1
|
Giurini EF, Godla A, Gupta KH. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther 2024; 31:187-206. [PMID: 38200347 PMCID: PMC10874892 DOI: 10.1038/s41417-023-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Cancer treatment remains a significant challenge due to issues such as acquired resistance to conventional therapies and the occurrence of adverse treatment-related toxicities. In recent years, researchers have turned their attention to the microbial world in search of novel and effective drugs to combat this devastating disease. Microbial derived secondary metabolites have proven to be a valuable source of biologically active compounds, which exhibit diverse functions and have demonstrated potential as treatments for various human diseases. The exploration of these compounds has provided valuable insights into their mechanisms of action against cancer cells. In-depth studies have been conducted on clinically established microbial metabolites, unraveling their anticancer properties, and shedding light on their therapeutic potential. This review aims to comprehensively examine the anticancer mechanisms of these established microbial metabolites. Additionally, it highlights the emerging therapies derived from these metabolites, offering a glimpse into the immense potential they hold for anticancer drug discovery. Furthermore, this review delves into approved treatments and major drug candidates currently undergoing clinical trials, focusing on specific molecular targets. It also addresses the challenges and issues encountered in the field of anticancer drug research and development. It also presents a comprehensive exposition of the contemporary panorama concerning microbial metabolites serving as a reservoir for anticancer agents, thereby illuminating their auspicious prospects and the prospect of forthcoming strides in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Aishvarya Godla
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Kutryb-Zając B, Kawecka A, Nasadiuk K, Braczko A, Stawarska K, Caiazzo E, Koszałka P, Cicala C. Drugs targeting adenosine signaling pathways: A current view. Biomed Pharmacother 2023; 165:115184. [PMID: 37506580 DOI: 10.1016/j.biopha.2023.115184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adenosine is an endogenous nucleoside that regulates many physiological and pathological processes. It is derived from either the intracellular or extracellular dephosphorylation of adenosine triphosphate and interacts with cell-surface G-protein-coupled receptors. Adenosine plays a substantial role in protecting against cell damage in areas of increased tissue metabolism and preventing organ dysfunction in pathological states. Targeting adenosine metabolism and receptor signaling may be an effective therapeutic approach for human diseases, including cardiovascular and central nervous system disorders, rheumatoid arthritis, asthma, renal diseases, and cancer. Several lines of evidence have shown that many drugs exert their beneficial effects by modulating adenosine signaling pathways but this knowledge urgently needs to be summarized, and most importantly, actualized. The present review collects pharmaceuticals and pharmacological or diagnostic tools that target adenosine signaling in their primary or secondary mode of action. We overviewed FDA-approved drugs as well as those currently being studied in clinical trials. Among them are already used in clinic A2A adenosine receptor modulators like istradefylline or regadenoson, but also plenty of anti-platelet, anti-inflammatory, or immunosuppressive, and anti-cancer drugs. On the other hand, we investigated dozens of specific adenosine pathway regulators that are tested in clinical trials to treat human infectious and noninfectious diseases. In conclusion, targeting purinergic signaling represents a great therapeutic challenge. The actual knowledge of the involvement of adenosinergic signaling as part of the mechanism of action of old drugs has open a path not only for drug-repurposing but also for new therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Khrystyna Nasadiuk
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naple Federico II, 80131 Naples, Italy
| |
Collapse
|
3
|
Sakai N, Kamimura K, Terai S. Repurposable Drugs for Immunotherapy and Strategies to Find Candidate Drugs. Pharmaceutics 2023; 15:2190. [PMID: 37765160 PMCID: PMC10536625 DOI: 10.3390/pharmaceutics15092190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional drug discovery involves significant steps, time, and expenses; therefore, novel methods for drug discovery remain unmet, particularly for patients with intractable diseases. For this purpose, the drug repurposing method has been recently used to search for new therapeutic agents. Repurposed drugs are mostly previously approved drugs, which were carefully tested for their efficacy for other diseases and had their safety for the human body confirmed following careful pre-clinical trials, clinical trials, and post-marketing surveillance. Therefore, using these approved drugs for other diseases that cannot be treated using conventional therapeutic methods could save time and economic costs for testing their clinical applicability. In this review, we have summarized the methods for identifying repurposable drugs focusing on immunotherapy.
Collapse
Affiliation(s)
- Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Aasahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan; (N.S.); (S.T.)
| |
Collapse
|
4
|
Bazinet A, Darbaniyan F, Kadia TM, Venugopal S, Kanagal-Shamanna R, DiNardo CD, Borthakur G, Jabbour EJ, Daver NG, Pemmaraju N, Konopleva MY, Ravandi F, Sasaki K, Chien KS, Hammond D, Pierce SA, Kantarjian HM, Garcia-Manero G, Montalban-Bravo G. A retrospective study of cladribine and low-dose cytarabine-based regimens for the treatment of chronic myelomonocytic leukemia and secondary acute myeloid leukemia. Cancer 2023; 129:560-568. [PMID: 36458426 DOI: 10.1002/cncr.34564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Patients with higher risk chronic myelomonocytic leukemia (CMML) have limited therapeutic options beyond hydroxyurea and hypomethylating agents (HMAs). Regimens based on a backbone of cladribine (CLAD), low-dose cytarabine (LDAC), and an HMA are effective low-intensity therapies for acute myeloid leukemia (AML). METHODS The authors conducted a retrospective chart review to evaluate the efficacy of CLAD/LDAC/HMA in CMML and secondary acute myeloid leukemia (sAML) arising from CMML. Responses were evaluated according to the 2006 International Working Group criteria for CMML and the 2017 European LeukemiaNet criteria for AML. The overall survival (OS), leukemia-free survival (LFS), and duration of response were evaluated with the Kaplan-Meier method. Patients were stratified on the basis of prior HMA exposure. RESULTS The authors identified 21 patients with CMML (eight with HMA-naive CMML and 13 with HMA-failure CMML) and 33 patients with sAML (11 with HMA-naive sAML and 22 with HMA-failure sAML) treated with CLAD/LDAC/HMA-based regimens. The CMML cohort was enriched for high-risk features (proliferative type, elevated blasts, and RAS/MAPK mutations). The overall response rate was 33% in CMML (50% in HMA-naive CMML and 23% in HMA-failure CMML) and 48% in sAML (82% in HMA-naive sAML and 32% in HMA-failure sAML). The median OS was 14.4, 8.8, 42.9, and 2.9 months for HMA-naive CMML, HMA-failure CMML, HMA-naive sAML, and HMA-failure sAML, respectively. The median LFS was 14.4 and 3.9 months for HMA-naive CMML and HMA-failure CMML, respectively. CONCLUSIONS CLAD/LDAC/HMA-based regimens are effective in a subset of patients with higher risk CMML and sAML arising from CMML who have not previously experienced HMA failure. These findings must be confirmed in prospective studies.
Collapse
Affiliation(s)
- Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
5
|
Pentostatin Biosynthesis Pathway Elucidation and Its Application. FERMENTATION 2022. [DOI: 10.3390/fermentation8090459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pentostatin (PNT), a nucleoside antibiotic with a 1,3-diazo ring structure, is distributed in several actinomycetes and fungi species. Its special structure makes PNT possess a wide spectrum of biological and pharmacological properties, such as antibacterial, antitrypanosomal, anticancer, antiviral, herbicidal, insecticidal, and immunomodulatory effects. Because of the promising adenosine deaminase inhibitory activity of PNT, its extensive application in the clinical treatment of malignant tumors has been extensively studied. However, the fermentation level of microbial-derived PNT is low and cannot meet medical needs. Because the biosynthesis pathway of PNT is obscure, only high-yield mutant screening and optimization of medium components and fermentation processes have been conducted for enhancing its production. Recently, the biosynthesis pathways of PNT in actinomycetes and fungi hosts have been revealed successively, and the large-scale production of PNT by systematic metabolic engineering will become an inevitable trend. Therefore, this review covers all aspects of PNT research, in which major advances in understanding the resource microorganisms, mechanism of action, and biosynthesis pathway of PNT were achieved and diverse clinical applications of PNT were emphasized, and it will lay the foundation for commercial transformation and industrial technology of PNT based on systematic metabolic engineering.
Collapse
|
6
|
Monroy-Mora A, de Lourdes Mora-García M, Alheli Monroy Mora K, Hernández-Montes J, García-Rocha R, Don-López CA, Weiss-Steider B, Montesinos-Montesinos JJ, Monroy-García A. Inhibition of adenosine deaminase activity reverses resistance to the cytotoxic effect of high adenosine levels in cervical cancer cells. Cytokine 2022; 158:155977. [PMID: 35933851 DOI: 10.1016/j.cyto.2022.155977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 06/05/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Adenosine (ADO) generation in the tumor microenvironment (TME) plays important roles in the promotion of tumor growth, invasion, and metastasis and in suppression of the antitumor immune response. Recently, adenosine deaminase (ADA) activity in the TME has been proposed to be a compensatory mechanism against toxic accumulation of ADO in cancerous tissues. In the present study, the expression and functional activity of ADA in cervical cancer (CeCa) tumor cells were analyzed: C33A (HPV-), CaSki (HPV + ), and HeLa (HPV + ) cells. CeCa tumor cells, as well as activated T lymphocytes (ATLs), which were used as a positive control, showed different ADA contents in the membrane and intracellularly and a strong ability to convert ADO into inosine (INO). Treatment of tumor cells with EHNA, a specific ADA inhibitor, decreased the viability of CeCa tumor cells in a dose-dependent manner. In C33A (EHNA half maximal inhibitory concentration (IC50) = 374 μM), CaSki (EHNA IC50 = 273.6 μM), and HeLa (EHNA IC50 = 252.2 μM) cells, EHNA strongly reversed the resistance of tumor cells to the cytotoxic effect of high concentrations of ADO; 38.82 ± 3.1%, 47.18 ± 4.7%, and 71.63 ± 6.9% of the cells were apoptotic, and 40 ± 4.8%, 52 ± 5.3% and 70 ± 6.8% of the cells had mitochondrial membrane damage, respectively. In ATLs (EHNA IC50 = 391.8 μM) treated with EHNA, 32.4 ± 4.4% were apoptotic, and 32 ± 4.3% had mitochondrial membrane damage. These results suggest that the presence and activity of ADA in CeCa tumor cells can provide protection against the cytotoxic effect of high ADO contents in the TME. Therefore, the inhibition of ADA could be a strategy for the treatment of CeCa.
Collapse
Affiliation(s)
- Alberto Monroy-Mora
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Programa de Posgrado en Ciencias Bioquímicas, UNAM, Ciudad de México, Mexico
| | | | - Katia Alheli Monroy Mora
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Programa de Posgrado en Ciencias Bioquímicas, UNAM, Ciudad de México, Mexico
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | | | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Alberto Monroy-García
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico; Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Ravindranath BS, Vishnu Vinayak S, Chandra Mohan V. RNR inhibitor binding studies of Chlamydia felis: insights from in silico molecular modeling, docking, and simulation studies. J Biomol Struct Dyn 2021; 40:9416-9428. [PMID: 34032189 DOI: 10.1080/07391102.2021.1930160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydia felis is the primary cause of chronic conjunctivitis without respiratory infections in cats, making conjunctiva as its primary target. It is a Gram-negative obligate intracellular bacterium that cannot survive outside the host cell. C. felis can be found worldwide and its zoonotic potential is a known phenomenon. The scope of zoonoses, its scale, and their impact experiencing today has no historical precedence. Among the identified 1415 human pathogens 868 have a zoonotic origin making it to 61%. Although with appropriate drug administration there are instances of re-occurrence of chlamydial infections, the emergence of heterotypic antimicrobial resistance to antibiotics targeting rRNA due to mutations has further complicated the diagnosis and treatment of chlamydial infections. Ribonucleotide-diphosphate reductase subunit beta (RNR) is one of the crucial target proteins of the bacterial pathogens essential in the synthesis of deoxyribonucleotides. Our current study primarily focuses on modeling the target structure through homology modeling. Further, the validated model is complexed with the specific inhibitor Cladribine through sequence-based ligand search. Docking of the identified ligand was performed to identify the different modes of interactions with amino acids present in the prioritized binding pockets. Validation of the binding modes is carried out through molecular dynamics (MD) simulations for the best binding pose with a high binding score. MD simulation study demonstrated the stability of the docked complex considered in this study. The findings from this study may be helpful in drug repurposing and novel drug research in the scenario of resistance to currently practiced antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- B S Ravindranath
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Vishnu Vinayak
- Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vivek Chandra Mohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|
8
|
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa KS. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 2021; 86:998-1013. [PMID: 33979675 DOI: 10.1016/j.semcancer.2021.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
9
|
Frisch J, Maršić T, Loderer C. A Novel One-Pot Enzyme Cascade for the Biosynthesis of Cladribine Triphosphate. Biomolecules 2021; 11:biom11030346. [PMID: 33668847 PMCID: PMC7996316 DOI: 10.3390/biom11030346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cladribine triphosphate is the active compound of the anti-cancer and multiple sclerosis drug Mavenclad (cladribine). Biosynthesis of such non-natural deoxyribonucleotides is challenging but important in order to study the pharmaceutical modes of action. In this study, we developed a novel one-pot enzyme cascade for the biosynthesis of cladribine triphosphate, starting with the nucleobase 2Cl-adenine and the generic co-substrate phosphoribosyl pyrophosphate. The cascade is comprised of the three enzymes, namely, adenine phosphoribosyltransferase (APT), polyphosphate kinase (PPK), and ribonucleotide reductase (RNR). APT catalyzes the binding of the nucleobase to the ribose moiety, followed by two consecutive phosphorylation reactions by PPK. The formed nucleoside triphosphate is reduced to the final product 2Cl-deoxyadenonsine triphosphate (cladribine triphosphate) by the RNR. The cascade is feasible, showing comparative product concentrations and yields to existing enzyme cascades for nucleotide biosynthesis. While this study is limited to the biosynthesis of cladribine triphosphate, the design of the cascade offers the potential to extend its application to other important deoxyribonucleotides.
Collapse
Affiliation(s)
- Julia Frisch
- Chair for Molecular Biotechnology, Technical University, 01217 Dresden, Germany;
| | - Tin Maršić
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Christoph Loderer
- Chair for Molecular Biotechnology, Technical University, 01217 Dresden, Germany;
- Correspondence: ; Tel.: +49-351-463-39517
| |
Collapse
|
10
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Medicinal Chemistry of Multiple Sclerosis: Focus on Cladribine. Mini Rev Med Chem 2020; 20:269-285. [PMID: 31644403 DOI: 10.2174/1389557519666191015201755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the recent years, many novel Disease-Modifying Drugs (DMD) have been introduced to the market in the treatment of multiple sclerosis. OBJECTIVES To provide the reader with an up to date, compact review on the pharmacokinetic properties, mechanism of action, and clinical attributes of one of the most recently approved drugs in the therapy of multiple sclerosis, cladribine. CONCLUSION Cladribine tablets proved to be a highly efficient treatment choice for Relapsing- Remitting Multiple Sclerosis (RRMS), especially for patients with high disease activity. It is the first DMD for MS with a complex mechanism of action, by inhibiting the adenosine-deaminase enzyme it increases the intracellular levels of deoxyadenosine triphosphate, which with relative selectivity depletes both T- and B-cells lines simultaneously. However long term follow-up safety and effectiveness data are still missing, and clear treatment protocols are lacking beyond the first two treatment years cladribine should prove to be a valuable addition to the therapeutic palette of RRMS, and potentially for Clinically Isolated Syndrome (CIS) as well.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Dániel Sandi
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - Krisztina Bencsik
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Szent-Gyorgyi Albert Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
11
|
Klimenko K. Examining the evidence of non-monotonic dose-response in Androgen Receptor agonism high-throughput screening assay. Toxicol Appl Pharmacol 2020; 410:115338. [PMID: 33217376 DOI: 10.1016/j.taap.2020.115338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022]
Abstract
Modern High-Throughput Screening (HTS) techniques allow to determine in vitro bioactivity of tens of thousands of chemicals within a relatively short period of time and tested compounds are usually interpreted as either active or inactive. The interpretation is mostly based on the assumption of monotonic dose-response. This approach ignores potential abnormal dose-response relationships, such as non-monotonic dose-response (NMDR). NMDR presents a serious challenge to toxicologists and pharmacologists, since they undermine the usefulness of such concepts as lowest-observed-adverse-effect level (LOAEL) and no-observed-adverse-effect level (NOAEL). The possible presence of the NMDR in Androgen receptor (AR) agonism was examined for a structurally diverse set of chemicals (~8 300 unique compounds) from Tox21 project library. The source of activity data is Tox21 AR agonism luciferase-based HTS on the MDA-MB-453 cell line. The examination of curve fitting for 35,328 dose-response data entries was based on modified version of existing criteria for determination of NMDR. The bias that arises from compounds' cytotoxicity and interference with firefly luciferase protein was also studied. The examination has shown evidence of NMDR for several compounds, including known AR antagonists (e. g. Cyproterone acetate) and other known endocrine disruptors (e. g. Tranilast). Compounds were divided into 3 groups based on chemical class, known biological activity profile and the shape of dose-response curve. The challenges of using HTS data to determine NMDR and benefits of this analysis are discussed.
Collapse
Affiliation(s)
- Kyrylo Klimenko
- Private consultant in Computational Toxicology, Av. 1 de Maio, 11, 2825-396 Costa de Caparica, Portugal.
| |
Collapse
|
12
|
Merrill NM, Vandecan NM, Day KC, Palmbos PL, Day ML, Udager AM, Merajver SD, Soellner MB. MEK is a promising target in the basal subtype of bladder cancer. Oncotarget 2020; 11:3921-3932. [PMID: 33216841 PMCID: PMC7646827 DOI: 10.18632/oncotarget.27767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/24/2020] [Indexed: 12/03/2022] Open
Abstract
While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Palmbos
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Woolley VC, Teakle GR, Prince G, de Moor CH, Chandler D. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol 2020; 177:107480. [PMID: 33022282 PMCID: PMC7768946 DOI: 10.1016/j.jip.2020.107480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
High doses of cordycepin are lethal to G. mellonella. Cordycepin interacts with EPF to increase the rate of G. mellonella mortality. Cordycepin reduces immune-related gene expression in G. mellonella and S2r+ cells.
Hypocrealean entomopathogenic fungi (EPF) (Sordariomycetes, Ascomycota) are natural regulators of insect populations in terrestrial environments. Their obligately-killing life-cycle means that there is likely to be strong selection pressure for traits that allow them to evade the effects of the host immune system. In this study, we quantified the effects of cordycepin (3′-deoxyadenosine), a secondary metabolite produced by Cordyceps militaris (Hypocreales, Cordycipitaceae), on insect susceptibility to EPF infection and on insect immune gene expression. Application of the immune stimulant curdlan (20 µg ml−1, linear beta-1,3-glucan, a constituent of fungal cell walls) to Drosophila melanogaster S2r+ cells resulted in a significant increase in the expression of the immune effector gene metchnikowin compared to a DMSO-only control, but there was no significant increase when curdlan was co-applied with 25 µg ml−1 cordycepin dissolved in DMSO. Injection of cordycepin into larvae of Galleria mellonella (Lepidoptera: Pyralidae) resulted in dose-dependent mortality (LC50 of cordycepin = 2.1 mg per insect 6 days after treatment). Incubating conidia of C. militaris and Beauveria bassiana (Hypocreales, Cordycipitaceae; an EPF that does not synthesize cordycepin) with 3.0 mg ml−1 cordycepin had no effect on the numbers of conidia germinating in vitro. Co-injection of G. mellonella with a low concentration of cordycepin (3.0 mg ml−1) plus 10 or 100 conidia per insect of C. militaris or B. bassiana caused a significant decrease in insect median survival time compared to injection with the EPF on their own. Analysis of predicted vs. observed mortalities indicated a synergistic interaction between cordycepin and the EPF. The injection of C. militaris and B. bassiana into G. mellonella resulted in increased expression of the insect immune effector genes lysozyme, IMPI and gallerimycin at 72 h post injection, but this did not occur when the EPF were co-injected with 3.0 mg ml−1 cordycepin. In addition, we observed increased expression of IMPI and lysozyme at 48 h after injection with C. militaris, B. bassiana and sham injection (indicating a wounding response), but this was also prevented by application of cordycepin. These results suggest that cordycepin has potential to act as a suppressor of the immune response during fungal infection of insect hosts.
Collapse
Affiliation(s)
- Victoria C Woolley
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.
| | - Graham R Teakle
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Gillian Prince
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Cornelia H de Moor
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David Chandler
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
14
|
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T. DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 2020; 11:2531-2557. [PMID: 33209251 PMCID: PMC7643205 DOI: 10.1039/c9sc03414e] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at the input level instead of conventional descriptors that display limited performance. DEEPScreen learns complex features inherently from the 2-D representations, thus producing highly accurate predictions. The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the proposed approach and verified selected novel predictions through molecular docking analysis and literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3 phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use" prediction models, all datasets and the results of this study are available at ; https://github.com/cansyl/DEEPscreen.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- Department of Computer Engineering , İskenderun Technical University , Hatay , 31200 , Turkey
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Esra Nalbat
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Volkan Atalay
- Department of Computer Engineering , METU , Ankara , 06800 , Turkey . ; Tel: +903122105576
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory , European Bioinformatics Institute (EMBL-EBI) , Hinxton , Cambridge , CB10 1SD , UK
| | - Rengul Cetin-Atalay
- KanSiL , Department of Health Informatics , Graduate School of Informatics , METU , Ankara , 06800 , Turkey
- Section of Pulmonary and Critical Care Medicine , The University of Chicago , Chicago , IL 60637 , USA
| | - Tunca Doğan
- Department of Computer Engineering , Hacettepe University , Ankara , 06800 , Turkey . ; Tel: +903122977193/117
- Institute of Informatics , Hacettepe University , Ankara , 06800 , Turkey
| |
Collapse
|
15
|
Xu L, Jiao J, Sun X, Sang W, Gao X, Yang P, Yan D, Song X, Sun C, Liu M, Qin Y, Tian Y, Zhu F, Zeng L, Li Z, Xu K. Cladribine Induces ATF4 Mediated Apoptosis and Synergizes with SAHA in Diffuse Large B-Cell Lymphoma Cells. Int J Med Sci 2020; 17:1375-1384. [PMID: 32624694 PMCID: PMC7330656 DOI: 10.7150/ijms.41793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cladribine is a purine nucleoside analog used to treat B-cell chronic lymphocytic leukemia and hairy cell leukemia, also functions as an inhibitor of DNA synthesis to block the repair of the damaged DNA. The therapeutic role of cladribine against diffuse large B-cell lymphoma cells (DLBCL) is still undefined. In the present study, we demonstrated that cladribine inhibited cell proliferation and induced G1 phase arrest in human DLBCL cells. Furthermore, we showed that cladribine induced apoptosis by decreasing the expression of c-FLIPL and increasing the expression of DR4 and the cleaved form of caspase8. Cladribine also upregulated the expression of Bax, and downregulated the expression of Mcl-1 and Bcl-2 in a dose-dependent manner. It also activated endoplasmic reticulum (ER) stress, and ATF4 expression was required for cladribine induced apoptosis. Also, we showed that suberoylanilide hydroxamic acid (SAHA) enhanced the pro-apoptotic role of cladribine. Collectively, cladribine activated extrinsic and intrinsic apoptotic signaling pathways via stimulating ER stress signaling pathway and eliciting synergistic effect with SAHA in DLBCL cells.
Collapse
Affiliation(s)
- Linyan Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Jun Jiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiaoshen Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Xiang Gao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Pu Yang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Dongmei Yan
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuguang Song
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cai Sun
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengdi Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yuanyuan Qin
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Yu Tian
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China
| |
Collapse
|
16
|
Camici M, Garcia-Gil M, Pesi R, Allegrini S, Tozzi MG. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers (Basel) 2019; 11:cancers11091354. [PMID: 31547393 PMCID: PMC6769685 DOI: 10.3390/cancers11091354] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/17/2022] Open
Abstract
The enzymes of both de novo and salvage pathways for purine nucleotide synthesis are regulated to meet the demand of nucleic acid precursors during proliferation. Among them, the salvage pathway enzymes seem to play the key role in replenishing the purine pool in dividing and tumour cells that require a greater amount of nucleotides. An imbalance in the purine pools is fundamental not only for preventing cell proliferation, but also, in many cases, to promote apoptosis. It is known that tumour cells harbour several mutations that might lead to defective apoptosis-inducing pathways, and this is probably at the basis of the initial expansion of the population of neoplastic cells. Therefore, knowledge of the molecular mechanisms that lead to apoptosis of tumoural cells is key to predicting the possible success of a drug treatment and planning more effective and focused therapies. In this review, we describe how the modulation of enzymes involved in purine metabolism in tumour cells may affect the apoptotic programme. The enzymes discussed are: ectosolic and cytosolic 5'-nucleotidases, purine nucleoside phosphorylase, adenosine deaminase, hypoxanthine-guanine phosphoribosyltransferase, and inosine-5'-monophosphate dehydrogenase, as well as recently described enzymes particularly expressed in tumour cells, such as deoxynucleoside triphosphate triphosphohydrolase and 7,8-dihydro-8-oxoguanine triphosphatase.
Collapse
Affiliation(s)
- Marcella Camici
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy.
| | - Mercedes Garcia-Gil
- Dipartimento di Biologia, Unità di Fisiologia Generale, Via S. Zeno 31, 56127 Pisa, Italy
| | - Rossana Pesi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Simone Allegrini
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| | - Maria Grazia Tozzi
- Dipartimento di Biologia, Unità di Biochimica, Via S. Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
17
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
18
|
Yi Y, Liu Y, Wu W, Wu K, Zhang W. Reconstruction and analysis of circRNA‑miRNA‑mRNA network in the pathology of cervical cancer. Oncol Rep 2019; 41:2209-2225. [PMID: 30816541 PMCID: PMC6412533 DOI: 10.3892/or.2019.7028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
The present study was performed with the aim of understanding the mechanisms of pathogenesis and providing novel biomarkers for cervical cancer by constructing a regulatory circular (circ)RNA‑micro (mi)RNA‑mRNA network. Using an adjusted P-value of <0.05 and an absolute log value of fold-change >1, 16 and 156 miRNAs from GSE30656 and The Cancer Genome Atlas (TCGA), 5,321 mRNAs from GSE63514, 4,076 mRNAs from cervical squamous cell carcinoma and endocervical adenocarcinoma (from TCGA) and 75 circRNAs from GSE102686 were obtained. Using RNAhybrid, Venn and UpSetR plot, 12 circRNA‑miRNA pairs and 266 miRNA‑mRNA pairs were obtained. Once these pairs were combined, a circRNA‑miRNA‑mRNA network with 11 circRNA nodes, 4 miRNA nodes, 153 mRNA nodes and 203 edges was constructed. By constructing the protein‑protein interaction network using Molecular Complex Detection scores >5 and >5 nodes, 7 hubgenes (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) were identified. By mapping the 7 hubgenes into the preliminary circRNA‑miRNA‑mRNA network, a circRNA‑miRNA‑hubgenes network consisting of 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519), 2 mRNAs (hsa‑miR‑15b and hsa‑miR‑106b) and 7 mRNAs (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) was constructed. There were 22 circRNA‑miRNA‑mRNA regulatory axes identified in the subnetwork. By analyzing the overall survival for the 7 hubgenes using the Gene Expression Profiling Interactive Analysis tool, higher expression of RRM2 was demonstrated to be associated with a significantly poorer overall survival. PharmGkb analysis identified single nucleotide polymorphisms (SNPs) of rs5030743 and rs1130609 of RRM2, which can be treated with cladribine and cytarabine. RRM2 was also indicated to be involved in the gemcitabine pathway. The 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519) may function as competing endogenous RNAs and serve critical roles in cervical cancer. In addition, cytarabine may produce similar effects to gemcitabine and may be an optional chemotherapeutic drug for treating cervical cancer by targeting rs5030743 and rs1130609 or other similar SNPs. However, the specific mechanism of action should be confirmed by further study.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
19
|
[Clinical analysis of 24 patients of hairy cell leukemia treated by cladribine]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:491-495. [PMID: 30032567 PMCID: PMC7342921 DOI: 10.3760/cma.j.issn.0253-2727.2018.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: To investigate the curative effect of hairy cell leukemia by clatabine. Methods: The clinical data of 24 patients with hairy cell leukemia treated by cladribine from November 2006 to October 2017 were analyzed retrospectively, then the curative effect and adverse drug reaction were analyzed. Results: ① A total of 24 patients including 22 male and 2 female, and the median age was 49.5 years (range 33 to 76) at diagnosis. There were 20 patients with of splenomegaly (4 patients with mild splenomegaly, 4 moderate splenomegaly, and 12 massive splenomegaly), 3 patients with enlargement of lymph nodes, and 1 patients who had undergone splenectomy. Five patients were pancytopenia, 15 were cytopenia in 2 lineages, and 4 patients were cytopenia only in one lineage. The median ratio of HCL cells detected by flow cytometry in bone marrow was 21.79% (0.69%-68.96%). BRAF mutation was detected in 15 patients by first generation or next generation sequencing technology. ② Among 24 patients, 20 were treated with cladribine alone (one course in 19 patients, 2 courses in 1 patient), and 4 patients were treated with cladribine combined with rituximab (one course in 3 patients, 2 courses in 1 patient). Excepting 5 patients whose follow-up time was not reaching 6 months, 19 patients were evaluated for efficacy in 6-12 months after treatment: 9 patients obtained CR, 9 obtained unconfirmed CR (Cru), the other 1 obtained PR, the CR/CRu rate was 94.7%, the overall response rate (ORR) was 100.0%. ③ All the 24 patients appeared 2-4 grade hematological adverse reactions after cladribine treatment, which were mainly grade 3/4 neutropenia (66.67%) and grade 3/4 thrombocytopenia (29.2%). All the adverse reactions were controlled or recovered spontaneously. ④ After the median follow-up time of 15 (3-133) months, no progression, recurrence or death occurred in the patients. Both median OS and PFS were not reached. Conclusion: This study suggests that treatment of HCL with cladribine has high response rate, controllable adverse reactions and the good prognosis.
Collapse
|
20
|
Lee JW, Choi YM, Yang JY, Han SM, Kim BS, Nam SH. Fludarabine and Rituximab in Relapsed or Refractory Hairy Cell Leukmia Variant: A Case Report and Review of Literature. KOSIN MEDICAL JOURNAL 2018. [DOI: 10.7180/kmj.2018.33.3.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hairy cell leukemia (HCL) is a rare chronic B cell leukemia morphologically characterized by cells with an abundant cytoplasm and hair-like projections that can be found in the peripheral blood and bone marrow. The treatment for HCL is splenectomy or chemotherapy with the purine analogs pentostatin and cladribine. However, patients continue to relapse. Retreatment with the same or alternate purine analogs produces lower response rates and a shorter duration of response. Fludarabine is another purine analog widely used in treating indolent lymphoid cancers, often in combination with rituximab. Here, we report a case of HCL variant in a 60-year-old man who experienced multiple relapses after splenectomy and retreatment with cladribine. The patient was then treated with fludarabine and rituximab combination chemotherapy. After the treatment, he achieved complete remission that continued for 35 months.
Collapse
|
21
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
22
|
Cladribine in the remission induction of adult acute myeloid leukemia: where do we stand? Ann Hematol 2018; 98:561-579. [DOI: 10.1007/s00277-018-3562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
|
23
|
Tewari D, Rawat P, Singh PK. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 2018; 123:522-535. [PMID: 30471312 DOI: 10.1016/j.fct.2018.11.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Cancer, a life threatening disease adversely affects huge population worldwide. Naturally derived drug discovery has emerged as a potential pathway in search of anticancers. Natural products-based drugs are generally considered safe, compared to their synthetic counterparts. A systematic review on adverse drugs reactions (ADRs) of the anticancer natural products has not been performed till date. We reviewed anticancer drugs, derived from plants, microbes and marine sources with their mechanistic action and reported ADRs. PubMed, ScienceDirect and Scopus were searched through Boolean information retrieval method using keywords "natural products", "cancer", "herbal", "marine drugs" and "adverse drug reaction". We documented ADRs of natural products based anticancer agents, mechanisms of action and chemical structures. It was observed that majority of the natural products based anticancer drugs possess ample adverse effects, dominantly hematological toxicities, alopecia, neurotoxicity and cardiotoxicity. These findings deviate from the preconceived notion about safer nature of herbal drugs. We also came across some anti-cancer natural products with less/no reported adverse events like Cabazitaxel and Arglabin. Comprehensive pharmacovigilance studies are needed to report ADRs and thereby predicting safety of anti-cancer drugs, either originated from natural sources or chemically synthesized.
Collapse
Affiliation(s)
- Devesh Tewari
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pooja Rawat
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India
| | - Pawan Kumar Singh
- Value Addition Research and Development-Human Health, National Innovation Foundation-India, Autonomous Body of Department of Science and Technology, Govt. of India, Grambharti, Mahudi Road, Gandhinagar, 382650, Gujarat, India.
| |
Collapse
|
24
|
Coordinated Biosynthesis of the Purine Nucleoside Antibiotics Aristeromycin and Coformycin in Actinomycetes. Appl Environ Microbiol 2018; 84:AEM.01860-18. [PMID: 30217843 DOI: 10.1128/aem.01860-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 02/05/2023] Open
Abstract
Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.
Collapse
|
25
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
26
|
Alsuliman T, Lassoued K, Belghoul M, Debbache K, Choufi B. Durable Resolution of Severe Psoriasis in a Patient Treated with Pentostatin for Hairy Cell Leukemia: A Case Report. Dermatol Ther (Heidelb) 2017; 8:165-169. [PMID: 29196889 PMCID: PMC5825321 DOI: 10.1007/s13555-017-0216-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction Pentostatin (2′-deoxycoformycin) and cladribine (2-chlorodeoxyadenosine) are adenosine analogues widely used to treat lymphoid malignancies, mainly hairy cell leukemia (HCL). Oral or parenteral adenosine analogues have been also used as immunomodulatory agents in multiple sclerosis and in acute graft-versus-host disease. Case Report Here, we report the case of a 43-year-old patient with a history of extensive psoriasis who later developed HCL. Results The patient had achieved complete remission of both psoriasis and HCL after receiving intravenous infusions of pentostatin. It is worth noting that cladribine has already been reported to treat plaque psoriasis lesions in two patients with HCL and in a third patient with gastric marginal zone B cell lymphoma [1]. Conclusion We believe that adenosine analogues constitute a promising therapeutic option for moderate to severe psoriasis, especially for severe and refractory psoriasis, as well as for patients with adjacent lymphoid malignancies.
Collapse
Affiliation(s)
- Tamim Alsuliman
- Service d'Hématologie, Centre Hospitalier de Boulogne-Sur-Mer, Boulogne-Sur-Mer, France
- Service d'Hématologie, Centre Hospitalier Régionale Universitaire de Lille, Lille, France
| | - Kaiss Lassoued
- Service d'Hématologie, Centre Hospitalier de Boulogne-Sur-Mer, Boulogne-Sur-Mer, France
- Service de Génétique et d'Immunologie, Hôpital Sud, Centre Hospitalier et Universitaire d'Amiens, Amiens, France
| | | | - Karima Debbache
- Service d'Hématologie, Centre Hospitalier de Boulogne-Sur-Mer, Boulogne-Sur-Mer, France
| | - Bachra Choufi
- Service d'Hématologie, Centre Hospitalier de Boulogne-Sur-Mer, Boulogne-Sur-Mer, France.
| |
Collapse
|
27
|
Klee NS, McCarthy CG, Martinez-Quinones P, Webb RC. Out of the frying pan and into the fire: damage-associated molecular patterns and cardiovascular toxicity following cancer therapy. Ther Adv Cardiovasc Dis 2017; 11:297-317. [PMID: 28911261 PMCID: PMC5933669 DOI: 10.1177/1753944717729141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022] Open
Abstract
Cardio-oncology is a new and rapidly expanding field that merges cancer and cardiovascular disease. Cardiovascular disease is an omnipresent side effect of cancer therapy; in fact, it is the second leading cause of death in cancer survivors after recurrent cancer. It has been well documented that many cancer chemotherapeutic agents cause cardiovascular toxicity. Nonetheless, the underlying cause of cancer therapy-induced cardiovascular toxicity is largely unknown. In this review, we discuss the potential role of damage-associated molecular patterns (DAMPs) as an underlying contributor to cancer therapy-induced cardiovascular toxicity. With an increasing number of cancer patients, as well as extended life expectancy, understanding the mechanisms underlying cancer therapy-induced cardiovascular disease is of the utmost importance to ensure that cancer is the only disease burden that cancer survivors have to endure.
Collapse
Affiliation(s)
- Nicole S. Klee
- Department of Physiology, Medical College of Georgia at Augusta University, 1120 15 Street, Augusta, GA 30912, USA
| | - Cameron G. McCarthy
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Patricia Martinez-Quinones
- Departments of Physiology and Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
28
|
Jasinski L, Chylinska-Wrzos P, Lis-Sochocka M, Wawryk-Gawda E, Jodlowska-Jedrych B. A comparison of caspase 3 expression in the endocrine and exocrine parts of the pancreas after cladribine application according to the "leukemic" schema. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2017. [DOI: 10.1515/cipms-2017-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
The therapeutic effects of the immunosuppressive agent, cladribine, have been demonstrated by its toxicity to cells. However, its effects on healthy cells of the body is poorly understood. The aim of study was, hence, to, firstly, evaluate the morphology of the endocrine and exocrine pancreas after the administration of cladribine according to the "leukemic" schema, and, secondly, to assess its impact on the intensity of apoptosis. The experiment was carried out on female Wistar rats which were placed within the control group KA, and the experimental groups: A and A-bis. In the experimental groups, Cladribine was administered according to the cycle used to treat human hairy cell leukemia. In group A, the material was taken 24 hours after administration of the last dose of the drug, while in group A-bis, this was done after a 4 weeks break. The reaction was assessed to be average in 80% of all cells in group A, and in 64% of all acinar cells in group KA, while in group A-bis, the majority of the exocrine cells demonstrated a lack of immunohistochemical response (72%). Moreover, most endocrine cells (60%) in group A-bis revealed a strong reaction, while in Group A, the corresponding figure is a little over 34%. A comparison of the severity of the caspase 3 expression in both the exocrine and endocrine pancreas showed significant differentiation results between the group KA and group A-bis, and between group A and A-bis (p < 0.0001). In can be concluded that endocrine cells are more sensitive to cladribine than are exocrine cells.
Collapse
Affiliation(s)
- Ludwik Jasinski
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, Lublin , Poland
| | - Patrycja Chylinska-Wrzos
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, Lublin , Poland
| | - Marta Lis-Sochocka
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, Lublin , Poland
| | - Ewelina Wawryk-Gawda
- Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, Lublin , Poland
| | - Barbara Jodlowska-Jedrych
- Jodlowska-Jedrych Chair and Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, Lublin , Poland
| |
Collapse
|
29
|
Kost SE, Bouchard ED, LaBossière É, Ye X, Queau ML, Liang WS, Banerji V, Gibson SB, Katyal S, Johnston JB. Cross-resistance and synergy with bendamustine in chronic lymphocytic leukemia. Leuk Res 2016; 50:63-71. [DOI: 10.1016/j.leukres.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 10/21/2022]
|
30
|
Garza-Ledezma M, Tellez-Hinojosa C, González-López E, Gómez-Almaguer D. Hairy cell leukemia, an uncommon B-cell lymphoid neoplasia. MEDICINA UNIVERSITARIA 2016. [DOI: 10.1016/j.rmu.2015.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Accounting for the delay in the transition from acute to chronic pain: axonal and nuclear mechanisms. J Neurosci 2015; 35:495-507. [PMID: 25589745 DOI: 10.1523/jneurosci.5147-13.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute insults produce hyperalgesic priming, a neuroplastic change in nociceptors that markedly prolongs inflammatory mediator-induced hyperalgesia. After an acute initiating insult, there is a 72 h delay to the onset of priming, for which the underlying mechanism is unknown. We hypothesized that the delay is due to the time required for a signal to travel from the peripheral terminal to the cell body followed by a return signal to the peripheral terminal. We report that when an inducer of hyperalgesic priming (monocyte chemotactic protein 1) is administered at the spinal cord of Sprague Dawley rats, priming is detected at the peripheral terminal with a delay significantly shorter than when applied peripherally. Spinally induced priming is detected not only when prostaglandin E2 (PGE2) is presented to the peripheral nociceptor terminals, but also when it is presented intrathecally to the central terminals in the spinal cord. Furthermore, when an inducer of priming is administered in the paw, priming can be detected in spinal cord (as prolonged hyperalgesia induced by intrathecal PGE2), but only when the mechanical stimulus is presented to the paw on the side where the priming inducer was administered. Both spinally and peripherally induced priming is prevented by intrathecal oligodeoxynucleotide antisense to the nuclear transcription factor CREB mRNA. Finally, the inhibitor of protein translation reversed hyperalgesic priming only when injected at the site where PGE2 was administered, suggesting that the signal transmitted from the cell body to the peripheral terminal is not a newly translated protein, but possibly a newly expressed mRNA.
Collapse
|
32
|
Intrinsic apoptosis pathway in fallopian tube epithelial cells induced by cladribine. ScientificWorldJournal 2014; 2014:928036. [PMID: 25431797 PMCID: PMC4238275 DOI: 10.1155/2014/928036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022] Open
Abstract
Cladribine is a purine nucleoside analog which initiates the apoptotic mechanism within cells. Moreover, the available data confirms that cladribine, with the participation of the p53 protein, as well as the proapoptotic proteins from the Bcl-2 family, also induces the activation of the intrinsic apoptosis pathway. However, while there has been a lot of research devoted to the effect of cladribine on lymphatic system cells, little is known about the impact of cladribine on the reproductive system. The aim of our study was to evaluate apoptosis in oviduct epithelial cells sourced from 15 different female rats. In so doing, the sections were stained with caspases 3, 9, and 8. Results suggest that cladribine also induces apoptosis in the oviduct epithelial cells by way of the intrinsic pathway. Indeed, the discontinuing of the administration of cladribine leads to a reduction in the amount of apoptotic cells in the oviduct epithelium.
Collapse
|
33
|
Mello PDA, Filippi-Chiela EC, Nascimento J, Beckenkamp A, Santana DB, Kipper F, Casali EA, Nejar Bruno A, Paccez JD, Zerbini LF, Wink MR, Lenz G, Buffon A. Adenosine uptake is the major effector of extracellular ATP toxicity in human cervical cancer cells. Mol Biol Cell 2014; 25:2905-18. [PMID: 25103241 PMCID: PMC4230581 DOI: 10.1091/mbc.e14-01-0042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In cervical cancer, HPV infection and disruption of mechanisms involving cell growth, differentiation, and apoptosis are strictly linked with tumor progression and invasion. Tumor microenvironment is ATP and adenosine rich, suggesting a role for purinergic signaling in cancer cell growth and death. Here we investigate the effect of extracellular ATP on human cervical cancer cells. We find that extracellular ATP itself has a small cytotoxic effect, whereas adenosine formed from ATP degradation by ectonucleotidases is the main factor responsible for apoptosis induction. The level of P2 × 7 receptor seemed to define the main cytotoxic mechanism triggered by ATP, since ATP itself eliminated a small subpopulation of cells that express high P2 × 7 levels, probably through its activation. Corroborating these data, blockage or knockdown of P2 × 7 only slightly reduced ATP cytotoxicity. On the other hand, cell viability was almost totally recovered with dipyridamole, an adenosine transporter inhibitor. Moreover, ATP-induced apoptosis and signaling-p53 increase, AMPK activation, and PARP cleavage-as well as autophagy induction were also inhibited by dipyridamole. In addition, inhibition of adenosine conversion into AMP also blocked cell death, indicating that metabolization of intracellular adenosine originating from extracellular ATP is responsible for the main effects of the latter in human cervical cancer cells.
Collapse
Affiliation(s)
- Paola de Andrade Mello
- Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Jéssica Nascimento
- Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Aline Beckenkamp
- Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Danielle Bertodo Santana
- Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Franciele Kipper
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Emerson André Casali
- Department of Morphological Science and Department of Biochemistry, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90000-000, Brazil
| | - Alessandra Nejar Bruno
- Federal Institute of Education, Science and Technology, Porto Alegre, RS 90035-007, Brazil
| | - Juliano Domiraci Paccez
- International Center for Genetic Engineering and Biotechnology, Cancer Genomics Group, Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Center for Genetic Engineering and Biotechnology, Cancer Genomics Group, Cape Town 7925, South Africa
| | - Marcia Rosângela Wink
- Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Guido Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Andréia Buffon
- Laboratory of Biochemical and Cytological Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| |
Collapse
|
34
|
Grever MR, Blachly JS, Andritsos LA. Hairy cell leukemia: Update on molecular profiling and therapeutic advances. Blood Rev 2014; 28:197-203. [PMID: 25110197 DOI: 10.1016/j.blre.2014.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
Hairy cell leukemia was initially described as a clinicopathologic entity more than 50 years ago. We have subsequently discovered that HCL is really at least two diseases: classical HCL and the hairy cell leukemia variant. The former is among a small group of cancers exceptional for being (nearly) unified by a single genetic lesion, the BRAF V600E mutation. Over the past three decades, tremendous progress in both diagnostic and prognostic clarification has been accompanied by therapeutic advances in classical HCL. Consequently, this once uniformly fatal disease has been converted in most cases into a chronic illness enabling patients to live long and productive lives. In response to standard therapy, patients have high complete remission rates. Unfortunately, the long-term survival curves have not plateaued, revealing that this disease is controlled but not cured. Though rare and representing only about 10% of an already rare disease, those patients with the variant fare exceptionally poorly with standard therapy: complete response rates to purine nucleoside analogs are reported to be less than 50%, whereas the complete response rates in classical HCL are up to 90%. Novel small molecules targeting BRAF and the B-cell receptor signaling complex, and biologic agents like antibodies and immunotoxin conjugates are being explored for those patients who have relapsed. Substantial opportunities for continued research remain. This complex and multi-faceted disease incorporates challenges from altered immunity associated with the underlying disease and its treatments. Considering the rarity of this malignancy, optimization of patient management requires multi-institutional collaboration. The Hairy Cell Leukemia Foundation (www.hairycellleukemia.org) was formed to coordinate these efforts.
Collapse
Affiliation(s)
- Michael R Grever
- 395 W. 12th Ave, Room 392, Columbus, OH 43210, USA; Department of Internal Medicine, Division of Hematology at The Ohio State University, Columbus, OH, USA.
| | - James S Blachly
- 320 W. 10th Ave, 406C Starling Loving Hall, Columbus, OH 43210, USA; Department of Internal Medicine, Division of Hematology at The Ohio State University, Columbus, OH, USA.
| | - Leslie A Andritsos
- 320 W. 10th Ave, A352 Starling Loving Hall, Columbus, OH 43210, USA; Department of Internal Medicine, Division of Hematology at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Cortés A, Gracia E, Moreno E, Mallol J, Lluís C, Canela EI, Casadó V. Moonlighting Adenosine Deaminase: A Target Protein for Drug Development. Med Res Rev 2014; 35:85-125. [DOI: 10.1002/med.21324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Antoni Cortés
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Eduard Gracia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Carme Lluís
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Enric I. Canela
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Institute of Biomedicine of the University of Barcelona (IBUB); Department of Biochemistry and Molecular Biology; Faculty of Biology; University of Barcelona; Barcelona Spain
| |
Collapse
|
36
|
Jain P, Pemmaraju N, Ravandi F. Update on the biology and treatment options for hairy cell leukemia. Curr Treat Options Oncol 2014; 15:187-209. [PMID: 24652320 PMCID: PMC4198068 DOI: 10.1007/s11864-014-0285-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hairy cell leukemia (HCL) is an uncommon chronic leukemia of mature B cells. Leukemic B cells of HCL exhibit a characteristic morphology and immunophenotype and coexpress multiple clonally related immunoglobulin isotypes. Precise diagnosis and detailed workup is essential, because the clinical profile of HCL can closely mimic that of other chronic B-cell lymphoproliferative disorders that are treated differently. Variants of HCL, such as HCLv and VH4-34 molecular variant, vary in the immunophenotype and specific VH gene usage, and have been more resistant to available treatments. On the contrary, classic HCL is a highly curable disease. Most patients show an excellent long-term response to treatment with single-agent cladribine or pentostatin, with or without the addition of an anti-CD20 monoclonal antibody such as rituximab. However, approximately 30-40 % of patients with HCL relapse after therapy; this can be treated with the same purine analogue that was used for the initial treatment. Advanced molecular techniques have identified distinct molecular aberrations in the Raf/MEK-ERK pathway and BRAF (V600E) mutations that drive the proliferation and survival of HCL B cells. Currently, research in the field of HCL is focused on identifying novel therapeutic targets and potential agents that are safe and can universally cure the disease. Ongoing and planned clinical trials are assessing various treatment strategies, such as the combination of purine analogues and various anti-CD20 monoclonal antibodies, recombinant immunotoxins targeting CD22 (e.g., moxetumomab pasudotox), BRAF inhibitors, such as vemurafenib, and B-cell receptor signaling inhibitors, such as ibrutinib, which is a Bruton's tyrosine kinase inhibitor. This article provides an update of our current understanding of the pathophysiology of HCL and the treatment options available for patients with classic HCL. Discussion of variant forms of HCL is beyond the scope of this manuscript.
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
37
|
Wawryk-Gawda E, Chylińska-Wrzos P, Lis-Sochocka M, Chłapek K, Bulak K, Jędrych M, Jodłowska-Jędrych B. P53 protein in proliferation, repair and apoptosis of cells. PROTOPLASMA 2014; 251:525-33. [PMID: 24043441 PMCID: PMC3997830 DOI: 10.1007/s00709-013-0548-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/24/2013] [Indexed: 05/04/2023]
Abstract
The p53 protein is an important factor of many intra- and extracellular processes. This protein regulates the repair of cellular DNA and induces apoptosis. It is also responsible for the regulation of the senescence and the cell entering the subsequent stages of the cellular cycle. The protein p53 is also involved in inhibiting angiogenesis and the induction of oxidative shock. In our study, we examined the activity of p53 protein in the uterine epithelial cells in rats treated with cladribine. Its action is mainly based on apoptosis induction. We compared the activity of p53 protein in cells with a high apoptosis index and in cells with active repair mechanisms and high proliferation index. We observed stronger p53 protein expression in the epithelial cells of the materials taken 24 h after the last dose of 2-CdA associated with the active process of apoptosis and inhibition of proliferation. After 4 weeks from the last dose of cladribine, the stronger expression of p53 protein was associated with both the existing changes in the cell's genome, the effects of the ongoing repair mechanisms, as well as the high proliferation activity.
Collapse
Affiliation(s)
- Ewelina Wawryk-Gawda
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University in Lublin, ul. Radziwiłłowska 11, 20-080, Lublin, Poland,
| | | | | | | | | | | | | |
Collapse
|
38
|
Hairy cell leukemia: short review, today's recommendations and outlook. Blood Cancer J 2014; 4:e184. [PMID: 24531447 PMCID: PMC3944661 DOI: 10.1038/bcj.2014.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/23/2013] [Indexed: 02/08/2023] Open
Abstract
Hairy cell leukemia (HCL) is part of the low-grade non-Hodgkin lymphoma family and represents approximately 2% of all leukemias. Treatment with splenectomy and interferon-α historically belonged to the first steps of therapeutic options, achieving partial responses/remissions (PR) in most cases with a median survival between 4 and 6 years in the 1980s. The introduction of the purine analogs (PA) pentostatin and cladribine made HCL a well-treatable disease: overall complete response rates (CRR) range from 76 to 98%, with a median disease-free survival (DFS) of 16 years a normal lifespan can be reached and HCL-related deaths are rare. However, insufficient response to PA with poorer prognosis and relapse rates of 30–40% after 5–10 years of follow-up may require alternative strategies. Minimal residual disease can be detected by additional examinations of bone marrow specimens after treatment with PA. The use of immunotherapeutic monoclonal antibodies (mAB) like rituximab as a single agent or in combination with a PA or more recently clinical trials with recombinant immunotoxins (RIT) show promising results to restrict these problems. Recently, the identification of the possible disease-defining BRAF V600E mutation may allow the development of new therapeutic targets.
Collapse
|
39
|
Jędrych M, Wawryk-Gawda E, Jodłowska-Jędrych B, Chylińska-Wrzos P, Jasiński L. Immunohistochemical evaluation of cell proliferation and apoptosis markers in ovarian surface epithelial cells of cladribine-treated rats. PROTOPLASMA 2013; 250:1025-34. [PMID: 23344798 PMCID: PMC3788177 DOI: 10.1007/s00709-012-0461-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/02/2012] [Indexed: 05/21/2023]
Abstract
Cladribine has been used in the treatment of hairy cell leukemia for about 30 years. In addition, the number of indications for the application of 2-CdA is constantly increasing. The treatment with cladribine, of younger persons and even children, appears to be a major factor stimulating the more exact recognition of its activities. However, till now, little has been known about the impact of cladribine on the reproductive system. The aim of the study was to evaluate the immunohistochemical expression of cell proliferation and apoptosis markers in ovarian surface epithelial (OSE) cells. In our study, ten rats were placed into two equal groups. The study group received daily subcutaneous injections of cladribine in a dose of 0.10 mg/kg of weight/day for one cycle lasting 7 days. The control group received only saline injections. The rats were sacrificed 24 h after the last injection, and their ovaries were extracted. The sections were immunohistochemically stained with cell proliferation marker Ki-67 and the apoptosis marker caspase 3. The expressions of the markers were evaluated using a light microscope. An analysis was made using an image analysis system and the CellAD software. The results were then statistically explored by way of the Mann-Whitney U test. The proliferative index (Ki-67) of ovarian surface epithelial cells was significantly lower in the study group than in the control group (p < 0.05). These results suggest that cladribine treatment has a potential to inhibit the OSE cell proliferation in rats. The apoptosis marker demonstrated a significant increase after the cladribine treatment. These suggest that cladribine induces apoptosis in OSE cells.
Collapse
Affiliation(s)
- Marian Jędrych
- Department of Mathematics and Biostatistics, Medical University of Lublin, 20-090 Lublin ul. K. Jaczewskiego 4, Poland
| | - Ewelina Wawryk-Gawda
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Patrycja Chylińska-Wrzos
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080 Lublin, ul. Radziwiłłowska 11, Poland
| | - Ludwik Jasiński
- Internal Diseases Department, County Hospital in Sędziszów, 39-120 Sędziszów, ul. Wyspiańskiego 14, Poland
| |
Collapse
|
40
|
Nastoupil LJ, Sinha R, Flowers CR. The role of chemotherapy in managing chronic lymphocytic leukemia: optimizing combinations with targeted therapy. Expert Rev Anticancer Ther 2013; 13:1089-108. [PMID: 23919536 DOI: 10.1586/14737140.2013.818294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For many years, alkylating agents were the standard treatment for chronic lymphocytic leukemia (CLL). The advent of purine analogs improved response rates, but not overall survival, and although the monoclonal antibody rituximab is generally active against B-cell malignancies, it has demonstrated limited benefits as monotherapy for the treatment of CLL. However, specific combinations of chemotherapy, antibodies and targeted therapies have demonstrated additive or synergistic activity in CLL cells and deliver substantial clinical benefits. A greater understanding of the actions of chemotherapies and targeted agents on cellular pathways will advance the development of rationally designed combinations corresponding to individual patients' disease profiles.
Collapse
Affiliation(s)
- Loretta J Nastoupil
- Department of Hematology Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
41
|
Mitosek-Szewczyk K, Tabarkiewicz J, Wilczynska B, Lobejko K, Berbecki J, Nastaj M, Dworzanska E, Kolodziejczyk B, Stelmasiak Z, Rolinski J. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J Neurol Sci 2013; 332:35-40. [PMID: 23835090 DOI: 10.1016/j.jns.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/21/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. METHODS We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. RESULTS During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. CONCLUSIONS We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens.
Collapse
|
42
|
Komodziński K, Lepczyńska J, Ruszkowski P, Milecki J, Skalski B. Biological evaluation of an imidazole-fused 1,3,5-triazepinone nucleoside and its photochemical generation via a 6-azidopurine modified oligonucleotide. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Ma J, Wang S, Zhao M, Deng XS, Lee CK, Yu XD, Liu B. Therapeutic potential of cladribine in combination with STAT3 inhibitor against multiple myeloma. BMC Cancer 2011; 11:255. [PMID: 21679466 PMCID: PMC3141773 DOI: 10.1186/1471-2407-11-255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/16/2011] [Indexed: 12/14/2022] Open
Abstract
Background Cladribine or 2-chlorodeoxyadenosine (2-CDA) is a well-known purine nucleoside analog with particular activity against lymphoproliferative disorders, such as hairy cell leukemia (HCL). Its benefits in multiple myeloma (MM) remain unclear. Here we report the inhibitory effects of cladribine on MM cell lines (U266, RPMI8226, MM1.S), and its therapeutic potential in combination with a specific inhibitor of the signal transducer and activator of transcription 3 (STAT3). Methods MTS-based proliferation assays were used to determine cell viability in response to cladribine. Cell cycle progression was examined by flow cytometry analysis. Cells undergoing apoptosis were evaluated with Annexin V staining and a specific ELISA to quantitatively measure cytoplasmic histone-associated DNA fragments. Western blot analyses were performed to determine the protein expression levels and activation. Results Cladribine inhibited cell proliferation of MM cells in a dose-dependent manner, although the three MM cell lines exhibited a remarkably different responsiveness to cladribine. The IC50 of cladribine for U266, RPMI8226, or MM1.S cells was approximately 2.43, 0.75, or 0.18 μmol/L, respectively. Treatment with cladribine resulted in a significant G1 arrest in U266 and RPMI8226 cells, but only a minor increase in the G1 phase for MM1.S cells. Apoptosis assays with Annexin V-FITC/PI double staining indicated that cladribine induced apoptosis of U266 cells in a dose-dependent manner. Similar results were obtained with an apoptotic-ELISA showing that cladribine dramatically promoted MM1.S and RPMA8226 cells undergoing apoptosis. On the molecular level, cladribine induced PARP cleavage and activation of caspase-8 and caspase-3. Meanwhile, treatment with cladribine led to a remarkable reduction of the phosphorylated STAT3 (P-STAT3), but had little effect on STAT3 protein levels. The combinations of cladribine and a specific STAT3 inhibitor as compared to either agent alone significantly induced apoptosis in all three MM cell lines. Conclusions Cladribine exhibited inhibitory effects on MM cells in vitro. MM1.S is the only cell line showing significant response to the clinically achievable concentrations of cladribine-induced apoptosis and inactivation of STAT3. Our data suggest that MM patients with the features of MM1.S cells may particularly benefit from cladribine monotherapy, whereas cladribine in combination with STAT3 inhibitor exerts a broader therapeutic potential against MM.
Collapse
Affiliation(s)
- Jian Ma
- International Medical Centre of PLA General Hospital, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|