1
|
Lee G, Jhang YJ, Jhang YT, Chang YC, Chang HW, Chuang CY, Chuang YK, Lin CW, Hsiao IL. Artificial digestion represents the worst-case scenario for studying nanoplastic fate in gastrointestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136809. [PMID: 39673946 DOI: 10.1016/j.jhazmat.2024.136809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans may inevitably be exposed to nanoplastics (NPls) through ingestion. The size of NPls significantly influences their absorption efficiency, so understanding behaviors of NPls during digestion is vital for risk assessment. In this study, fluorescent polystyrene (PS) and melamine-formaldehyde resin (MF) NPls were characterized by different techniques after the in vitro digestion process both with and without a standard food model, or with and without pH adjustment in the absence of the proteins. Results derived from the in vitro method were compared to those using human and porcine digestive fluids. In summary, different types/charges of NPls caused distinct agglomeration states during the digestion procedure, and the pH and protein corona affected the agglomeration state of smaller PS particles more obviously than they did the other tested particles. The presence of a food matrix did not significantly change the particle size, while the protein corona composition was largely altered. Compared to real digestive fluids, size trends observed for NPls were consistent with those in artificial ones, while they were mostly underestimated, which for the first time, proves that the in vitro digestion can be regarded as a conservative model for predicting aggregation of NPls in gastrointestinal tract.
Collapse
Affiliation(s)
- Giselle Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Jhu Jhang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Tung Jhang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Kun Chuang
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Wei Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - I-Lun Hsiao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Stanco D, Lipsa D, Bogni A, Bremer-Hoffmann S, Clerbaux LA. An Adverse Outcome Pathway for food nanomaterial-induced intestinal barrier disruption. FRONTIERS IN TOXICOLOGY 2024; 6:1474397. [PMID: 39776762 PMCID: PMC11703861 DOI: 10.3389/ftox.2024.1474397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector. Methods In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes. We then extracted the current evidence from the literature for a targeted selection of NMs with high relevance to the food sector, namely, ZnO, CuO, FeO, SiO2, and Ag NMs and nanocellulose. Results We propose a new AOP (AOP 530) that starts with endocytic lysosomal uptake, leading to lysosomal disruption inducing mitochondrial dysfunction. Mitochondrial impairments can lead to cell injury/death and disrupt the intestinal barrier. The evidence collected supports that these food-related NMs can be taken up by intestinal cells and indicates that intestinal barrier disruption may occur due to Ag, CuO, and SiO2 NMs, while only few studies support this outcome for FeO and ZnO. Lysosomal disruption and mitochondrial dysfunction are rarely evaluated. For nanocellulose, none of the studies report toxicity-related events. Conclusion The collection of existing scientific evidence supporting our AOP linking NM uptake to intestinal barrier impairments allowed us to highlight current evidence gaps and data inconsistencies. These inconsistencies could be associated with the variety of stressors, biological systems, and key event (KE)-related assays used in different studies. This underscores the need for further harmonized methodologies and the production of mechanistic evidence for the safety regulatory assessment of NMs in the food sector.
Collapse
Affiliation(s)
- Deborah Stanco
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Alessia Bogni
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Laure-Alix Clerbaux
- Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Selmani A, Matijaković Mlinarić N, Falsone SF, Vidaković I, Leitinger G, Delač I, Radatović B, Nemet I, Rončević S, Bernkop-Schnürch A, Vuletić T, Kornmueller K, Roblegg E, Prassl R. Simulated Gastrointestinal Fluids Impact the Stability of Polymer-Functionalized Selenium Nanoparticles: Physicochemical Aspects. Int J Nanomedicine 2024; 19:13485-13505. [PMID: 39717514 PMCID: PMC11663997 DOI: 10.2147/ijn.s483253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/10/2024] [Indexed: 12/25/2024] Open
Abstract
Background Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency. Purpose The primary objective of this study was to evaluate the impact of the main gastrointestinal proteins on the physicochemical properties and stability of polymer-coated SeNPs. Methods SeNPs functionalized with thiolated chitosan or hyaluronic acid were characterized based on their composition, morphology, size, and zeta potential. The stability of these particles was evaluated in simulated gastric and intestinal fluids. Additionally, the interaction propensity between major gastric proteins, such as pepsin and pancreatin, and functionalized SeNPs was investigated with FTIR, fluorescence quenching titrations, and in situ adsorption measurements. Results The composition of the media, including pH and ionic strength, the chemistry of polymers, and the presence of the proteins, influence the size and zeta potential of the SeNPs. The increase in NP size due to the formation of large agglomerates, along with the decrease in zeta potential magnitude, confirmed the formation of a protein corona. Both pepsin and pancreatin showed a strong affinity to the particle surface. Based on the values of the apparent equilibrium dissociation constant this affinity was more pronounced for positively charged thiolated chitosan coated SeNPs compared to those coated with negatively charged hyaluronic acid. The polymer coated SeNPs displayed antioxidative potential, which could be very beneficial for health conditions associated with Se-deficiency. Conclusion This study highlights the importance of exploring the characteristics of polymer-functionalized SeNPs under gastrointestinal conditions. Such investigations are important for developing nutritional supplements that can gradually release Se from SeNPs, thereby improving selenium absorption, bioavailability, and safety.
Collapse
Affiliation(s)
- Atiđa Selmani
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, 8010, Austria
| | - Nives Matijaković Mlinarić
- Laboratory for Precipitation Processes, Division of Material Chemistry, Institute Ruđer Bošković, Zagreb, Croatia
| | - Salvatore Fabio Falsone
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, 8010, Austria
| | - Ivan Vidaković
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria
| | - Ida Delač
- Center for Advanced Laser Techniques, Institute of Physics, Zagreb, 10000, Croatia
| | - Borna Radatović
- Center for Advanced Laser Techniques, Institute of Physics, Zagreb, 10000, Croatia
| | - Ivan Nemet
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
| | - Sanda Rončević
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, 6020, Austria
| | - Tomislav Vuletić
- Center for Advanced Laser Techniques, Institute of Physics, Zagreb, 10000, Croatia
| | - Karin Kornmueller
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz, 8010, Austria
| | - Ruth Prassl
- Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria
| |
Collapse
|
4
|
Furxhi I, Perucca M, Koivisto AJ, Bengalli R, Mantecca P, Nicosia A, Burrueco-Subirà D, Vázquez-Campos S, Lahive E, Blosi M, de Ipiña JL, Oliveira J, Carriere M, Vineis C, Costa A. A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project. Comput Struct Biotechnol J 2024; 25:127-142. [PMID: 39040658 PMCID: PMC11262112 DOI: 10.1016/j.csbj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU's Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work's scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Massimo Perucca
- Project HUB360, C.so Laghi 22, 10051 Avigliana, Turin, Italy
| | - Antti Joonas Koivisto
- APM Air Pollution Management, Mattilanmäki 38, FI-33610 Tampere, Finland
- INAR Institute for Atmospheric and Earth System Research, University of Helsinki, PL 64, UHEL, FI-00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, Wondelgem B-9032, Belgium
| | - Rossella Bengalli
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Alessia Nicosia
- CNR-ISAC Institute of Atmospheric Sciences and Climate, Via Gobetti 101, 40129 Bologna, Italy
| | | | | | - Elma Lahive
- Centre for Ecology & Hydrology (UKCEH), England, United Kingdom
| | - Magda Blosi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA Research and Innovation - Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Juliana Oliveira
- CeNTI - Centre of Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Marie Carriere
- CEA, CNRS, Univ. Grenoble Alpes, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Claudia Vineis
- CNR-STIIMA Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Italy
| | - Anna Costa
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| |
Collapse
|
5
|
Sun Y, Zhou Y, Rehman M, Wang YF, Guo S. Protein Corona of Nanoparticles: Isolation and Analysis. CHEM & BIO ENGINEERING 2024; 1:757-772. [PMID: 39974182 PMCID: PMC11792916 DOI: 10.1021/cbe.4c00105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 02/21/2025]
Abstract
Nanoparticles entering biological systems or fluids inevitably adsorb biomolecules, such as protein, on their surfaces, forming a protein corona. Ensuing, the protein corona endows nanoparticles with a new biological identity and impacts the interaction between the nanoparticles and biological systems. Hence, the development of reliable techniques for protein corona isolation and analysis is key for understanding the biological behaviors of nanoparticles. First, this review systematically outlines the approach for isolating the protein corona, including centrifugation, magnetic separation, size exclusion chromatography, flow-field-flow fractionation, and other emerging methods. Next, we review the qualitative and quantitative characterization methods of the protein corona. Finally, we underscore the necessary steps to advance the efficiency and fidelity of protein corona isolation and characterization on nanoparticle surfaces. We anticipate that these insights into protein corona isolation and characterization methodologies will profoundly influence the development of technologies aimed at elucidating bionano interactions and the role of protein corona in various biomedical applications.
Collapse
Affiliation(s)
- Yinuo Sun
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxin Zhou
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mubashar Rehman
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yi-Feng Wang
- School
of Biomedical Engineering and Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Shutao Guo
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
State Key Laboratory of Medicinal Chemical Biology, Frontiers Science
Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Hayder M, van Wezel AP, Gruter GJM, Astefanei A. What if you eat nanoplastics? Simulating nanoplastics fate during gastrointestinal digestion. CHEMOSPHERE 2024; 365:143277. [PMID: 39260594 DOI: 10.1016/j.chemosphere.2024.143277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Despite our growing awareness of micro-and nanoplastics presence in food and beverages, the fate of nanoplastics (NPs) in the human gastrointestinal tract (GIT) remains poorly investigated. Changes of nanoplastics size upon digestive conditions influence the potential of absorption through the intestine. In this study, polymer nanoparticles with different physicochemical properties (size, surface and chemistry) were submitted to gastrointestinal digestion (GID) simulated in vitro. Their agglomeration behaviour was measured with a unique set of analytical approaches, allowing to study NPs' interactions with the digestive enzymes. Smaller NPs agglomerated more, narrowing the overall particle size distribution of smaller and larger NPs. NPs of different polymers exhibited heteroagglomeration. Digestive enzymes interact with the NPs, forming large but fragile agglomerates. In presence of the enzymes, even acid-functionalized NPs, typically stable in harsh conditions, agglomerated similarly to the non-functionalized PS NPs. These results highlight the role of the GID in increasing the effective size of ingested NPs, potentially reducing their ability to pass through the cell membranes. Our findings address a critical knowledge gap in nanoplastics oral uptake potential, providing a solid technical foundation for their characterization.
Collapse
Affiliation(s)
- Maria Hayder
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| | - Gert-Jan M Gruter
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands; Avantium Support BV, Zekeringstraat 29, 1014BV, Amsterdam, the Netherlands.
| | - Alina Astefanei
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024; 36:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
8
|
Sieg H, Schaar C, Fouquet N, Böhmert L, Thünemann AF, Braeuning A. Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells. Toxicol In Vitro 2024; 96:105772. [PMID: 38199585 DOI: 10.1016/j.tiv.2024.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded.
Collapse
Affiliation(s)
- Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Caroline Schaar
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Nicole Fouquet
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Andreas F Thünemann
- German Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
9
|
Paul MB, Böhmert L, Thünemann AF, Loeschner K, Givelet L, Fahrenson C, Braeuning A, Sieg H. Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics. Food Chem Toxicol 2024; 184:114423. [PMID: 38158035 DOI: 10.1016/j.fct.2023.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles.
Collapse
Affiliation(s)
- Maxi B Paul
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Andreas F Thünemann
- Federal Institute for Materials Research and Testing (BAM), Division Synthesis and Scattering of Nanostructured Materials, Unter Den Eichen 87, 12205, Berlin, Germany.
| | - Katrin Loeschner
- Technical University of Denmark, Research Group for Analytical Food Chemistry, Kemitorvet 201, 2800, Kgs. Lyngby, Denmark.
| | - Lucas Givelet
- Technical University of Denmark, Research Group for Analytical Food Chemistry, Kemitorvet 201, 2800, Kgs. Lyngby, Denmark.
| | - Christoph Fahrenson
- Technical University of Berlin, Center for Electron Microscopy (ZELMI), Straße des 17. Juni 135, 10623, Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
10
|
Qi M, Wang X, Chen J, Liu Y, Liu Y, Jia J, Li L, Yue T, Gao L, Yan B, Zhao B, Xu M. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS NANO 2023; 17:8851-8865. [PMID: 37145866 DOI: 10.1021/acsnano.3c00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".
Collapse
Affiliation(s)
- Mengying Qi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Lee Y, Cho S, Park K, Kim T, Kim J, Ryu DY, Hong J. Potential lifetime effects caused by cellular uptake of nanoplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121668. [PMID: 37087090 DOI: 10.1016/j.envpol.2023.121668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du-Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Furxhi I, Bengalli R, Motta G, Mantecca P, Kose O, Carriere M, Haq EU, O’Mahony C, Blosi M, Gardini D, Costa A. Data-Driven Quantitative Intrinsic Hazard Criteria for Nanoproduct Development in a Safe-by-Design Paradigm: A Case Study of Silver Nanoforms. ACS APPLIED NANO MATERIALS 2023; 6:3948-3962. [PMID: 36938492 PMCID: PMC10012170 DOI: 10.1021/acsanm.3c00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The current European (EU) policies, that is, the Green Deal, envisage safe and sustainable practices for chemicals, which include nanoforms (NFs), at the earliest stages of innovation. A theoretically safe and sustainable by design (SSbD) framework has been established from EU collaborative efforts toward the definition of quantitative criteria in each SSbD dimension, namely, the human and environmental safety dimension and the environmental, social, and economic sustainability dimensions. In this study, we target the safety dimension, and we demonstrate the journey toward quantitative intrinsic hazard criteria derived from findable, accessible, interoperable, and reusable data. Data were curated and merged for the development of new approach methodologies, that is, quantitative structure-activity relationship models based on regression and classification machine learning algorithms, with the intent to predict a hazard class. The models utilize system (i.e., hydrodynamic size and polydispersity index) and non-system (i.e., elemental composition and core size)-dependent nanoscale features in combination with biological in vitro attributes and experimental conditions for various silver NFs, functional antimicrobial textiles, and cosmetics applications. In a second step, interpretable rules (criteria) followed by a certainty factor were obtained by exploiting a Bayesian network structure crafted by expert reasoning. The probabilistic model shows a predictive capability of ≈78% (average accuracy across all hazard classes). In this work, we show how we shifted from the conceptualization of the SSbD framework toward the realistic implementation with pragmatic instances. This study reveals (i) quantitative intrinsic hazard criteria to be considered in the safety aspects during synthesis stage, (ii) the challenges within, and (iii) the future directions for the generation and distillation of such criteria that can feed SSbD paradigms. Specifically, the criteria can guide material engineers to synthesize NFs that are inherently safer from alternative nanoformulations, at the earliest stages of innovation, while the models enable a fast and cost-efficient in silico toxicological screening of previously synthesized and hypothetical scenarios of yet-to-be synthesized NFs.
Collapse
Affiliation(s)
- Irini Furxhi
- Transgero
Ltd, Limerick V42V384, Ireland
- Department
of Accounting and Finance, Kemmy Business School, University of Limerick, Limerick V94T9PX, Ireland
| | - Rossella Bengalli
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Giulia Motta
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Paride Mantecca
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Ozge Kose
- Univ.
Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Marie Carriere
- Univ.
Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Ehtsham Ul Haq
- Department
of Physics, and Bernal Institute, University
of Limerick, Limerick V94TC9PX, Ireland
| | - Charlie O’Mahony
- Department
of Physics, and Bernal Institute, University
of Limerick, Limerick V94TC9PX, Ireland
| | - Magda Blosi
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| | - Davide Gardini
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| | - Anna Costa
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| |
Collapse
|
13
|
Borowska M, Jiménez-Lamana J, Bierla K, Jankowski K, Szpunar J. A green and fast microwave-assisted synthesis of selenium nanoparticles and their characterization under gastrointestinal conditions using mass spectrometry. Food Chem 2023; 417:135864. [PMID: 36924715 DOI: 10.1016/j.foodchem.2023.135864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
We present a novel microwave-assisted green synthesis of selenium nanoparticles (SeNPs) using yeast extract as source of a non-toxic reducing and capping agents. Effects of synthesis and gastrointestinal digestion conditions on the biogenic Se particle size distribution and number concentration using SP ICP MS were evaluated. The median equivalent diameter of SeNPs varied depending on the synthesis conditions. Upon incubation in simulated gastric juice, the increase of SeNPs size was observed, whereas after simulated intestinal juice addition, their size came back close to the initial value. The biomolecules contained in yeast extract, which play predominant role in the synthesis of SeNPs, were identified by non-targeted qualitative analysis using LC Orbitrap ESI MS. The use of the state-of-the-art MS techniques allowed both the comprehensive assessment of the processes leading to the SeNPs formation and the evaluation of their behavior under gastrointestinal conditions which is of utmost importance for their use as a novel selenium source.
Collapse
Affiliation(s)
- Magdalena Borowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland.
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| | - Krzysztof Jankowski
- Warsaw University of Technology, Faculty of Chemistry, Chair of Analytical Chemistry, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, Pau, France
| |
Collapse
|
14
|
Ortega F, Minnaard J, Arce V, García M. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Kose O, Béal D, Motellier S, Pelissier N, Collin-Faure V, Blosi M, Bengalli R, Costa A, Furxhi I, Mantecca P, Carriere M. Physicochemical Transformations of Silver Nanoparticles in the Oro-Gastrointestinal Tract Mildly Affect Their Toxicity to Intestinal Cells In Vitro: An AOP-Oriented Testing Approach. TOXICS 2023; 11:199. [PMID: 36976964 PMCID: PMC10056345 DOI: 10.3390/toxics11030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) in food and consumer products suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract. The aim of this study was to investigate the toxicity of Ag NPs in a human intestinal cell line, either uncoated or coated with polyvinylpyrrolidone (Ag PVP) or hydroxyethylcellulose (Ag HEC) and digested in simulated gastrointestinal fluids. Physicochemical transformations of Ag NPs during the different stages of in vitro digestion were identified prior to toxicity assessment. The strategy for evaluating toxicity was constructed on the basis of adverse outcome pathways (AOPs) showing Ag NPs as stressors. It consisted of assessing Ag NP cytotoxicity, oxidative stress, genotoxicity, perturbation of the cell cycle and apoptosis. Ag NPs caused a concentration-dependent loss of cell viability and increased the intracellular level of reactive oxygen species as well as DNA damage and perturbation of the cell cycle. In vitro digestion of Ag NPs did not significantly modulate their toxicological impact, except for their genotoxicity. Taken together, these results indicate the potential toxicity of ingested Ag NPs, which varied depending on their coating but did not differ from that of non-digested NPs.
Collapse
Affiliation(s)
- Ozge Kose
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - David Béal
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| | - Sylvie Motellier
- Univ. Grenoble-Alpes, Lab Measure Securing & Environm, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Nathalie Pelissier
- Univ. Grenoble-Alpes, Lab of Advanced Characterization for Energy, LITEN, DTNM, STDC, CEA, 17 Av Martyrs, 38000 Grenoble, France
| | - Véronique Collin-Faure
- Univ. Grenoble-Alpes, CEA, CNRS UMR5249, IRIG DIESE CBM, Chem & Biol Met, 38054 Grenoble, France
| | - Magda Blosi
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Rossella Bengalli
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Irini Furxhi
- Transgero Ltd., Newcastle West, V42 V384 Limerick, Ireland
| | - Paride Mantecca
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, CIBEST, 38000 Grenoble, France
| |
Collapse
|
16
|
Hu W, Wang C, Gao D, Liang Q. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J Appl Toxicol 2023; 43:32-46. [PMID: 35289422 DOI: 10.1002/jat.4320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
The development of nanotechnology is becoming a major trend nowadays. Nanoparticles (NPs) have been widely used in fields including food, biomedicine, and cosmetics, endowing NPs more opportunities to enter the human body. It is well-known that the gut microbiome plays a key role in human health, and the exposure of intestines to NPs is unavoidable. Accordingly, the toxicity of NPs has attracted more attention than before. This review mainly highlights recent advances in the evaluation of NPs' toxicity in the gastrointestinal system from the existing cell-based experimental models, such as the original mono-culture models, co-culture models, three-dimensional (3D) culture models, and the models established on microfluidic chips, to those in vivo experiments, such as mice models, Caenorhabditis elegans models, zebrafish models, human volunteers, as well as computer-simulated toxicity models. Owing to these models, especially those more biomimetic models, the outcome of the toxicity of NPs acting in the gastrointestinal tract can get results closer to what happened inside the real human microenvironment.
Collapse
Affiliation(s)
- Wanting Hu
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Chenlong Wang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Εkonomou SΙ, Soe S, Stratakos AC. An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. J Mech Behav Biomed Mater 2023; 137:105536. [PMID: 36327651 DOI: 10.1016/j.jmbbm.2022.105536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus was evaluated. Furthermore, the mechanical characteristics, including surface topology and morphology, tensile test of specimens manufactured in three different orientations (XY, XZ, and ZX), water absorption capacity, and surface wettability were also assessed. The results showed that both Cu and Ag-loaded 3D printed surfaces displayed a higher inhibitory effect against S. aureus and L. monocytogenes biofilms compared to S. Typhimurium and E. coli biofilms. The results of SEM analysis revealed a low void fraction for the TPU and no voids for the PLA samples achieved through optimization and the small height (0.1 mm) of the printed layers. The best performing specimen in terms of its tensile was XY, followed by ZX and XZ orientation, while it indicated that Cu and Ag-loaded material had a slightly stiffer response than plain PLA. Additionally, Cu and Ag-loaded 3D printed surfaces revealed the highest hydrophobicity compared to the plain polymers making them excellent candidates for biomedical and food production settings to prevent initial bacterial colonization. The approach taken in the current study offers new insights for developing antimicrobial 3D printed surfaces and equipment to enable their application towards the inhibition of the most common nosocomial and foodborne pathogens and reduce the risk of cross-contamination and disease outbreaks.
Collapse
Affiliation(s)
- Sotiriοs Ι Εkonomou
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK
| | - Shwe Soe
- College of Arts, Technology and Environment, School of Engineering, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK
| | - Alexandros Ch Stratakos
- College of Health, Science and Society, School of Applied Sciences, University of the West of England, Coldharbour Ln, Bristol, BS16 1QY, UK.
| |
Collapse
|
18
|
Cebadero-Domínguez Ó, Jos A, Cameán AM, Cătunescu GM. Hazard characterization of graphene nanomaterials in the frame of their food risk assessment: A review. Food Chem Toxicol 2022; 164:113014. [PMID: 35430331 DOI: 10.1016/j.fct.2022.113014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Different applications have been suggested for graphene nanomaterials (GFNs) in the food and feed chain. However, it is necessary to perform a risk assessment before they become market-ready, and when consumer exposure is demonstrated. For this purpose, the European Food Safety Authority (EFSA) has published a guidance that has been recently updated. In this sense, the aim of this study is to identify and characterise toxicological hazards related to GFNs after oral exposure. Thus, existing scientific literature in relation to in vitro degradation studies, in vitro and in vivo genotoxicity, toxicokinetics data, in vivo oral studies, and other in-depth studies such as effects on the microbiome has been revised. The obtained results showed that the investigations performed up to now did not follow internationally agreed-upon test guidelines. Moreover, GFNs seemed to resist gastrointestinal digestion and were able to be absorbed, distributed, and excreted, inducing toxic effects at different levels, including genotoxicity. Also, dose has an important role as it has been reported that low doses are more toxic than high doses because GFNs tend to aggregate in the digestive system, changing the internal exposure scenario. Thus, further studies including a thorough toxicological evaluation are required to protect consumer's safety.
Collapse
Affiliation(s)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain
| | - Giorgiana M Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. TOXICS 2022; 10:toxics10030130. [PMID: 35324755 PMCID: PMC8955801 DOI: 10.3390/toxics10030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are increasingly used in consumer-related products, which may result in increased oral ingestion. Digestion of particles can change their physicochemical properties and toxicity. Therefore, our aim was to simulate the gastrointestinal tract using a static in vitro digestion model. Toxic properties of digested and undigested CuO-NP were compared using an epithelial mono-culture (Caco-2) and a mucus-secreting co-culture model (Caco-2/HT29-MTX). Effects on intestinal barrier integrity, permeability, cell viability and apoptosis were analyzed. CuO-NP concentrations of 1, 10 and 100 µg mL−1 were used. Particle characterization by dynamic light scattering and transmission electron microscopy showed similar mean particle sizes before and after digestion, resulting in comparable delivered particle doses in vitro. Only slight effects on barrier integrity and cell viability were detected for 100 µg mL−1 CuO-NP, while the ion control CuCl2 always caused significantly higher adverse effects. The utilized cell models were not significantly different. In summary, undigested and digested CuO-NP show comparable effects on the mono-/co-cultures, which are weaker than those of copper ions. Only in the highest concentration, CuO-NP showed weak effects on barrier integrity and cell viability. Nevertheless, a slightly increased apoptosis rate indicates existing cellular stress, which gives reason for further investigations.
Collapse
|
20
|
Martín-Hernández MDC, Burnand D, Jud C, Portmann R, Egger L. Interaction of magnetic silica nanoparticles with food proteins during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Carnovale C, Guarnieri D, Di Cristo L, De Angelis I, Veronesi G, Scarpellini A, Malvindi MA, Barone F, Pompa PP, Sabella S. Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. NANOMATERIALS 2021; 11:nano11061587. [PMID: 34204296 PMCID: PMC8233905 DOI: 10.3390/nano11061587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022]
Abstract
Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.
Collapse
Affiliation(s)
- Catherine Carnovale
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | | | - Giulia Veronesi
- Laboratory of Chemistry and Biology of Metals (CBM), University Grenoble Alpes/CNRS/CEA, 38000 Grenoble, France;
- ESRF, the European Synchrotron, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | | | - Flavia Barone
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (I.D.A.); (F.B.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
- Correspondence:
| |
Collapse
|
22
|
Recordati C, De Maglie M, Cella C, Argentiere S, Paltrinieri S, Bianchessi S, Losa M, Fiordaliso F, Corbelli A, Milite G, Aureli F, D’Amato M, Raggi A, Cubadda F, Soldati S, Lenardi C, Scanziani E. Repeated oral administration of low doses of silver in mice: tissue distribution and effects on central nervous system. Part Fibre Toxicol 2021; 18:23. [PMID: 34134756 PMCID: PMC8207582 DOI: 10.1186/s12989-021-00418-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. RESULTS There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgAc-treated mice at the EoT. CONCLUSIONS Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.
Collapse
Affiliation(s)
- Camilla Recordati
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy
- Fondazione Unimi, 20139 Milan, Italy
| | - Marcella De Maglie
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy
- Fondazione Unimi, 20139 Milan, Italy
| | - Claudia Cella
- Fondazione Unimi, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Simona Argentiere
- Fondazione Unimi, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
| | - Saverio Paltrinieri
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy
| | | | | | - Fabio Fiordaliso
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alessandro Corbelli
- Unit of Bio-imaging, Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | | | - Federica Aureli
- Istituto Superiore di Sanità - National Institute of Health, 00161 Rome, Italy
| | - Marilena D’Amato
- Istituto Superiore di Sanità - National Institute of Health, 00161 Rome, Italy
| | - Andrea Raggi
- Istituto Superiore di Sanità - National Institute of Health, 00161 Rome, Italy
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, 00161 Rome, Italy
| | | | - Cristina Lenardi
- Fondazione Unimi, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
- Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA), Università degli Studi di Milano, 20133 Milan, Italy
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy
- Fondazione Unimi, 20139 Milan, Italy
| |
Collapse
|
23
|
Voss L, Hoché E, Stock V, Böhmert L, Braeuning A, Thünemann AF, Sieg H. Intestinal and hepatic effects of iron oxide nanoparticles. Arch Toxicol 2021; 95:895-905. [PMID: 33554279 PMCID: PMC7904561 DOI: 10.1007/s00204-020-02960-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the need for case-by-case assessment of iron oxide nanoparticles.
Collapse
Affiliation(s)
- Linn Voss
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Elisa Hoché
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Valerie Stock
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Linda Böhmert
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas F Thünemann
- German Federal Institute for Material Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
24
|
Li Y, Padoan E, Ajmone-Marsan F. Soil particle size fraction and potentially toxic elements bioaccessibility: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111806. [PMID: 33360288 DOI: 10.1016/j.ecoenv.2020.111806] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/19/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
In the last decade, extensive studies have been conducted to quantify the influence of different factors on potentially toxic elements (PTE) bioaccessibility in soil; one of the most important is soil size fraction. However, there is no agreement about the size fraction and the methods to investigate bioaccessibility, as very few review articles are available on soil PTE bioaccessibility and none addressed the influence of particle size on PTE bioaccessibility. This study provides a review of the relations between PTE bioaccessibility and soil particle size fractions. The available research indicates that PTE bioaccessibility distribution across different size fractions varies widely in soil, but a general trend of higher bioaccessibility in finer size fraction was found. The different elements may exhibit different relationships between bioaccessibility and soil size fraction and, in some cases, their bioaccessibility seems to be more related to the source and to the chemico-physical form of PTE in soil. Often, soil pollution and related health risk are assessed based on PTE total concentration rather than their bioaccessible fraction, but from the available studies it appears that consensus must be pursued on the methods to determine PTE bioaccessibility in the fine soil size fractions to achieve a more accurate human health risk assessment.
Collapse
Affiliation(s)
- Yan Li
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| | - Elio Padoan
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| | - Franco Ajmone-Marsan
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, Grugliasco, Torino 10095, Italy.
| |
Collapse
|
25
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
26
|
Khan AU, Xu Z, Qian X, Hong A, Tang Q, Zeng T, Kah M, Li L. Transformations of Ag 2S nanoparticles in simulated human gastrointestinal tract: Impacts of the degree and origin of sulfidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123406. [PMID: 32653797 DOI: 10.1016/j.jhazmat.2020.123406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Engineered silver sulfide nanoparticles (e-Ag2S-NPs) are used in industry and can be released into the environment. Besides e-Ag2S-NPs, transformed silver sulfide nanoparticles (t-Ag2S-NPs) from silver nanoparticles are more likely to be the form that is widely distributed in the environment. Both e-Ag2S-NPs and t-Ag2S-NPs may be ingested and get into human gastrointestinal tract (GIT) through trophic transfer, posing a potential threat to human health. Nevertheless, knowledge of chemical stability of t-Ag2S-NPs and e-Ag2S-NPs in the human GIT is very limited. Herein e-Ag2S-NPs and a series of t-Ag2S-NPs with different degrees of sulfidation were selected as models for exposure to the simulated human GIT including mouth, stomach and small intestine phases under fed and fasted conditions. Silver ions were detected in the simulated saliva, gastric and small intestine fluids when t-Ag2S-NPs or e-Ag2S-NPs were incubated in the simulated GIT, but the amount (e.g., < 20 μg) of silver ion in each phase accounted for < 0.2‰ (w/w) of the silver added (i.e., 100 mg). Silver species of the residual particulate from each phase of the simulated GIT with t-Ag2S-NPs or e-Ag2S-NPs were thus analyzed through a developed analytical method that could selectively, successively and efficiently dissolve and quantify AgCl, Ag(0), and Ag2S in particulates. Both e-Ag2S-NPs and fully sulfidized t-Ag2S-NPs were shown to be highly stable in the simulated human GIT. Conversely, partially sulfidized t-Ag2S-NPs primarily underwent transformations in the mouth phase relative to stomach and small intestine phases regardless of fed or fasted status, wherein AgCl and Ag2S were observed besides Ag(0). The amount of Ag2S in the mouth phase negatively (r = -0.99, p < 0.001) correlated with the sulfidation degree of initial t-Ag2S-NPs. This work improved our understanding of potential transformations of t-Ag2S-NPs in the simulated human GIT, providing valuable information for future researches on evaluating health risks of ingested Ag2S-NPs.
Collapse
Affiliation(s)
- Ashfeen Ubaid Khan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenlan Xu
- Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoting Qian
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Aimei Hong
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qing Tang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland 1142, New Zealand
| | - Lingxiangyu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
27
|
He X, Zhang H, Shi H, Liu W, Sahle-Demessie E. Fates of Au, Ag, ZnO, and CeO 2 Nanoparticles in Simulated Gastric Fluid Studied using Single-Particle-Inductively Coupled Plasma-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2180-2190. [PMID: 32881526 PMCID: PMC7877237 DOI: 10.1021/jasms.0c00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in many industries has generated significant research interest regarding their impact on the environment and human health. The major routes of ENPs to enter the human body are inhalation, skin contact, and ingestion. Following ingestion, ENPs have a long contact time in the human stomach. Hence, it is essential to know the fate of the ENPs under gastric conditions. This study aims to investigate the fate of the widely used nanoparticles Ag-NP, Au-NP, CeO2-NP, and ZnO-NP in simulated gastric fluid (SGF) under different conditions through the application of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The resulting analytical methods have size detection limits for Ag-NP, Au-NP, ZnO-NP, and CeO2-NP from 15 to 35 nm, and the particle concentration detection limit is 135 particles/mL. Metal ions corresponding to the ENPs of interest were detected simultaneously with detection limits from 0.02 to 0.1 μg/L. The results showed that ZnO-NPs dissolved completely and rapidly in SGF, whereas Au-NPs and CeO2-NPs showed apparent aggregation and did not dissolve significantly. Both aggregation and dissolution were observed in Ag-NP samples following exposure to SGF. The size distributions and concentrations of ENPs were affected by the original ENP concentration, ENP size, the contact time in SGF, and temperature. This work represents a significant advancement in the understanding of ENP characteristics under gastric conditions.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Haiting Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Endalkachew Sahle-Demessie
- The U.S. Environmental Protection Agency, ORD, CESER, LRTD, 26 West Martin Luther King Jr. Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
28
|
Zorraquín-Peña I, Cueva C, González de Llano D, Bartolomé B, Moreno-Arribas MV. Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines 2020; 8:E375. [PMID: 32977686 PMCID: PMC7598685 DOI: 10.3390/biomedicines8100375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been proposed as new alternatives to limit bacterial dental plaque because of their antimicrobial activity. Novel glutathione-stabilized silver nanoparticles (GSH-AgNPs) have proven powerful antibacterial properties in food manufacturing processes. Therefore, this study aimed to evaluate the potentiality of GSH-AgNPs for the prevention/treatment of oral infectious diseases. First, the antimicrobial activity of GSH-AgNPs against three oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans) was evaluated. Results demonstrated the efficiency of GSH-AgNPs in inhibiting the growth of all bacteria, especially S. mutans (IC50 = 23.64 μg/mL, Ag concentration). Second, GSH-AgNPs were assayed for their cytotoxicity (i.e., cell viability) toward a human gingival fibroblast cell line (HGF-1), as an oral epithelial model. Results indicated no toxic effects of GSH-AgNPs at low concentrations (≤6.16 µg/mL, Ag concentration). Higher concentrations resulted in losing cell viability, which followed the Ag accumulation in cells. Finally, the inflammatory response in the HGF-1 cells after their exposure to GSH-AgNPs was measured as the production of immune markers (interleukins 6 and 8 (IL-6 and IL-8) and tumor necrosis factor-alpha (TNF-α)). GSH-AgNPs activates the inflammatory response in human gingival fibroblasts, increasing the production of cytokines. These findings provide new insights for the use of GSH-AgNPs in dental care and encourage further studies for their application.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (D.G.d.L.); (B.B.)
| |
Collapse
|
29
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
30
|
Shi JH, Axson JL, Bergin IL, Ault AP. Nanoparticle Digestion Simulator Reveals pH-Dependent Aggregation in the Gastrointestinal Tract. Anal Chem 2020; 92:12257-12264. [PMID: 32786449 DOI: 10.1021/acs.analchem.0c01844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Determining the physicochemical properties of ingested nanoparticles within the gastrointestinal tract (GIT) is critical for evaluating the impact of environmental exposure and potential for nanoparticle drug delivery. However, it is challenging to predict nanoparticle physicochemical properties at the point of intestinal absorption due to the changing chemical environments within the GIT. Herein, a dynamic nanoparticle digestion simulator (NDS) was constructed to examine nanoparticle evolution due to changing pH and salt concentrations in the stomach and upper intestine. This multicompartment, flow-through system simulates digestion by transferring gastrointestinal fluids and digestive secretions at physiologically relevant time scales and flow rates. Pronounced differences in aggregation and aggregate stability were observed with silver nanoparticles (citrate-coated) with an initial hydrodynamic diameter (Dh) of 24.6 ± 0.4 nm examined under fasted (pH 2) and fed (pH 5) gastric conditions using nanoparticle tracking analysis (NTA) for size distributions and transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX) for morphology and elemental composition. Under fasted stomach conditions, particles aggregated to Dh = 130 ± 10 nm and remained as large aggregates in the upper intestinal compartments (duodenum and jejunum) ending with Dh = 110 ± 20 nm and a smaller mode at 59 ± 8 nm. In contrast, under fed conditions, nanoparticles aggregated to 60 ± 10 nm in the stomach, then disaggregated to individual nanoparticles (26 ± 2 nm) in the intestinal compartments. The NDS provides an analytical approach for studying nanoparticle physicochemical modifications within the GIT and the impacts of intentionally and unintentionally ingested nanoparticles.
Collapse
Affiliation(s)
- Jia H Shi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L Axson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Rogers KR, Henson TE, Navratilova J, Surette M, Hughes MF, Bradham KD, Stefaniak AB, Knepp AK, Bowers L. In vitro intestinal toxicity of commercially available spray disinfectant products advertised to contain colloidal silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138611. [PMID: 32344222 PMCID: PMC7786200 DOI: 10.1016/j.scitotenv.2020.138611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 05/22/2023]
Abstract
The use of colloidal silver-containing products as dietary supplements, immune boosters and surface disinfectants has increased in recent years which has elevated the potential for human exposure to silver nanoparticles and ions. Product mislabeling and long-term use of these products may put consumers at risk for adverse health outcomes including argyria. This study assessed several physical and chemical characteristics of five commercial products as well as their cytotoxicity using a rat intestinal epithelial cell (IEC-6) model. Concentrations of silver were determined for both the soluble and particulate fractions of the products. Primary particle size distribution and elemental composition were determined by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. Hydrodynamic diameters were measured using nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). The effect of gastrointestinal (GI) simulation on the colloidal silver products was determined using two systems. First, physical and chemical changes of the silver nanoparticles in these products was assessed after exposure to Synthetic Stomach Fluid (SSF) resulting in particle agglomeration, and the appearance of AgCl on the surfaces and between particles. IEC-6 cells were exposed for 24 h to dilutions of the products and assessed for cell viability. The products were also treated with a three-stage simulated GI system (stomach and intestinal fluids) prior to exposure of the IEC-6 cells to the isolated silver nanoparticles. Cell viability was affected by each of the consumer products. Based on the silver nitrate and commercial silver nanoparticle dose response, the cytotoxicity for each of the colloidal silver products was attributed to the particulate silver, soluble silver or non‑silver matrix constituents.
Collapse
Affiliation(s)
- Kim R Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States.
| | - Taylor E Henson
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711, United States; Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Jana Navratilova
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Mark Surette
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Michael F Hughes
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Karen D Bradham
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, Office of Research and Development, USEPA, RTP, NC 27711, United States
| | - Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| | - Lauren Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV 26506, United States
| |
Collapse
|
32
|
Grande R, Sisto F, Puca V, Carradori S, Ronci M, Aceto A, Muraro R, Mincione G, Scotti L. Antimicrobial and Antibiofilm Activities of New Synthesized Silver Ultra-NanoClusters (SUNCs) Against Helicobacter pylori. Front Microbiol 2020; 11:1705. [PMID: 32849359 PMCID: PMC7411087 DOI: 10.3389/fmicb.2020.01705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori colonizes approximately 50% of the world’s population, and it is the cause of chronic gastritis, peptic ulcer disease, and gastric cancer. The increase of antibiotic resistance is one of the biggest challenges of our century due to its constant increase. In order to identify an alternative or adjuvant strategy to the standard antibiotic therapy, the in vitro activity of newly synthesized Silver Ultra-NanoClusters (SUNCs), characterized by an average size inferior to 5 nm, against clinical strains of H. pylori, with different antibiotic susceptibilities, was evaluated in this study. MICs and MBCs were determined by the broth microdilution method, whereas the effect of drug combinations was determined by the checkerboard assay. The Minimum Biofilm Eradication Concentration (MBEC) was measured using AlamarBlue (AB) assay and colony-forming unit (CFU) counts. The cytotoxicity was evaluated by performing the MTT assay on the AGS cell line. The inhibitory activity was expressed in terms of bacteriostatic and bactericidal potential, with MIC50, MIC90, and MBC50 of 0.33 mg/L against planktonic H. pylori strains. Using the fractional inhibitory concentration index (FICI), SUNCs showed potential synergism with metronidazole and clarithromycin. The biofilm eradication was obtained after treatment with 2×, 3×, and 4× MIC values. Moreover, SUNCs showed low toxicity on human cells and were effective in eradicating a mature biofilm produced by H. pylori. The data presented in this study demonstrate that SUNCs could represent a novel strategy for the treatment of H. pylori infections either alone or in combination with metronidazole.
Collapse
Affiliation(s)
- Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Puca
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maurizio Ronci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio Aceto
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Raffaella Muraro
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luca Scotti
- Department of Medical, Oral, and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
33
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Laloux L, Kastrati D, Cambier S, Gutleb AC, Schneider YJ. The Food Matrix and the Gastrointestinal Fluids Alter the Features of Silver Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907687. [PMID: 32187880 DOI: 10.1002/smll.201907687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are used in the agri-food sector, which can lead to their ingestion. Their interaction with food and their passage through the gastrointestinal tract can alter their properties and influence their fate upon ingestion. Therefore, this study aims at developing an in vitro method to follow the fate of AgNPs in the gastrointestinal tract. After incorporation of AgNPs into a standardized food matrix, a precolonic digestion is simulated and AgNPs are characterized by different techniques. The presence of food influences the AgNPs properties by forming a corona around nanoparticles. Even if the salivary step does not impact significantly the AgNPs, the pH decrease and the digestive enzymes induce the agglomeration of AgNPs during the gastric phase, while the addition of intestinal fluids disintegrates these clusters. AgNPs can thus reach the intestinal cells under nanometric form, although the presence of food and gastrointestinal fluids modifies their properties compared to pristine AgNPs. They can form a corona around the nanoparticles and act as colloidal stabilizer, which can impact the interaction of AgNPs with intestinal epithelium. This study demonstrates the importance of taking the fate of AgNPs in the gastrointestinal tract into account to perform an accurate risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Laurie Laloux
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Donika Kastrati
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Rue du Brill, 41, Belvaux, L-4422, Luxembourg
| | - Yves-Jacques Schneider
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Place Croix-du-Sud, 4-5 bte L7.07.03, Louvain-la-Neuve, B-1348, Belgium
| |
Collapse
|
35
|
Ferdous Z, Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci 2020; 21:E2375. [PMID: 32235542 PMCID: PMC7177798 DOI: 10.3390/ijms21072375] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, UAE
| |
Collapse
|
36
|
Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020; 63:104738. [PMID: 31760064 PMCID: PMC6961208 DOI: 10.1016/j.tiv.2019.104738] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/27/2023]
Abstract
Chronic inflammatory conditions can negatively impact intestinal barrier function and affect the epithelium's interaction with nano-sized materials. We demonstrate the application of a Caco-2/THP-1 co-culture mimicking the intestine in healthy (i.e. stable) or inflamed state in nanotoxicological research. The co-cultures were exposed to non-toxic concentrations of silver nanoparticles (AgNPs) or silver nitrate (AgNO3) for 24 h. The barrier integrity and cytokine release as well as necrotic and apoptotic cell death were investigated. AgNPs and AgNO3 most strongly affected the inflamed co-culture. Higher concentrations of AgNPs induced a significant increase in barrier integrity in the inflamed but not the stable co-culture. Necrotic and apoptotic cell death was detected in both conditions but were significantly more pronounced in the inflamed condition. The exposure to AgNO3 affected barrier integrity in all experimental set-ups, but caused nuclear condensation only in the Caco-2 monoculture and the inflamed co-culture. AgNPs reduced the release of monocyte chemoattractant protein-1 in the stable model. Clear differences were observed in the effects of AgNPs and AgNO3 in relation to the model's health status. The results suggest an increased vulnerability of the inflamed epithelial barrier towards AgNPs underlining the importance to consider the intestinal health status in the safety assessment of nanomaterials.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission, Joint Research Centre (JRC), Ispra, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|
37
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
38
|
Kobos L, Shannahan J. Biocorona‐induced modifications in engineered nanomaterial–cellular interactions impacting biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1608. [PMID: 31788989 DOI: 10.1002/wnan.1608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Kobos
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| | - Jonathan Shannahan
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| |
Collapse
|
39
|
Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2019; 14:111-126. [PMID: 31648587 DOI: 10.1080/17435390.2019.1675794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.
Collapse
Affiliation(s)
- Ashraf Abdelkhaliq
- Wageningen Food Safety Research, Wageningen, The Netherlands.,Division of Toxicology, Wageningen University, Wageningen, The Netherlands.,Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | - Anna K Undas
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
40
|
Yokel RA, Hancock ML, Cherian B, Brooks AJ, Ensor ML, Vekaria HJ, Sullivan PG, Grulke EA. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response. Eur J Pharm Biopharm 2019; 144:252-265. [PMID: 31563633 DOI: 10.1016/j.ejpb.2019.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 01/16/2023]
Abstract
Nanoscale cerium dioxide (nanoceria) has industrial applications, capitalizing on its catalytic, abrasive, and energy storage properties. It auto-catalytically cycles between Ce3+ and Ce4+, giving it pro-and anti-oxidative properties. The latter mediates beneficial effects in models of diseases that have oxidative stress/inflammation components. Engineered nanoparticles become coated after body fluid exposure, creating a corona, which can greatly influence their fate and effects. Very little has been reported about nanoceria surface changes and biological effects after pulmonary or gastrointestinal fluid exposure. The study objective was to address the hypothesis that simulated biological fluid (SBF) exposure changes nanoceria's surface properties and biological activity. This was investigated by measuring the physicochemical properties of nanoceria with a citric acid coating (size; morphology; crystal structure; surface elemental composition, charge, and functional groups; and weight) before and after exposure to simulated lung, gastric, and intestinal fluids. SBF-exposed nanoceria biological effect was assessed as A549 or Caco-2 cell resazurin metabolism and mitochondrial oxygen consumption rate. SBF exposure resulted in loss or overcoating of nanoceria's surface citrate, greater nanoceria agglomeration, deposition of some SBF components on nanoceria's surface, and small changes in its zeta potential. The engineered nanoceria and SBF-exposed nanoceria produced no statistically significant changes in cell viability or cellular oxygen consumption rates.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Benjamin Cherian
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Alexandra J Brooks
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| | - Marsha L Ensor
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States.
| | - Hemendra J Vekaria
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Patrick G Sullivan
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY 40536-0509, United States; Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0509, United States.
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States.
| |
Collapse
|
41
|
Silver nanoparticles-clays nanocomposites as feed additives: Characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines 2019; 7:biomedicines7030065. [PMID: 31466331 PMCID: PMC6783842 DOI: 10.3390/biomedicines7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
People come in contact with a huge number of nanoparticles (NPs) throughout their lives, which can be of both natural and anthropogenic origin and are capable of entering the body through swallowing, skin penetration, or inhalation. In connection with the expanding use of nanomaterials in various industrial processes, the question of whether there is a need to study the potentially adverse effects of NPs on human health becomes increasingly important. Despite the fact that the nature and the extent of damage caused depends on the chemical and the physical characteristics of individual NPs, there are also general mechanisms related to their toxicity. These mechanisms include the ability of NPs to translocate to various organs through endocytosis, as well as their ability to stimulate the production of reactive oxygen species (ROS), leading to oxidative stress, inflammation, genotoxicity, metabolic changes, and potentially carcinogenesis. In this review, we discuss the main characteristics of NPs and the effects they cause at both cellular and tissue levels. We also focus on possible mechanisms that underlie the relationship of NPs with carcinogenesis. We briefly summarize the main concepts related to the role of endogenous mineral organic NPs in the development of various human diseases and their participation in extra-bone calcification. Considering data from both our studies and those published in scientific literature, we propose the revision of some ideas concerning extra-bone calcification, since it may be one of the factors associated with the initiation of the mechanisms of immunological tolerance.
Collapse
|
43
|
Henson TE, Navratilova J, Tennant AH, Bradham KD, Rogers KR, Hughes MF. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 2019; 13:795-811. [PMID: 30938207 DOI: 10.1080/17435390.2019.1578428] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions.
Collapse
Affiliation(s)
- Taylor E Henson
- a Student Services Contractor at the National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | | | - Alan H Tennant
- c National Health and Environmental Effects Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Karen D Bradham
- d National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Kim R Rogers
- d National Exposure Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Michael F Hughes
- c National Health and Environmental Effects Research Laboratory , Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| |
Collapse
|
44
|
Kröncke N, Grebenteuch S, Keil C, Demtröder S, Kroh L, Thünemann AF, Benning R, Haase H. Effect of Different Drying Methods on Nutrient Quality of the Yellow Mealworm ( Tenebrio molitor L.). INSECTS 2019; 10:insects10040084. [PMID: 30934687 PMCID: PMC6523706 DOI: 10.3390/insects10040084] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Yellow mealworm (Tenebrio molitor L.) represents a sustainable source of proteins and fatty acids for feed and food. Industrial production of mealworms necessitates optimized processing techniques, where drying as the first postharvest procedure is of utmost importance for the quality of the final product. This study examines the nutritional quality of mealworm larvae processed by rack oven drying, vacuum drying or freeze drying, respectively. Proximate composition and fatty acid profile were comparable between the dried larvae. In contrast, larvae color impressions and volatile compound profiles were very much dependent on processing procedure. High-temperature rack oven drying caused pronounced darkening with rather low content of volatiles, pointing toward the progress of Maillard reaction. On the other hand, vacuum drying or freeze drying led to enrichment of volatile Maillard reaction and lipid oxidation intermediates, whose actual sensory relevance needs to be clarified in the future. Beyond sensory and visual importance drying intermediates have to be considered with regard to their metal ion chelating ability; in particular for essential trace elements such as Zn2+. This study found comparable total zinc contents for the differently dried mealworm samples. However, dried larvae, in particular after rack oven drying, had only low zinc accessibility, which was between 20% and 40%. Therefore, bioaccessibility rather than total zinc has to be considered when their contribution to meeting the nutritional requirements for zinc in humans and animals is evaluated.
Collapse
Affiliation(s)
- Nina Kröncke
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| | - Sandra Grebenteuch
- Department Food Chemistry and Analytics, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Claudia Keil
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Sebastian Demtröder
- Department Food Chemistry and Analytics, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Lothar Kroh
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Andreas F Thünemann
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Rainer Benning
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| | - Hajo Haase
- Department Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, TU Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
45
|
Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Zhang Z, Zhang R, Xiao H, Bhattacharya K, Bitounis D, Demokritou P, McClements DJ. Development of a standardized food model for studying the impact of food matrix effects on the gastrointestinal fate and toxicity of ingested nanomaterials. NANOIMPACT 2019; 13:13-25. [PMID: 31093583 PMCID: PMC6512864 DOI: 10.1016/j.impact.2018.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Food matrix effects impact the bioavailability and toxicity of pharmaceuticals, nutraceuticals, pesticides, and engineered nanomaterials (ENMs). However, there are currently no standardized food models to test the impact of food matrix effects using in vitro gastrointestinal models. The purpose of this study was to establish a standardized food model (SFM) for evaluating the toxicity and fate of ingested ENMs and then to assess its efficacy by examining the impact of food matrix effects on the toxicity of TiO2 nanoparticles. The formulation of the SFM was based on the average composition of the US diet: 3.4% protein (sodium caseinate); 4.6% sugar (sucrose); 5.2% digestible carbohydrates (modified corn starch); 0.7% dietary fiber (pectin); 3.4% fat (corn oil); and, 0.5% minerals (sodium chloride). The SFM consisted of an oil-in-water emulsion suitable for use in both wet and dried forms. The dried form was produced by spray drying the emulsion to improve its handling and extend its shelf-life. The particle size (D32 = 135 nm), surface charge (-37.8 mV), viscosity, color (L*, a,* b* = 82.1, -2.5, 1.3), and microstructure of the wet SFM were characterized. The hydration properties, flowability (repose angle ≈ 27.9°; slide angle ≈ 28.2°), and moisture sorption isotherms of the dry SFM were comparable to commercial food powders. The potential gastrointestinal fate of the SFM was determined using a simulated gastrointestinal tract, including mouth, stomach, and small intestine steps. Conversion of the SFM into a powdered form did not impact its gastrointestinal fate. A nanotoxicology case study with TiO2 nanoparticles exposed to a tri-culture epithelial cell model showed that food matrix effects reduced ENM cytotoxicity more than 5-fold. The SFM developed in the current study could facilitate studies of the impact of food matrix effects on the gastrointestinal fate and toxicity of various types of food NPs.
Collapse
Affiliation(s)
- Zipei Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Ruojie Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Kunal Bhattacharya
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
47
|
Dang F, Jiang Y, Li M, Zhong H, Peijnenburg WGM, Shi W, Zhou D. Oral bioaccessibility of silver nanoparticles and ions in natural soils: Importance of soil properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:364-373. [PMID: 30199811 DOI: 10.1016/j.envpol.2018.08.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
The abundance of silver nanoparticles (AgNPs) in consumer products has led to their environmental release and therefore to concern about their impact on human health. The ingestion of AgNP-contaminated soil from urban sites is an important exposure pathway, especially for children. Given the limited information on oral bioaccessibility of soil Ag, we used a physiologically based extraction test (PBET) to evaluate the bioaccessibility of AgNPs and AgNO3 from soil digestion. The AgNPs underwent several biochemical transformations, including their simultaneous dissolution and agglomeration in gastric fluid followed by the disintegration in the intestinal fluid of the agglomerates into NPs containing silver and chlorine. Therefore, Ag-containing soil exposed the intestine to nanoparticulate Ag in forms that were structurally different from the original forms. The bioaccessibility of AgNPs (0.5 ± 0.05%-10.9 ± 0.7%) was significantly lower than that of AgNO3 (4.7 ± 0.6%-14.4 ± 0.1%), as a result of the lower adsorption of nanoparticles to soil residues during the digestive process. For the soils tested, the bioaccessibility of AgNPs increased with decreasing clay contents and lower pH. By identifying the soil properties that control AgNP bioaccessibility, a more efficient and accurate screening can be performed of soil types that pose the greatest health risk associated with AgNP exposure.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanyuan Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Min Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - WillieJ G M Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands
| | - Weilin Shi
- Suzhou University of Science and Technology, Kerui Road 1 in Gaoxin Section, Suzhou, 215011, Jiangsu, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, The Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
48
|
Böhmert L, König L, Sieg H, Lichtenstein D, Paul N, Braeuning A, Voigt A, Lampen A. In vitro nanoparticle dosimetry for adherent growing cell monolayers covering bottom and lateral walls. Part Fibre Toxicol 2018; 15:42. [PMID: 30376850 PMCID: PMC6208118 DOI: 10.1186/s12989-018-0278-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/14/2018] [Indexed: 01/26/2023] Open
Abstract
Background Even though a continuously high number of in vitro studies on nanoparticles are being published, the issue of correct dose matter is often not sufficiently taken into account. Due to their size, the diffusion of nanoparticles is slower, as compared to soluble chemicals, and they sediment slowly. Therefore, the administered dose of particles in in vitro experiments is not necessarily the same (effective) dose that comes into contact with the cellular system. This can lead to misinterpretations of experimental toxic effects and disturbs the meaningfulness of in vitro studies. In silico calculations of the effective nanoparticle dose can help circumventing this problem. Results This study addresses more complex in vitro models like the human intestinal cell line Caco-2 or the human liver cell line HepaRG, which need to be differentiated over a few weeks to reach their full complexity. During the differentiation time the cells grow up the wall of the cell culture dishes and therefore a three-dimensional-based in silico model of the nanoparticle dose was developed to calculate the administered dose received by different cell populations at the bottom and the walls of the culture dish. Moreover, the model can perform calculations based on the hydrodynamic diameter which is measured by light scattering methods, or based on the diffusion coefficient measured by nanoparticle tracking analysis (NTA). This 3DSDD (3D-sedimentation-diffusion-dosimetry) model was experimentally verified against existing dosimetry models and was applied to differentiated Caco-2 cells incubated with silver nanoparticles. Conclusions The 3DSDD accounts for the 3D distribution of cells in in vitro cell culture dishes and is therefore suitable for differentiated cells. To encourage the use of dosimetry calculating software, our model can be downloaded from the supporting information. Electronic supplementary material The online version of this article (10.1186/s12989-018-0278-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Laura König
- Chair of Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Holger Sieg
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Niklas Paul
- Technische Universität Berlin, Fachgebiet Verfahrenstechnik, Ackerstraße 71-76, 13355, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Voigt
- Chair of Process Systems Engineering, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
49
|
Wu W, Zhang R, McClements DJ, Chefetz B, Polubesova T, Xing B. Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8792-8800. [PMID: 29969018 DOI: 10.1021/acs.est.8b01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Knowledge of the physicochemical properties of ingestible silver nanoparticles (AgNPs) in the human gastrointestinal tract (GIT) is essential for assessing their bioavailability, bioactivity, and potential health risks. The gastrointestinal fate of AgNPs and silver ions from a commercial dietary supplement was therefore investigated using a simulated human GIT. In the mouth, no dissolution or aggregation of AgNPs occurred, which was attributed to the neutral pH and the formation of biomolecular corona, while the silver ions formed complexes with biomolecules (Ag-biomolecule). In the stomach, aggregation of AgNPs did not occur, but extensive dissolution was observed due to the low pH and the presence of Cl-. In the fed state (after meal), 72% AgNPs (by mass) dissolved, with 74% silver ions forming Ag-biomolecule and 26% forming AgCl. In the fasted state (before meal), 76% AgNPs dissolved, with 82% silver ions forming Ag-biomolecule and 18% forming AgCl. A biomolecular corona around AgNPs, comprised of mucin with multiple sulfhydryl groups, inhibited aggregation and dissolution of AgNPs. In the small intestine, no further dissolution or aggregation of AgNPs occurred, while the silver ions existed only as Ag-biomolecule. These results provide useful information for assessing the bioavailability of ingestible AgNPs and their subsequently potential health risks, and for the safe design and utilization of AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Wenhao Wu
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Benny Chefetz
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Tamara Polubesova
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
50
|
Guarnieri D, Sánchez-Moreno P, Del Rio Castillo AE, Bonaccorso F, Gatto F, Bardi G, Martín C, Vázquez E, Catelani T, Sabella S, Pompa PP. Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800227. [PMID: 29756263 DOI: 10.1002/smll.201800227] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Indexed: 05/09/2023]
Abstract
The biotransformation and biological impact of few layer graphene (FLG) and graphene oxide (GO) are studied, following ingestion as exposure route. An in vitro digestion assay based on a standardized operating procedure (SOP) is exploited. The assay simulates the human ingestion of nanomaterials during their dynamic passage through the different environments of the gastrointestinal tract (salivary, gastric, intestinal). Physical-chemical changes of FLG and GO during digestion are assessed by Raman spectroscopy. Moreover, the effect of chronic exposure to digested nanomaterials on integrity and functionality of an in vitro model of intestinal barrier is also determined according to a second SOP. These results show a modulation of the aggregation state of FLG and GO nanoflakes after experiencing the complex environments of the different digestive compartments. In particular, chemical doping effects are observed due to FLG and GO interaction with digestive juice components. No structural changes/degradation of the nanomaterials are detected, suggesting that they are biopersistent when administered by oral route. Chronic exposure to digested graphene does not affect intestinal barrier integrity and is not associated with inflammation and cytotoxicity, though possible long-term adverse effects cannot be ruled out.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Paola Sánchez-Moreno
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | | | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Francesca Gatto
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
- Department of Engineering for Innovation, University of Salento, 73100, Lecce, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| | - Cristina Martín
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Stefania Sabella
- Drug Discovery and Development Department, Istituto Italiano di Tecnologia, Via Morego, 30, 16136, Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30, 16163, Genova, Italy
| |
Collapse
|