1
|
Sandha KK, Kaur S, Sharma K, Ali SM, Ramajayan P, Kumar A, Gupta PN. Autophagy inhibition alleviates tumor desmoplasia and improves the efficacy of locally and systemically administered liposomal doxorubicin. J Control Release 2025; 378:1030-1044. [PMID: 39746521 DOI: 10.1016/j.jconrel.2024.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The abnormal physiology of the tumor microenvironment poses a challenge to the drug delivery in the tumor tissues. The dense tumor stroma hinders the movement of nanomedicine through the interstitium and negatively impacts their efficacy. In this study, hydroxychloroquine (HCQ) was investigated for its impact on alleviating the hindrance offered to the nanomedicine by extracellular matrix (ECM) components such as collagen and hyaluronan. In the current study, the effect of the antifibrotic activity of HCQ on bio-distribution and anticancer efficacy of systemically as well as locally (with the aid of injectable alginate hydrogel) administered liposomal doxorubicin was evaluated. In the in vitro model system, the HCQ treatment showed its antifibrotic potential by reverting the α-SMA+ phenotype and reducing the collagen levels in the TGF-β1 stimulated NIH/3T3 cells and also showed parallel reduction in the autophagy. In the 4T1 tumor models, HCQ treatment mediated autophagy inhibition resulted in the ECM synthesis inhibition, represented by reduced levels of TGF-β1, collagen and hyaluronan content in the tumor tissues. The reduction in the ECM components, in-turn, improved the bio-distribution of the intravenously (i.v.) and intratumorally (i.t.) injected liposomal doxorubicin. The anticancer efficacy studies showed consequential improvement in the effectiveness of the i.v. and i.t. injected liposomal doxorubicin. The study unveils the potential of stromal normalization using HCQ in improving the bio-distribution as well as efficacy of the nanotherapeutics.
Collapse
Affiliation(s)
- Kamalpreet Kaur Sandha
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhleen Kaur
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudassir Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - P Ramajayan
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Tang Y, Li Q, Zhou Z, Bai H, Xiao N, Xie J, Li C. Nitric oxide-based multi-synergistic nanomedicine: an emerging therapeutic for anticancer. J Nanobiotechnology 2024; 22:674. [PMID: 39497134 PMCID: PMC11536969 DOI: 10.1186/s12951-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Gas therapy has emerged as a promising approach for treating cancer, with gases like NO, H2S, and CO showing positive effects. Among these, NO is considered a key gas molecule with significant potential in stopping cancer progression. However, due to its high reactivity and short half-life, delivering NO directly to tumors is crucial for enhancing cancer treatment. NO-driven nanomedicines (NONs) have been developed to effectively deliver NO donors to tumors, showing great progress in recent years. This review provides an overview of the latest advancements in NO-based cancer nanotherapeutics. It discusses the types of NO donors used in current research, the mechanisms of action behind NO therapy for cancer, and the different delivery systems for NO donors in nanotherapeutics. It also explores the potential of combining NO donors with other treatments for enhanced cancer therapy. Finally, it examines the future prospects and challenges of using NONs in clinical settings for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Dissanayake DS, Nagahawatta DP, Lee JS, Jeon YJ. Immunomodulatory Effects of Halichondrin Isolated from Marine Sponges and Its Synthetic Analogs in Oncological Applications. Mar Drugs 2024; 22:426. [PMID: 39330307 PMCID: PMC11432918 DOI: 10.3390/md22090426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Marine natural products comprise unique chemical structures and vast varieties of biological activities. This review aims to summarize halichondrin, a marine natural product, and its synthetic analogs along with its therapeutic properties and mechanisms. Halichondrin and its analogs, derived from marine sponges, exhibit potent antineoplastic properties, making them promising candidates for cancer therapeutics. These compounds, characterized by their complex molecular structures, have demonstrated significant efficacy in inhibiting microtubule dynamics, leading to cell cycle arrest and apoptosis in various cancer cell lines. Several types of halichondrins such as halichondrins B, C, norhalichondrin B, and homohalichondrin B have been discovered with similar anticancer and antitumor characteristics. Since naturally available halichondrins show hurdles in synthesis, recent advancements in synthetic methodologies have enabled the development of several halichondrin analogs, such as E7389 (eribulin), which have shown improved therapeutic indices. Eribulin has shown excellent immunomodulatory properties by several mechanisms such as reprogramming tumor microenvironments, facilitating the infiltration and activation of immune cells, and inhibiting microtubule dynamics. Despite promising results, challenges remain in the synthesis and clinical application of these compounds. This review explores the mechanisms underlying the immunomodulatory activity of halichondrin and its analogs in cancer therapy, along with their clinical applications and potential for future drug development.
Collapse
Affiliation(s)
- Dinusha Shiromala Dissanayake
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.S.D.); (D.P.N.)
| | - Dineth Pramuditha Nagahawatta
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.S.D.); (D.P.N.)
| | - Jung-Suck Lee
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea; (D.S.D.); (D.P.N.)
| |
Collapse
|
4
|
Xiao Y, Chen W, Long X, Li M, Zhang L, Liu C, Deng Y, Li C, He B, Chen J, Wang J. 3D MR elastography-based stiffness as a marker for predicting tumor grade and subtype in cervical cancer. Magn Reson Imaging 2024; 109:173-179. [PMID: 38484948 DOI: 10.1016/j.mri.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Increasing evidence has indicated that high tissue stiffness (TS) may be a potential biomarker for evaluation of tumor aggressiveness. PURPOSE To investigate the value of magnetic resonance elastography (MRE)-based quantitative parameters preoperatively predicting the tumor grade and subtype of cervical cancer (CC). STUDY TYPE Retrospective. POPULATION Twenty-five histopathology-proven CC patients and 7 healthy participants. FIELD STRENGTH/SEQUENCE 3.0T, magnetic resonance imaging (MRI) (LAVA-flex) and MRE with a three-dimensional spin-echo echo-planar imaging. ASSESSMENT The regions of interest (ROIs) were manually drawn by two observers in tumors to measure mean TS, storage modulus (G'), loss modulus (G″) and damping ratio (DR) values. Surgical specimens were evaluated for tumor grades and subtypes. STATISTICAL TESTS Intraclass correlation coefficient (ICC) was expressed in terms of inter-observer agreements. t-test or Mann-Whitney nonparametric test was used to compare the complex modulus and apparent diffusion coefficient (ADC) values between different tumor groups. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic performance. RESULTS The TS of endocervical adenocarcinoma (ECA) group was significantly higher than that in squamous cell carcinoma (SCC) group (5.27 kPa vs. 3.44 kPa, P = 0.042). The TS also showed significant difference between poorly and well/moderately differentiated CC (5.21 kPa vs. 3.47 kPa, P = 0.038), CC patients and healthy participants (4.18 kPa vs. 1.99 kPa, P < 0.001). The cutoff value of TS to discriminate ECA from SCC was 4.10 kPa (AUC: 0.80), while it was 4.42 kPa to discriminate poorly from well/moderately differentiated CC (AUC: 0.83), and 2.25 kPa to distinguish normal cervix from CC (AUC: 0.88), respectively. There were no significant difference in G″, DR and ADC values between any subgroups except for comparison of healthy participants and CC patients (P = 0.001, P = 0.004, P < 0.001, respectively). DATA CONCLUSION 3D MRE-assessed TS shows promise as a potential biomarker to preoperatively assess tumor grade and subtype of CC.
Collapse
Affiliation(s)
- Yuanqiang Xiao
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Wenying Chen
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Xi Long
- Department of Radiology, Meizhou People's Hospital (Huangtang Hospital), Meizhou 51403, China.
| | - Mengsi Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Lina Zhang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Chang Liu
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Ying Deng
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Chao Li
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Bingjun He
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| | - Jun Chen
- Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Jin Wang
- Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University (SYSU), Guangzhou, Guangdong 510630, China.
| |
Collapse
|
5
|
Miao Y, Du H, Zhang W, Yang D, Tang K, Fang Q, Zhang J. Insights into tumor size-dependent nanoparticle accumulation using deformed organosilica nanoprobes. MATERIALS CHEMISTRY FRONTIERS 2024; 8:3321-3330. [DOI: 10.1039/d4qm00482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Deformed organosilica nanoprobes (CDPF) exhibit enhanced accumulation within larger tumors, highlighting the pivotal role of the tumor microenvironment in the optimization of nanoparticle-based therapeutic strategies.
Collapse
Affiliation(s)
- Yuchen Miao
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Hengda Du
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Wenqing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Qiang Fang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- Department of Microbiology and Parasitology, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical University, Bengbu, Anhui Province 233030, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, Anhui Province 233030, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Kumar Shukla M, Parihar A, Karthikeyan C, Kumar D, Khan R. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. NANOSCALE 2023; 15:14698-14716. [PMID: 37655476 DOI: 10.1039/d3nr03161f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. The current studies emphasized the ability of GQDs to selectively target pancreatic cancer cells by overexpressing binding receptors on the cell surface. Additionally, this review discussed the uses of GQDs as drug delivery vehicles for the controlled and targeted release of therapeutics for pancreatic cancer cells. Finally, the potential of GQDs as imaging agents for pancreatic cancer detection and monitoring has been discussed. Overall, multifunctional GQDs showed great promise as a versatile platform for the diagnosis and treatment of pancreatic cancer. Further investigation of multifunctional GQDs in terms of their potential and optimization in the context of pancreatic cancer therapy is needed.
Collapse
Affiliation(s)
- Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
| | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Lipreri MV, Di Pompo G, Boanini E, Graziani G, Sassoni E, Baldini N, Avnet S. Bone on-a-chip: a 3D dendritic network in a screening platform for osteocyte-targeted drugs. Biofabrication 2023; 15:045019. [PMID: 37552982 DOI: 10.1088/1758-5090/acee23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.
Collapse
Affiliation(s)
| | - Gemma Di Pompo
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Shukla MK, Dubey A, Pandey S, Singh SK, Gupta G, Prasher P, Chellappan DK, Oliver BG, Kumar D, Dua K. Managing Apoptosis in Lung Diseases using Nano-assisted Drug Delivery System. Curr Pharm Des 2022; 28:3202-3211. [PMID: 35422206 DOI: 10.2174/1381612828666220413103831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 01/28/2023]
Abstract
Several factors exist that limit the efficacy of lung cancer treatment. These may be tumor-specific delivery of therapeutics, airway geometry, humidity, clearance mechanisms, presence of lung diseases, and therapy against tumor cell resistance. Advancements in drug delivery using nanotechnology based multifunctional nanocarriers, have emerged as a viable method for treating lung cancer with more efficacy and fewer adverse effects. This review does a thorough and critical examination of effective nano-enabled approaches for lung cancer treatment, such as nano-assisted drug delivery systems. In addition, to therapeutic effectiveness, researchers have been working to determine several strategies to produce nanotherapeutics by adjusting the size, drug loading, transport, and retention. Personalized lung tumor therapies using sophisticated nano modalities have the potential to provide great therapeutic advantages based on individual unique genetic markers and disease profiles. Overall, this review provides comprehensive information on newer nanotechnological prospects for improving the management of apoptosis in lung cancer.
Collapse
Affiliation(s)
- Monu K Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt. Ltd., Kushinagar-274203, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.,School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
9
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Sharifi M, Cho WC, Ansariesfahani A, Tarharoudi R, Malekisarvar H, Sari S, Bloukh SH, Edis Z, Amin M, Gleghorn JP, Hagen TLMT, Falahati M. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers (Basel) 2022; 14:2868. [PMID: 35740534 PMCID: PMC9220781 DOI: 10.3390/cancers14122868] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
The enhanced permeability and retention (EPR) effect in cancer treatment is one of the key mechanisms that enables drug accumulation at the tumor site. However, despite a plethora of virus/inorganic/organic-based nanocarriers designed to rely on the EPR effect to effectively target tumors, most have failed in the clinic. It seems that the non-compliance of research activities with clinical trials, goals unrelated to the EPR effect, and lack of awareness of the impact of solid tumor structure and interactions on the performance of drug nanocarriers have intensified this dissatisfaction. As such, the asymmetric growth and structural complexity of solid tumors, physicochemical properties of drug nanocarriers, EPR analytical combination tools, and EPR description goals should be considered to improve EPR-based cancer therapeutics. This review provides valuable insights into the limitations of the EPR effect in therapeutic efficacy and reports crucial perspectives on how the EPR effect can be modulated to improve the therapeutic effects of nanomedicine.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran;
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773947, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China;
| | - Asal Ansariesfahani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.A.); (R.T.); (H.M.); (S.S.)
| | - Rahil Tarharoudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.A.); (R.T.); (H.M.); (S.S.)
| | - Hedyeh Malekisarvar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.A.); (R.T.); (H.M.); (S.S.)
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.A.); (R.T.); (H.M.); (S.S.)
| | - Samir Haj Bloukh
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Zehra Edis
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mohamadreza Amin
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (M.A.); (M.F.)
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA
| | - Timo L. M. ten Hagen
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (M.A.); (M.F.)
| | - Mojtaba Falahati
- Laboratory Experimental Oncology and Nanomedicine Innovation Center Erasmus, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; (M.A.); (M.F.)
| |
Collapse
|
11
|
Garcia-Arranz M, Villarejo-Campos P, Barambio J, Garcia Gomez-Heras S, Vega-Clemente L, Guadalajara H, García-Olmo D. Toxicity study in a pig model of intraperitoneal collagenase as an "enzymatic scalpel" directed to break stroma in order to generate a new perspective for peritoneal carcinomatosis approach: an experimental research. World J Surg Oncol 2022; 20:53. [PMID: 35216593 PMCID: PMC8881860 DOI: 10.1186/s12957-022-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background This study aimed to measure the toxicity resulting from collagenase administration to the peritoneal cavity in a pig model as a preliminary step to break down the stroma surrounding tumors. Methods Eight pigs were treated with 2 different collagenase concentrations previously tested in rats by our group. Time and temperature were controlled using a peritoneal lavage system (PRS System, Combat Medical Ltd.) identical to that used in human surgeries through hyperthermic intraperitoneal chemotherapy (HIPEC); 2 additional pigs were treated with peritoneal lavage only. Samples of blood and peritoneal fluid were collected pre-treatment, immediately after treatment, and 24 h postoperatively. In addition, histological studies and blood collagenase levels were measured. Results No complications were observed during the surgeries. Intraoperative images evidenced the release of peritoneal tissue during collagenase treatment. After surgery, the animals showed no signs of pain. Diet and mobility were normal at 4 h postoperatively, and there were no significant differences in hematologic or biochemical parameters. Quantification of MMP1 and MMP2 in all samples as measured by absorbance showed no differences in blood collagenase levels between pre-treatment, post-treatment, and 24 h postoperatively. None of the animals treated with collagenase showed peritoneal adhesions during the second surgery. Histologically, peritoneal organs and serous structures did not show any microscopic alterations associated with collagenase treatment in any group. Conclusion Lavage of the peritoneal cavity with doses of up to 100,000 collagen digestion units/animal for 30 min is safe and removes connective tissue from the peritoneal cavity.
Collapse
Affiliation(s)
- M Garcia-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain. .,Department of Surgery, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo s/n, 28034, Madrid, Spain.
| | - P Villarejo-Campos
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - J Barambio
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - S Garcia Gomez-Heras
- Department of Human Histology, Universidad Rey Juan Carlos, Avda de Atenas s/n, 28922, Alcorcón, Spain
| | - L Vega-Clemente
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - H Guadalajara
- Department of Surgery, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo s/n, 28034, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - D García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo s/n, 28034, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital, Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
12
|
Li W, Little N, Park J, Foster CA, Chen J, Lu J. Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Mol Pharm 2021; 18:2889-2905. [PMID: 34260250 DOI: 10.1021/acs.molpharmaceut.1c00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Even though nanoparticle drug delivery systems (nanoDDSs) have improved antitumor efficacy by delivering more drugs to tumor sites compared to free and unencapsulated therapeutics, achieving satisfactory distribution and penetration of nanoDDSs inside solid tumors, especially in stromal fibrous tumors, remains challenging. As one of the most common stromal cells in solid tumors, tumor-associated fibroblasts (TAFs) not only promote tumor growth and metastasis but also reduce the drug delivery efficiency of nanoparticles through the tumor's inherent physical and physiological barriers. Thus, TAFs have been emerging as attractive targets, and TAF-targeting nanotherapeutics have been extensively explored to enhance the tumor delivery efficiency and efficacy of various anticancer agents. The purpose of this Review is to opportunely summarize the underlying mechanisms of TAFs on obstructing nanoparticle-mediated drug delivery into tumors and discuss the current advances of a plethora of nanotherapeutic approaches for effectively targeting TAFs.
Collapse
Affiliation(s)
- Wenpan Li
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Nicholas Little
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jonghan Park
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Cole Alexander Foster
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jiawei Chen
- Michigan Institute for Clinical & Health Research, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States.,BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States.,NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona 85721, United States.,Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|