1
|
Wang X, Su Y, Li T, Yu G, Wang Y, Chen X, Yin C, Tang Z, Yi C, Xiao L, Niu J. Quetiapine promotes oligodendroglial process outgrowth and membrane expansion by orchestrating the effects of Olig1. Glia 2021; 69:1709-1722. [PMID: 33660902 DOI: 10.1002/glia.23986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Oligodendroglial lineage cells go through a series of morphological changes before myelination. Prior to myelination, cell processes and membrane structures enlarge by approximately 7,000 times, which is required to support axonal wrapping and myelin segment formation. Failure of these processes leads to maldevelopment and impaired myelination. Quetiapine, an atypical antipsychotic drug, was proved to promote oligodendroglial differentiation and (re)myelination, pending detailed effects and regulatory mechanism. In this study, we showed that quetiapine promotes morphological maturation of oligodendroglial lineage cells and myelin segment formation, and a short-term quetiapine treatment is sufficient to induce these changes. To uncover the underlying mechanism, we examined the effect of quetiapine on the Oligodendrocyte transcription factor 1 (Olig1). We found that quetiapine upregulates Olig1 expression level and promotes nuclear Olig1 translocation to the cytosol, where it functions not as a transcription modulator, but in a way that highly correlates with oligodendrocyte morphological transformation. In addition, quetiapine treatment reverses the negative regulatory effect of the Olig1-regulated G protein-coupled receptor 17 (GPR17) on oligodendroglial morphological maturation. Our results demonstrate that quetiapine enhances oligodendroglial differentiation and myelination by promoting cell morphological transformation. This would shed light on the orchestration of oligodendroglia developmental mechanisms, and provides new targets for further therapeutic research.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yixun Su
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Guangdan Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Yuxin Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenrui Yin
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Ziqin Tang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing, China
| |
Collapse
|
2
|
Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R. Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 2020:1-19. [DOI: 10.1080/10408363.2019.1699498] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Affiliation(s)
- Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farshad Niazpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Guo H, Du X, Zhang Y, Wu J, Wang C, Li M, Hua X, Zhang XA, Yan J. Specific miRNA-G Protein-Coupled Receptor Networks Regulate Sox9a/Sox9b Activities to Promote Gonadal Rejuvenation in Zebrafish. Stem Cells 2019; 37:1189-1199. [DOI: 10.1002/stem.3040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Huiping Guo
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
| | - Xinlu Du
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
| | - Ying Zhang
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
| | - Jiacheng Wu
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
| | - Chenghui Wang
- Department of Aquaculture; Shanghai Ocean University; Lingang New City, Shanghai People's Republic of China
| | - Mingyou Li
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources; Ministry of Education; Shanghai People's Republic of China
| | - Xianxin Hua
- Department of Cancer Biology; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania USA
| | - Xin A. Zhang
- Stephenson Cancer Center and Department of Physiology; The University of Oklahoma Health Sciences Center; Oklahoma City Oklahoma USA
| | - Jizhou Yan
- Department of Developmental Biology; Institute for Marine Biosystem and Neurosciences; People's Republic of China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources; Ministry of Education; Shanghai People's Republic of China
| |
Collapse
|
4
|
Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Sci Rep 2016; 6:37944. [PMID: 27897220 PMCID: PMC5126587 DOI: 10.1038/srep37944] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Short chain fatty acids (SCFAs) produced by intestinal microbes mediate anti-inflammatory effects, but whether they impact on antimicrobial host defenses remains largely unknown. This is of particular concern in light of the attractiveness of developing SCFA-mediated therapies and considering that SCFAs work as inhibitors of histone deacetylases which are known to interfere with host defenses. Here we show that propionate, one of the main SCFAs, dampens the response of innate immune cells to microbial stimulation, inhibiting cytokine and NO production by mouse or human monocytes/macrophages, splenocytes, whole blood and, less efficiently, dendritic cells. In proof of concept studies, propionate neither improved nor worsened morbidity and mortality parameters in models of endotoxemia and infections induced by gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae), gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and Candida albicans. Moreover, propionate did not impair the efficacy of passive immunization and natural immunization. Therefore, propionate has no significant impact on host susceptibility to infections and the establishment of protective anti-bacterial responses. These data support the safety of propionate-based therapies, either via direct supplementation or via the diet/microbiota, to treat non-infectious inflammation-related disorders, without increasing the risk of infection.
Collapse
|
5
|
Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative Stress and Human Hypertension: Vascular Mechanisms, Biomarkers, and Novel Therapies. Can J Cardiol 2015; 31:631-41. [DOI: 10.1016/j.cjca.2015.02.008] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2015] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 02/07/2023] Open
|
6
|
Telford BJ, Chen A, Beetham H, Frick J, Brew TP, Gould CM, Single A, Godwin T, Simpson KJ, Guilford P. Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin–Deficient Cells. Mol Cancer Ther 2015; 14:1213-23. [DOI: 10.1158/1535-7163.mct-14-1092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
|