1
|
Duan H, Liu C, Hou Y, Liu Y, Zhang Z, Zhao H, Xin X, Liu W, Zhang X, Chen L, Jin M, Gao Z, Huang W. Sequential Delivery of Quercetin and Paclitaxel for the Fibrotic Tumor Microenvironment Remodeling and Chemotherapy Potentiation via a Dual-Targeting Hybrid Micelle-in-Liposome System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10102-10116. [PMID: 35175043 DOI: 10.1021/acsami.1c23166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer-associated fibroblasts (CAFs), an important type of stromal cells in the tumor microenvironment (TME), are responsible for creating physical barriers to drug delivery and penetration in tumor tissues. Thus, effectively downregulating CAFs to destroy the physical barrier may allow enhanced penetration and accumulation of therapeutic drugs, thereby improving therapeutic outcomes. Herein, a matrix metalloproteinase (MMP)-triggered dual-targeting hybrid micelle-in-liposome system (RPM@NLQ) was constructed to sequentially deliver quercetin (Que) and paclitaxel (PTX) for fibrotic TME remodeling and chemotherapy potentiation. Specifically, antifibrotic Que and small-sized RGD-modified micelles containing PTX (RPM) were co-encapsulated into MMP-sensitive liposomes, and the liposomes were further adorned with the NGR peptide (NL) as the targeting moiety. The resulting RPM@NLQ first specifically accumulated at the tumor site under the guidance of the NGR peptide after intravenous administration and then released Que and RPM in response to the extensive expression of MMP in the TME. Subsequently, Que was retained in the stroma to remarkably downregulate fibrosis and decrease the stromal barrier by downregulating Wnt16 expression in CAFs, which further resulted in a significant increase of RPM for deeper tumor. Thus, RPM could precisely target and kill breast cancer cells locally. Consequently, prolonged blood circulation, selective cascade targeting of tumor tissue and tumor cells, enhanced penetration, and excellent antitumor efficacy have been demonstrated in vitro and in vivo. In conclusion, as-designed sequential delivery systems for fibrotic TME remodeling and chemotherapy potentiation may provide a promising adjuvant therapeutic strategy for breast and other CAF-rich tumors.
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Department of Pharmacy, Yanbian University, Yanji, Jilin 133000, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zheao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Xin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
2
|
Cui M, Jin M, Han M, Zang Y, Li C, Zhang D, Huang W, Gao Z, Yin X. Improved Antitumor Outcomes for Colon Cancer Using Nanomicelles Loaded with the Novel Antitumor Agent LA67. Int J Nanomedicine 2020; 15:3563-3576. [PMID: 32547014 PMCID: PMC7245463 DOI: 10.2147/ijn.s241577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Background LA67 is a derivative of triptolide that exhibits strong antitumor activity. This derivative has a better safety profile than triptolide, but is limited by poor aqueous solubility. Aim and Methods To improve solubility and further increase therapeutic efficacy, we prepared LA67-loaded polymeric micelles (LA67-PMs) using a film hydration method. The physicochemical properties of LA67-PMs were investigated, and the antitumor activity of this formulation against Colon26 (C26) cancer cell line was evaluated in vitro and in vivo with LA67 as a control. Results Polymeric micelles containing LA67 had a particle size of 17.88 nm and a drug entrapment efficiency of 94.84%. This formulation dispersed completely in aqueous solution and exhibited slow, sustained release of LA67. Cellular uptake assay showed that LA67-PMs delivered LA67 to cancer cells with greater efficiency than free LA67, which resulted in increased LA67 accumulation in cancer cells. Cell counting kit 8 (CCK-8) assay showed that blank polymeric micelles (PMs) exhibited low toxicity and LA67-PMs exerted pronounced anti-proliferation effects against C26 cells. Furthermore, LA67-PMs induced apoptosis and repressed migration more effectively than free LA67. In vivo evaluation of antitumor activity showed that LA67-PMs inhibited tumor growth and distant organ metastasis to a greater extent than LA67, which resulted in improved survival rate. The potential mechanisms of these effects may have been induction of apoptosis, inhibition of cell proliferation, and neovascularization. Conclusion Our study showed that LA67-PMs may be a promising formulation for treatment of colon cancer.
Collapse
Affiliation(s)
- Minhu Cui
- Department of Gastroenterology, Yanbian University Hospital, Yanji 133000, Jilin, People's Republic of China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Mingfeng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yingda Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xuezhe Yin
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji 133000, Jilin, People's Republic of China
| |
Collapse
|
3
|
Sazanova ES, Gracheva IA, Allegro D, Barbier P, Combes S, Svirshchevskaya EV, Fedorov AY. Allocolchicinoids bearing a Michael acceptor fragment for possible irreversible binding of tubulin. RSC Med Chem 2020; 11:696-706. [PMID: 33479669 PMCID: PMC7578708 DOI: 10.1039/d0md00060d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022] Open
Abstract
We describe an attempt to apply the concept of covalent binding towards the highly active allocolchicinoids selected on the basis of SAR analysis of previously synthesized molecules. To achieve the irreversible binding of the agent to the cysteine residues of the colchicine site of tubulin protein, we synthesized a number of new allocolchicinoids bearing the acceptor moiety. Some of the new derivatives possess cytotoxic activity against COLO-357, BxPC-3, HaCaT, and HEK293 cell lines in a low nanomolar range of concentrations. A substoichiometric mode of microtubule assembly inhibition was demonstrated. The most active compounds possess close to colchicine general toxicity on mice.
Collapse
Affiliation(s)
- Ekaterina S Sazanova
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| | - Iuliia A Gracheva
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| | - Diane Allegro
- Institute of NeuroPhysiopathology (INP) - CNRS UMR 7051 , Aix-Marseille University , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Pascale Barbier
- Institute of NeuroPhysiopathology (INP) - CNRS UMR 7051 , Aix-Marseille University , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Sébastien Combes
- CRCM , CNRS , Inserm , Institut Paoli-Calmettes , Aix-Marseille University , 232 Boulevard de Sainte-Marguerite , 13009 Marseille , France
- DOSynth Platform , CRCM , Faculté de Pharmacie , Aix-Marseille Université , 27 Boulevard Jean Moulin , 13385 Marseille , Cedex 5 , France
| | - Elena V Svirshchevskaya
- Laboratory of Cell Interactions , Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS , 16/10 Miklukho-Maklaya Street , 117997 Moscow , Russian Federation
| | - Alexey Yu Fedorov
- Department of Chemistry , N. I. Lobachevsky State University of Nizhny Novgorod , 23 Gagarin Avenue , 603950 Nizhny Novgorod , Russian Federation
| |
Collapse
|
4
|
Aquib M, Juthi AZ, Farooq MA, Ali MG, Janabi AHW, Bavi S, Banerjee P, Bhosale R, Bavi R, Wang B. Advances in local and systemic drug delivery systems for post-surgical cancer treatment. J Mater Chem B 2020; 8:8507-8518. [DOI: 10.1039/d0tb00987c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphical representation of local and systemic drug delivery systems.
Collapse
Affiliation(s)
- Md Aquib
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Ajkia Zaman Juthi
- Department of Biochemistry and Molecular Biology
- School of life Science
- University of Science and Technology of China
- Hefei City
- People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Manasik Gumah Ali
- Antibody Engineering Laboratory
- School of Life Science & Technology
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | | | - Sneha Bavi
- Axiom Market Research and ConsultingTM
- Pune 411007
- India
| | - Parikshit Banerjee
- School of Pharmacy, Faculty of Medicine
- The Chinese University of Hong Kong
- New Territories
- People's Republic of China
| | - Raghunath Bhosale
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
| | - Rohit Bavi
- School of Chemical Sciences
- Punyashlok Ahilyadevi Holkar Solapur University
- Solapur
- India
- State Key Laboratory of Natural Medicines
| | - Bo Wang
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
6
|
Wang M, Chen L, Huang W, Jin M, Wang Q, Gao Z, Jin Z. Improving the anti-keloid outcomes through liposomes loading paclitaxel-cholesterol complexes. Int J Nanomedicine 2019; 14:1385-1400. [PMID: 30863067 PMCID: PMC6390862 DOI: 10.2147/ijn.s195375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Keloids represent benign fibroproliferative tumors which result from elevated expression of inflammation. Paclitaxel (PTX) was an effective chemotherapeutic agent and has been reported to have anti-fibrotic effects, but the strong hydrophobicity brings a challenge for its clinical application. Purpose The objective of this study was to improve the water solubility of PTX and investigate its anti-keloid effects. Methods We prepared a PTX-cholesterol-loaded liposomes (PTXL) by thin film evaporation fashion and characterized their physicochemical properties. We also investigated the effects of PTX on proliferation, invasion and fibrosis of keloid fibroblasts in vitro and in vivo. Results The prepared PTXL have a spherical appearance, a particle size of 101.43 nm and a zeta potential of −41.63 mV. PTXL possessed a high drug entrapment efficiency of 95.63% and exhibited a good stability within 30 days. The drugs in PTXL were released in a slow and sustained mode. The PTXL could be effectively uptaken into human keloids fibroblast (HKFs) in a time-dependent manner. In vitro, PTXL showed better ability on inhibiting cell proliferation, migration and invasion, and effectively on promoting apoptosis and arresting cell cycle in G2/M phase compared to PTX. Meanwhile, in vivo studies indicated that the PTXL had better performance on inhibiting the keloids growth compared to the PTX in keloid-bearing BALB/c nude mice model. Finally, we found PTX treatment suppressed the production of tumor necrosis factor alpah (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta (TGF-β) and inhibited the expression of alpha smooth muscle actin (α-SMA) and collagen I in HKFs. The activation of protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β) signaling pathway also blocked by PTX in cultured HKFs and keloid tissues. LY294002, a PI3K (phosphatidylinositol 3-kinase)/AKT inhibitor, also suppressed the expression of TNF-α, IL-6 and TGF-β, and simultaneously, reduced the production of α-SMA and collagen I in HKFs. The inhibition of AKT/GSK3β signaling pathway contribute to inhibit the generation of fibrogenic cytokines by PTXL on ameliorating fibrosis progress in keloids. Conclusion Our results suggested that the developed PTXL would become a promising therapeutic agent in the field of anti-keloid therapy.
Collapse
Affiliation(s)
- Mengjiao Wang
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China,
| | - Zhehu Jin
- Klebs Research Center, Department of Dermatology, Yanbian University Hospital, Yanji 133000, China,
| |
Collapse
|