1
|
Cui Y, Meng S, Zhang N, Liu J, Zheng L, Ma W, Song Y, Wang Z, Shen Y, Liu J, Xie K. High-concentration hydrogen inhalation mitigates sepsis-associated encephalopathy in mice by improving mitochondrial dynamics. CNS Neurosci Ther 2024; 30:e70021. [PMID: 39258790 PMCID: PMC11388582 DOI: 10.1111/cns.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a neuronal injury with poor prognosis. Mitochondrial dysfunction is critical in SAE development, and hydrogen gas (H2) has a protective effect on septic mice. This study aimed to investigate the effect of high concentration (67%) of H2 on SAE and whether it is related to mitochondrial biogenesis and mitochondrial dynamics. METHODS A mouse sepsis model was induced by cecal ligation and puncture. The mice inhalated 67% H2 for 1 h at 1 and 6 h post-surgery, respectively. The 7-day survival rate was recorded. Cognitive function was assessed using the Y-maze test and Morris water maze test. Serum inflammatory factors, antioxidant enzymes, as well as mitochondrial function indexes including mitochondrial membrane potential (MMP) and ATP in the hippocampal tissue were evaluated 24 h after surgery. Mitochondrial dynamic proteins (DRP1 and MFN2) and biosynthetic proteins (PGC-1α, NRF2, and TFAM) in the hippocampal tissue were detected. Moreover, the morphology of mitochondria was observed by transmission electron microscopy. RESULTS Inhalation of 67% H2 improved the 7-day survival rates and recognition memory function of septic mice, alleviated brain antioxidant enzyme activity (SOD and CAT), and reduced serum proinflammatory cytokine levels. H2 inhalation also enhanced the expression of MFN2 and mitochondrial biogenesis-related factors (PGC-1α, NRF2, and TFAM) and decreased the expression of fission protein (DRP1), leading to improvement in mitochondrial function, as evidenced by MMP and ATP levels. CONCLUSIONS Inhalation of high concentration (67%) of H2 in septic mice improved the survival rate and reduced neuronal injury. Its mechanism might be mediated by enhancing mitochondrial biogenesis and mitochondrial dynamics.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen BiologySchool of Basic Medical Sciences, Tianjin Medical UniversityTianjinChina
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Shuqi Meng
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Nannan Zhang
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jingya Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Lina Zheng
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Wanjie Ma
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yu Song
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Zhiwei Wang
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yuehao Shen
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jianfeng Liu
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| | - Keliang Xie
- Department of Critical Care MedicineTianjin Medical University General HospitalTianjinChina
- Department of AnesthesiologyTianjin Institute of Anesthesiology, Tianjin Medical University General HospitalTianjinChina
| |
Collapse
|
2
|
Halder D, Das S, R S J, Joseph A. Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer's disease: an insight into structure-activity relationship. J Biomol Struct Dyn 2023; 41:11286-11323. [PMID: 36579430 DOI: 10.1080/07391102.2022.2158136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aβ) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeyaprakash R S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Li B, Lu Y, Wang R, Xu T, Lei X, Jin H, Gao X, Xie Y, Liu X, Zeng J. MiR-29c Inhibits TNF-α-Induced ROS Production and Apoptosis in Mouse Hippocampal HT22 Cell Line. Neurochem Res 2023; 48:519-536. [PMID: 36309937 DOI: 10.1007/s11064-022-03776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023]
Abstract
Recent reports have suggested that abnormal miR-29c expression in hippocampus have been implicated in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. However, the underlying effect of miR-29c in regulating hippocampal neuronal function is not clear. In this study, HT22 cells were infected with lentivirus containing miR-29c or miR-29c sponge. Cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay kit were applied to evaluate cell viability and toxicity before and after TNF-α administration. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Hoechst 33258 staining and TUNEL assay were used to evaluate cell apoptosis. The expression of key mRNA/proteins (TNFR1, Bcl-2, Bax, TRADD, FADD, caspase-3, -8 and -9) in the apoptosis pathway was detected by PCR or WB. In addition, the protein expression of microtubule-associated protein-2 (MAP-2), nerve growth-associated protein 43 (GAP-43) and synapsin-1 (SYN-1) was detected by WB. As a result, we found that miR-29c overexpression could improve cell viability, attenuate LDH release, reduce ROS production and inhibit MMP depolarization in TNF-α-treated HT22 cells. Furthermore, miR-29c overexpression was found to decrease apoptotic rate, along with decreased expression of Bax, cleaved caspase-3, cleaved caspase-9, and increased expression of Bcl-2 in TNF-α-treated HT22 cells. However, miR-29c sponge exhibited an opposite effects. In addition, in TNF-α-treated HT22 cells, miR-29c overexpression could decrease the expressions of TNFR1, TRADD, FADD and cleaved caspase-8. However, in HT22 cells transfected with miR-29c sponge, TNF-α-induced the expressions of TNFR1, TRADD, FADD and cleaved caspase-8 was significantly exacerbated. At last, TNF-α-induced the decreased expression of MAP-2, GAP-43 and SYN-1 was reversed by miR-29c but exacerbated by miR-29c sponge. Overall, our study demonstrated that miR-29c protects against TNF-α-induced HT22 cells injury through alleviating ROS production and reduce neuronal apoptosis. Therefore, miR-29c might be a potential therapeutic agent for TNF-α accumulation and toxicity-related brain diseases.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ying Lu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Rong Wang
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaolu Lei
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huan Jin
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohong Gao
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ye Xie
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaohong Liu
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
4
|
Zhao N, Sun R, Cui Y, Song Y, Ma W, Li Y, Liang J, Wang G, Yu Y, Han J, Xie K. High Concentration Hydrogen Mitigates Sepsis-Induced Acute Lung Injury in Mice by Alleviating Mitochondrial Fission and Dysfunction. J Pers Med 2023; 13:jpm13020244. [PMID: 36836478 PMCID: PMC9966938 DOI: 10.3390/jpm13020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. A large number of inflammatory factors and stress injury in sepsis can lead to alterations in mitochondrial dynamics. Numerous studies have confirmed that hydrogen can alleviate sepsis in the animal model. The purpose of this experiment was to explore the therapeutic effect of high concentration (67%) hydrogen on acute lung injury in septic mice and its mechanism. Methods: The moderate and severe septic models were prepared by cecal ligation and puncture. Hydrogen with different concentrations was inhaled for one hour at 1 h and 6 h after the corresponding surgery. The arterial blood gas of mice during hydrogen inhalation was monitored in real time, and the 7-day survival rate of mice with sepsis was recorded. The pathological changes of lung tissues and functions of livers and kidneys were measured. The changes of oxidation products, antioxidant enzymes and pro-inflammatory cytokines in lungs and serums were detected. Mitochondrial function was measured. Results: The inhalation of 2% or 67% hydrogen improves the 7-day survival rate and reduces acute lung injury as well as liver and kidney injury in sepsis. The therapeutic effect of 67% hydrogen inhalation on sepsis was related to increasing antioxidant enzyme activity, reducing oxidation products and pro-inflammatory cytokines in lungs and serums. Compared with the Sham group, mitochondrial dysfunction was alleviated in hydrogen groups. Conclusions: Hydrogen inhalation by high or low concentration can both significantly improve sepsis; however, a high concentration demonstrates a better protective effect. High concentration hydrogen inhalation can significantly improve the mitochondrial dynamic balance and reduce the lung injury in septic mice.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin 300308, China
| | - Ruiqiang Sun
- Department of Anesthesiology, Tianjin Eye Hospital, Tianjin 300020, China
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wanjie Ma
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingning Li
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Liang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (Y.Y.); (J.H.); (K.X.)
| | - Jiange Han
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin 300308, China
- Correspondence: (Y.Y.); (J.H.); (K.X.)
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (Y.Y.); (J.H.); (K.X.)
| |
Collapse
|
5
|
Chen Y, Peng F, Xing Z, Chen J, Peng C, Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front Immunol 2022; 13:1006434. [PMID: 36353622 PMCID: PMC9638012 DOI: 10.3389/fimmu.2022.1006434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 12/05/2022] Open
Abstract
Neuroinflammation is the fundamental immune response against multiple factors in the central nervous system and is characterized by the production of inflammatory mediators, activated microglia and astrocytes, and the recruitment of innate and adaptive immune cells to inflammatory sites, that contributes to the pathological process of related brain diseases, such as Alzheimer’s disease, Parkinson’s disease, depression, and stroke. Flavonoids, as a species of important natural compounds, have been widely revealed to alleviate neuroinflammation by inhibiting the production of pro-inflammatory mediators, elevating the secretion of anti-inflammatory factors, and modulating the polarization of microglia and astrocyte, mainly via suppressing the activation of NLRP3 inflammasome, as well as NF-κB, MAPK, and JAK/STAT pathways, promoting Nrf2, AMPK, BDNF/CREB, Wnt/β-Catenin, PI3k/Akt signals and SIRT1-mediated HMGB1 deacetylation. This review will provide the latest and comprehensive knowledge on the therapeutic benefits and mechanisms of natural flavonoids in neuroinflammation, and the natural flavonoids might be developed into food supplements or lead compounds for neuroinflammation-associated brain disorders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Dan Li,
| |
Collapse
|
6
|
Ma C, Yu X, Li D, Fan Y, Tang Y, Tao Q, Zheng L. Inhibition of SET domain-containing (lysine methyltransferase) 7 alleviates cognitive impairment through suppressing the activation of NOD-like receptor protein 3 inflammasome in isoflurane-induced aged mice. Hum Exp Toxicol 2022; 41:9603271211061497. [PMID: 35187972 DOI: 10.1177/09603271211061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND As a common postoperative complication to elderly patients, postoperative cognitive dysfunction (POCD) is a central nervous system complication, often taking place after anesthesia and surgery. (Su(var)3-9, enhancer-of-zeste, and trithorax) domain-containing protein 7 (SETD7) plays important roles in metabolic-related diseases, viral infections, tumor formation, and some inflammatory reactions. However, the role and mechanism of SETD7 in POCD have not been previously studied. METHODS RT-PCR and Western blot were performed to evaluate the efficiency of knockdown of SETD7. The pathological changes of hippocampal neurons in isoflurane-anesthetized mice were detected by HE staining, and the Morris water maze experiment was performed to evaluate the learning and memory abilities of mice. The effect of SETD7 on the hippocampus in isoflurane-induced aged mice was examined by Western blot and TUNEL assay. Then ELISA assay was applied to determine the expression of some inflammatory cytokines, followed by the detection of expression of NOD-like receptor protein 3 (NLRP3) inflammasome through Western blot. RESULTS The data of this research revealed that SETD7 knockdown improved cognitive impairment in isoflurane-anesthetized mice, ameliorated cell pyroptosis, inhibited the release of inflammatory cytokines, and suppressed the activation of NLRP3 inflammasome in the hippocampus in isoflurane-induced aged mice. CONCLUSION Collectively, these results provided evidence that the inhibition of SETD7 could alleviate neuroinflammation, pyroptosis, and cognitive impairment by suppressing the activation of the NLRP3 inflammasome in isoflurane-induced aged mice.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xianjun Yu
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Dong Li
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Youwen Fan
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yajun Tang
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Tao
- Department of General Surgery, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Lei Zheng
- Department of Anesthesiology, 543160the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
7
|
Zang C, Liu H, Shang J, Yang H, Wang L, Sheng C, Zhang Z, Bao X, Yu Y, Yao X, Zhang D. Gardenia jasminoides J.Ellis extract GJ-4 alleviated cognitive deficits of APP/PS1 transgenic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153780. [PMID: 34607163 DOI: 10.1016/j.phymed.2021.153780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Accumulating evidence demonstrates that traditional Chinese medicines that act on multiple targets could effectively treat various multi-etiological diseases, including cerebrovascular diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and so on. Previous studies have shown that crocin richments (GJ-4), Gardenia jasminoides J.Ellis extract, provide neuroprotective effects on cognitive impairments in AD mouse models. However, the mechanism how GJ-4 improves cognition remains still unclear. PURPOSE The aim of this study was to uncover the protective effects and underlying mechanism of GJ-4 on PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic mice. METHODS APP/PS1 mice were given GJ-4 (10, 20, and 50 mg/kg), donepezil (5 mg/kg) and memantine (5 mg/kg) orally at eight months of age for 12 consecutive weeks. Morris water maze and novel object recognition were conducted to assess the cognitive ability of mice. The release of inflammatory cytokines was determined by RT-PCR assay, and the pathological features of neurons and microglia were assayed by immunohistochemistry and immunofluorescence assay. The expression of Aβ-related proteins and signaling pathways were determined by Western blot. RESULTS The behavioral results revealed that GJ-4 ameliorated the cognitive deficits of APP/PS1 mice measured by Morris water maze and novel object recognition tests. Mechanism studies indicated that GJ-4 significantly decreased β-amyloid (Aβ) level through reducing Aβ production and promoting Aβ degradation. It has been reported that Aβ plaques trigger the hyper-phosphorylation of tau protein in APP/PS1 mice. Consistent with previous studies, hyper-phosphorylation of tau was also occurred in APP/PS1 mice in the present study, and GJ-4 inhibited Tau phosphorylation at different sites. Overwhelming evidence indicates that neuroinflammation stimulated by Aβ and hyperphosphorylated tau is involved in the pathological progression of AD. We found that GJ-4 suppressed neuroinflammatory responses in the brain through regulating phosphatidylinositide 3-kinase/AKT (PI3K/AKT) signaling pathway activation, and subsequent expression of inflammatory proteins and release of inflammatory cytokines. CONCLUSION Altogether, GJ-4 ameliorated cognition of APP/PS1 transgenic mice through multiple targets, including Aβ, tau and neuroinflammation. This study provides a solid research basis for further development of GJ-4 as a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
8
|
Zhang Y, Ding S, Chen Y, Sun Z, Zhang J, Han Y, Dong X, Fang Z, Li W. Ginsenoside Rg1 alleviates lipopolysaccharide-induced neuronal damage by inhibiting NLRP1 inflammasomes in HT22 cells. Exp Ther Med 2021; 22:782. [PMID: 34055081 PMCID: PMC8145787 DOI: 10.3892/etm.2021.10214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a toxic component of cell walls of Gram-negative bacteria that are widely present in gastrointestinal tracts. Increasing evidence showed that LPS plays important roles in the pathogeneses of neurodegenerative disorders, such as Alzheimer's disease (AD). NADPH oxidase s2 (NOX2) is a complex membrane protein that contributes to the production of reactive oxygen species (ROS) in several neurological diseases. The NLRP1 inflammasome can be activated in response to an accumulation of ROS in neurons. However, it is still unknown whether LPS exposure can deteriorate neuronal damage by activating NOX2-NLRP1 inflammasomes. Ginsenoside Rg1 (Rg1) has protective effects on neurons, although whether Rg1 alleviates LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes remains unclear. In the present study, the effect of concentration gradients and different times of LPS exposure on neuronal damage was investigated in HT22 cells, and further observed the effect of Rg1 treatment on NOX2-NLPR1 inflammasome activation, ROS production and neuronal damage in LPS-treated HT22 cells. The results demonstrated that LPS exposure significantly induced NOX2-NLRP1 inflammasome activation, excessive production of ROS, and neuronal damage in HT22 cells. It was also shown that Rg1 treatment significantly decreased NOX2-NLRP1 inflammasome activation and ROS production and alleviated neuronal damage in LPS-induced HT22 cells. The present data suggested that Rg1 has protective effects on LPS-induced neuronal damage by inhibiting NOX2-NLRP1 inflammasomes in HT22 cells, and Rg1 may be a potential therapeutic approach for delaying neuronal damage in AD.
Collapse
Affiliation(s)
- Yaodong Zhang
- Department of Pharmacy, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang 311200, P.R. China
| | - Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yali Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhenghao Sun
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junyan Zhang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhirui Fang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
9
|
Affiliation(s)
- Debomoy K. Lahiri
- Department of Psychiatry Indiana University School of Medicine Indianapolis, IN 46202, United States
| |
Collapse
|