast cancer stem cells and formed miR208a/let-7 feedback loop via LIN28 and DICER1. Oncotarget 2016; 6:32944-54. [PMID: 26460550 PMCID: PMC4741741 DOI: 10.18632/oncotarget.5079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2015] [Accepted: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
MiR-208a stimulates cardiomyocyte hypertrophy, fibrosis and β-MHC (β-myosin heavy chain) expression, being involved in cardiovascular diseases. Although miR-208a is known to play a role in cardiovascular diseases, its role in cancer and cancer stem cells (CSCs) remains uncertain. We identified an inverse relationship between miR-208a and let-7a in breast cancer specimens, and found that SOX2, β-catenin and LIN28 are highly expressed in patients with advanced breast cancer opposed to lesser grades. Further, we isolated ALDH1+ CSCs from ZR75–1 and MDA-MB-231 (MM-231) breast cancer cell lines to test the role of miR-208a in breast CSCs (BrCSCs). Our studies showed that overexpression of miR-208a in these cells strongly promoted the proportion of ALDH1+ BrCSCs and continuously stimulated the self-renewal ability of BrCSCs. By using siRNAs of SOX2 and/or β-catenin, we found that miR-208a increased LIN28 through stimulation of both SOX2 and β-catenin. The knockdown of either SOX2 or β-catenin only partially attenuated the functions of miR-208a. Let-7a expression was strongly inhibited in miR-208a overexpressed cancer cells, which was achieved by miR-208a induction of LIN28, and the restoration of let-7a significantly inhibited the miR-208a induction of the number of ALDH1+ cells, inhibiting the propagations of BrCSCs. In let-7a overexpressed ZR75–1 and MM-231 cells, DICER1 activity was significantly inhibited with decreased miR-208a. Let-7a failed to decrease miR-208a expression in ZR75–1 and MM-231 cells with DICER1 knockdown. Our research revealed the mechanisms through which miR-208a functioned in breast cancer and BrCSCs, and identified the miR-208a-SOX2/β-catenin-LIN28-let-7a-DICER1 regulatory feedback loop in regulations of stem cells renewal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shiwen Jiang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, China
| | - Jian Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Huangzhen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yiwen Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shou-Ching Tang
- Breast Cancer Program and Interdisciplinary Translational Research Team, Georgia Regents University Cancer Center, Augusta, Georgia, 30912, United States.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jichang Wang
- Neurosurgery Department of the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Ning Du
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chongwen Xu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Chenguang Wang
- Institute of Radiation Medicine, the Chinese Academy of Medical Sciences, Nankai District, Tianjing 300192, China
| | - Sida Qin
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Dapeng Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xiaojun Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jiansheng Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jun Dong
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Xin Wang
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Cancer Institute and Hospital Affiliated to Tianjin Medical University, Tianjin, 300060, China
| | - Fei Xu
- Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Zhou
- Department of Breast Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510182, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| |
Collapse
|
43
|
Xu S, Fu GB, Tao Z, OuYang J, Kong F, Jiang BH, Wan X, Chen K. MiR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget 2016; 6:26457-71. [PMID: 26238185 PMCID: PMC4694914 DOI: 10.18632/oncotarget.4762] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2015] [Accepted: 06/25/2015] [Indexed: 12/26/2022] Open
Abstract
The mechanism of cisplatin resistance in ovarian cancer is not clearly understood. In the present investigation, we found that the expression levels of miR-497 were reduced in chemotherapy-resistant ovarian cancer cells and tumor tissues due to hypermethylation of miR-497 promoter. Low miR-497 expression levels were associated with chemo-resistant phonotype of ovarian cancer. By analyzing the expression levels of miR-497, mTOR and p70S6K1 in a clinical gene-expression array dataset, we found that mTOR and p70S6K1, two proteins correlated to chemotherapy-resistance in multiple types of human cancers, were inversely correlated with miR-497 levels in ovarian cancer tissues. By using an orthotopic ovarian tumor model and a Tet-On inducible miR-497 expression system, our results demonstrated that overexpression of miR-497 sensitizes the resistant ovarian tumor to cisplatin treatment. Therefore, we suggest that miR-497 might be used as a therapeutic supplement to increase ovarian cancer treatment response to cisplatin.
Collapse
Affiliation(s)
- Shaohua Xu
- Department of Obstetrics and Gynecology, Shanghai First Matenity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang-Bo Fu
- Department of Urology and Pathology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Zhen Tao
- Department of Science and Technology, Radiation Oncology Department, Tianjin Medical University Cancer Hospital and Institute, Tianjin, China
| | - Jun OuYang
- Changzhou Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shanghai First Matenity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing-Hua Jiang
- State Key Laboratory of Reproductive Medicine, Cancer Center, Nanjing Medical University, China.,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xiaoping Wan
- Department of Obstetrics and Gynecology, Shanghai First Matenity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinases best known for its critical role in learning and memory. Recent studies suggested that high levels of CaMKII also expressed in variety of malignant diseases. In this review, we focus on the structure and biology properties of CaMKII, including the role of CaMKII in the regulation of cancer progression and therapy response. We also describe the role of CaMKII in the diagnosis of different kinds of cancer and recent progress in the development of CaMKII inhibitors. These data establishes CaMKII as a novel target whose modulation presents new opportunities for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yan-yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Zhe
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
45
|
Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther 2016; 23:83-9. [PMID: 26987290 DOI: 10.1038/cgt.2016.3] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
Let-7 miRNAs are involved in carcinogenesis and tumor progression through their roles in maintaining differentiation and normal development. However, there is little research focusing on the effects of let-7 on Wnt-activated self-renewal of breast cancer stem cells. By analyzing the expression levels of let-7 family members in clinical tissues, we found that higher expression levels of let-7b and let-7c were correlated with better clinical prognosis of patients with estrogen receptor (ER)α-positive breast tumor. Further, we found that only let-7c was inversely correlated with ERα expression, and there is corelationship between let-7c and Wnt signaling in clinical tissues. Aldehyde dehydrogenase (ALDH)1 sorting and mammosphere formation assays showed that let-7c inhibited the self-renewal of stem cells in ERα-positive breast cancer. Let-7c decreased ERα expression through directly binding to the 3'UTR (untranslated region), and let-7c inhibited the estrogen-induced activation of Wnt signaling. Depletion of ERα abolished let-7c functions in stem cell signatures, which further confirmed that let-7c inhibited estrogen-induced Wnt activity through decreasing ERα expression. Taken together, our findings identified a biochemical and functional link between let-7c with ERα/Wnt signaling in breast cancer stem cells.
Collapse
|
46
|
Xu C, Sun X, Qin S, Wang H, Zheng Z, Xu S, Luo G, Liu P, Liu J, Du N, Zhang Y, Liu D, Ren H. Let-7a regulates mammosphere formation capacity through Ras/NF-κB and Ras/MAPK/ERK pathway in breast cancer stem cells. Cell Cycle 2016; 14:1686-97. [PMID: 25955298 DOI: 10.1080/15384101.2015.1030547] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) have the greatest potential to maintain tumorigenesis in all subtypes of tumor cells and were regarded as the key drivers of tumor. Recent evidence has demonstrated that BCSCs contributed to a high degree of resistance to therapy. However, how BCSCs self renewal and tumorigenicity are maintained remains obscure. Herein, our study illustrated that overexpression of let-7a reduced cell proliferation and mammosphere formation ability of breast cancer stem cells(BCSCs) in a KRas-dependent manner through different pathways in vitro and in vivo. To be specific, we provided the evidence that let-7a was decreased, and reversely the expression of KRas was increased with moderate expression in early stages (I/II) and high expression in advanced stages (III/IV) in breast cancer specimens. In addition, the negative correlation between let-7a and KRas was clearly observed. In vitro, we found that let-7a inhibited mammosphere-forming efficiency and the mammosphere-size via NF-κB and MAPK/ERK pathway, respectively. The inhibitory effect of let-7a on mammosphere formation efficiency and the size of mammospheres was abolished after the depletion of KRas. On the contrary, enforced expression of KRas rescued the effect of let-7a. In vivo, let-7a inhibited the growth of tumors, whereas the negative effect of let-7a was rescued after overexpressing KRas. Taken together, our findings suggested that let-7a played a tumor suppressive role in a KRas-dependent manner.
Collapse
Affiliation(s)
- Chongwen Xu
- a Second Department of Thoracic Surgery; First Affiliated Hospital; Medical College of Xi'an Jiaotong University ; Xi'an , Shaanxi ; PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
DACH1 is a novel predictive and prognostic biomarker in hepatocellular carcinoma as a negative regulator of Wnt/β-catenin signaling. Oncotarget 2016; 6:8621-34. [PMID: 25940701 PMCID: PMC4496171 DOI: 10.18632/oncotarget.3281] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2014] [Accepted: 02/05/2015] [Indexed: 12/11/2022] Open
Abstract
The cell fate determination factor Dachshund (DACH1) functions as a novel suppressor in the progression of various neoplasms. Previous study has suggested that hypermethylation of promoter region was responsible for the reduction of DACH1 expression in hepatocellular carcinoma (HCC), and associated with the progression of HCC, but the clinical significance and the exact molecular mechanisms of DACH1 in the progression of HCC remain unclear. In this study, we employed public microarray data analysis and tissue microarrays (TMAs) technologies and showed that DACH1 expression was reduced in HCC even at early stage and associated with the tumor progression. Notably, Kaplan-Meier analysis further indicated DACH1 could be an independent prognostic factor for the overall survival of HCC. Further, mechanistic studies revealed that overexpression of DACH1 inhibited the growth and migration of HCC cell line, which were dependent in part on the inactivation of Wnt pathway via phosphorylation of GSK3β to suppress β-catenin. In agreement, the abundance of DACH1 was inversely correlated with several Wnt target genes. Collectively, our study indicated β-catenin is a novel target of DACH1 in HCC.
Collapse
|
48
|
Wang T, Song W, Chen Y, Chen R, Liu Z, Wu L, Li M, Yang J, Wang L, Liu J, Ye Z, Wang C, Chen K. Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling. Clin Cancer Res 2015; 22:1531-44. [PMID: 26527749 DOI: 10.1158/1078-0432.ccr-15-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2015] [Accepted: 10/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Flightless I (FLII), member of the gelsolin superfamily of actin-remodeling proteins, functions as a transcriptional coregulator. We aim to evaluate a tumor-suppressive function of FLII in regulating androgen receptor (AR) in prostate cancer progression. EXPERIMENTAL DESIGN We examined FLII protein and mRNA expression in clinical prostate cancer specimens by immunohistochemistry. Kaplan-Meier analysis was conducted to evaluate the difference in disease-overall survival associated with the expression levels of FLII and AR. Prostate cancer cells stably expressing FLII or shRNA knockdown were used for functional analyses. Immunoprecipitation, Luciferase reporter, and immunofluorescence staining assays were performed to examine the functional interaction between FLII and AR. RESULTS Our analysis of the expression levels of FLII in a clinical gene expression array dataset showed that the expression of FLII was positively correlated with the overall survival of prostate cancer patients exhibiting high levels of AR expression. Examination of protein and mRNA levels of FLII showed a significant decrease of FLII expression in human prostate cancers. AR and FLII formed a complex in a ligand-dependent manner through the ligand-binding domain (LBD) of AR. Subsequently, we observed a competitive binding to AR between FLII and the ligand. FLII inhibited AR transactivation and decreased AR nuclear localization. Furthermore, FLII contributed to castration-sensitive and castration-resistant prostate cancer cell growth through AR-dependent signaling, and reintroduction of FLII in prostate cancer cells sensitized the cells to bicalutamide and enzalutamide treatment. CONCLUSIONS FLII plays a tumor-suppressive role and serves as a crucial determinant of resistance of prostate cancer to endocrine therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruibao Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Licheng Wu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingchao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
49
|
The inhibitory effects of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and underlying mechanism. Sci Rep 2015; 5:13528. [PMID: 26314494 PMCID: PMC4551971 DOI: 10.1038/srep13528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer at advanced stages including metastatic and castration-resistant cancer remains incurable due to the lack of effective therapies. MiR-190a belongs to the small noncoding RNA family and has an important role in breast cancer metastasis. However, it is still unknown whether miR-190a plays a role in prostate cancer development. Herein, we first observed AR/miR-190a/YB-1 forms an auto-regulatory negative feedback loop in prostate cancer: miR-190a expression was down-regulated by AR activation; YB-1 functions are as an AR activator; miR-190a inhibited AR expression and transactivation through direct binding to 3′UTR of YB-1 gene. MiR-190a contributes the human prostate cancer cell growth through AR-dependent signaling. Moreover, we examined the expression of miR-190a and observed a significant decrease in human prostate cancers. Reduced expression of miR-190a was inversely correlated to AR levels of prostate cancer patients, and patients with higher miR-190a expression in their tumor have improved tumor-free survival. Taken together, our findings identified a biochemical and functional link between miR-190a with reduced expression in advanced prostate cancer, YB-1 and AR signaling in prostate cancer.
Collapse
|